Soil Biology and Biochemistry Volume 75, August 2014, Pages 292-299

http://dx.doi.org/10.1016/j.soilbio.2014.04.019

Increased microbial activity contributes to phosphorus immobilization in the rhizosphere of wheat under elevated CO₂

Jian Jin^a, Caixian Tang^{a,*}, Andrew Robertson^a, Ashley E. Franks^b, Roger Armstrong^c and Peter Sale^a

^a Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia.

^b Department of Microbiology, La Trobe University, Melbourne, Bundoora, Vic. 3086, Australia.

^c Department of Primary Industries, PMB 260 Horsham, Victoria 3401, Australia

Abstract

Understanding phosphorus (P) transformation in the rhizosphere affected by elevated CO₂ (eCO₂) needs to underpin the plant-derived C flow and P relationship in the plant-soilmicrobe continuum. A pot experiment was conducted in CO₂-controlled environmental cabinets. Wheat (Triticum aestivum L.) plants were grown in a P-sufficient Vertisol soil and exposed to 380 or 800 ppm CO₂ for 6 weeks. Plants were labelled with ¹³CO₂ under respective CO₂ treatments. Elevated CO₂ increased NaHCO₃- and NaOH-extractable organic P (Po) in the rhizosphere by 160% and 53%, respectively. Consistently, eCO₂ increased microbial C and respiration in the rhizosphere. Furthermore, the excess of ¹³C atom in roots and rhizosphere soil, but not in shoots, were markedly higher under eCO₂ than aCO₂. Elevated CO₂ increased the copy number of bacterial 16S rDNA from ¹³C-DNA and ¹²C-DNA fractions. Although the copy number of fungal 18S rDNA from ¹³C-DNA was higher under eCO₂, there was no difference on the copy number of total 18S rDNA between the CO₂ treatments. It is concluded that the increased Po in the rhizosphere under eCO_2 was mainly attributed to stimulating microbial biomass/activity which in turn immobilized more P and root-derived materials. The stimulation of microbes resulted from increased C efflux from root systems under eCO₂

Key words: ¹³C labelling, carbon allocation, climate change, CO₂ concentration, microbial activity, P transformation, root exudates

1. Introduction

Understanding the impact of elevated CO₂ (eCO₂) on nutrient cycling in soil can help identify strategies needed to maintain soil nutrient supply in future cropping systems. For example, nitrogen (N) cycling is affected by eCO₂; N immobilization can occur in soils when plants grown under eCO₂ and this immobilization may limit plant growth in response to eCO₂ in the long term (De Graaff et al., 2006). However, research on how eCO₂ influences P acquisition of crops in soils is scarce. Recently, Jin et al. (2012; 2013) showed that eCO₂ enhanced P demand of crop plants and markedly increased extractable organic P (Po), an indication of P immobilization, in the rhizosphere. However, the mechanisms leading to the increase of Po are unclear.

Understanding how Po is increased under eCO₂ will assist in optimizing P management in farming systems in future climate changed environments because Po comprises a large part of total soil P, and can be transformed into labile Pi (Ahlgren et al., 2013; Achat et al., 2010). There are three possible causes of the increase in Po in the soil. Firstly, one source of the increased Po may be rhizodepositions. Johansson et al. (2009) reported that eCO₂ increased root exudates of P. svlvestris (L.) Karst with low-molecular-weight organic compounds increasing by 120-160%, dissolved organic carbon by 180-220% and amino acids by 250%. These root-derived substances could be P-enriched. Secondly, decomposition of soil organic matter could also contribute to the increased Po under eCO₂. Elevated CO₂ may induce a priming effect via the efflux of labile substrates from roots to the rhizosphere, accelerating the decomposition of soil organic matter, but this process is likely to be greatly limited by the low organic C content in the tested soil (Jin et al., 2012). Thirdly, increased microorganism population in the rhizosphere could be an important cause of increased Po under eCO₂. A study using Lolium perenne showed a 42% increase in microbial biomass in soil after plants were exposed to 700 ppm CO₂ for 3 months (van Ginkel et al., 2000). It was evident that the microbial C significantly increased under eCO₂ and correlated positively with an increase in Po fractions (Jin et al., 2013). Srivastava and Singh (1988) also reported that

microbial biomass accounted for 9.2–19.2% of the total Po in six tropical soils and that microbial P was positively related with NaHCO₃-Po. However, how eCO₂ regulates the microbes to immobilize P or alters P-use efficiency by microbes remains unknown. This would be associated with the contribution of rhizospheric C flow to the accumulation of microbial P, and major microbial structure contributing to such Po accumulation under eCO₂.

The ¹³CO₂ labelling technique quantifies the fate of plant-assimilated C in plant-soil-microbe continuum (Subedi et al., 2006). Further, this technique can also be used to trace the incorporation of plant-originated C fluxes into microbial nucleic acids (¹³C stable isotope probing, SIP), by which the quantity and nature of microbes utilizing root-derived substances can be identified (Boschker et al., 1998; Vandenkoornhuyse et al., 2007; Whiteley et al., 2007). By using the ¹³CO₂ labelling in this study, the effect of eCO₂ on C flow in soil microorganisms and its contribution to P transformation in the rhizosphere can be assessed. We hypothesize that the eCO₂-induced increase of the photosynthetic C efflux from root system stimulates microbial biomass/activity. Thus, the demand for P by microbes may subsequently increase.

2. Materials and Methods

2.1. Experimental design and plant growth

A pot experiment was undertaken in growth chambers. The experiment design consisted of two CO_2 levels, i.e. ambient CO_2 (a CO_2 ; 380 ppm) and elevated CO_2 (e CO_2 ; 800 ppm) in a randomised design. Each treatment consisted of eight replications with plants and four without plants as bulk soil controls. The plant species was wheat (*Triticum aestivum*. L. cv. Beaufort).

A Vertisol (FAO – UNESCO, 1976) soil was collected from a field site that had been part of a long-term phosphorus fertilisation trial in Horsham, Victoria (36°42'S, 142°11'E). The soil organic C was 13.3 g kg⁻¹, total N 1.1 g kg⁻¹, total P 254 mg kg⁻¹, Olsen P 43 mg kg⁻¹ and a pH (1:5 in 0.01 M CaCl₂) 6.9. The soil was initially air-dried and then sieved (≤ 4 mm), before mixing with siliceous sand (w:w=1:1) to aid the collection rhizosphere soil at harvest. Each pot contained 4.5 kg of the soil/sand mix. Basal nutrients were added to all the pots in the following composition (mg kg⁻¹): urea, 60; K₂SO₄, 147; CaCl₂, 186; MgSO₄.7H₂O, 122; MnSO₄.H₂O, 6; ZnSO₄.7H₂O, 8; CuSO₄.5H₂O, 6; CoCl₂.6H₂O, 0.4; FeCl₃, 0.6; NaB₄O₇.10H₂O, 1.6; and Na₂MoO₄.2H₂O, 0.4.

Wheat seeds were germinated for 1 d on moistened filter paper. Twenty geminated seeds were sown in each pot and thinned to 15 plants 7 days after emergence. All pots were allocated into 4 controlled-environmental cabinets (Fitotron SGC120, Weiss Gallenkamp Ltd, Leicestershire, United Kingdom) with 2 cabinets set at aCO₂ and 2 at eCO₂. Plants were grown at 22 °C (day, 12 h) and 18 °C (night) for 6 weeks with a light intensity (over the waveband 400–700 nm) of 550 µmol photons m⁻² s⁻¹. Soil water content was maintained daily at $80\pm5\%$ of field capacity (26% w/w) by weighing while the field capacity was determined according to Klute (1986).

2.2. ¹³CO₂ labelling

The plants were labelled with ${}^{13}\text{CO}_2$ for 5 days before harvest. Air-tight clear plastic chambers (area 50 × 54 cm², height 68 cm) were used for the labelling. On the labelling dates, half of pots with or without plants were moved into chambers and labelled with ${}^{13}\text{CO}_2$

which was generated by injecting 9.2 M H₂SO₄ into calculated amount of Na₂¹³CO₃ with a syringe through a rubber gasket into the chamber (Subedi et al., 2006). A 67% of ¹³CO₂ abundance in chamber was remained in both CO₂ treatments, and the final concentrations of total CO₂ were 600 and 900 ppm for aCO₂ and eCO₂, respectively. A fan was installed inside each chamber to facilitate mixing of the ¹³C label. Both planted and no plant controls were exposed to ¹³CO₂ for 3 hours each labelling event with two events per day. The other half of the pots were not subject to ¹³C labelling (subsequently referred to unlabelled controls).

2.3. Harvest and measurements

After 6 weeks of growth post sowing (including 5 days of ¹³C labelling), shoots of the wheat plants were cut at ground level and processed as described in Tang et al. (1990). Roots in each pot were carefully removed and the rhizosphere soil was recovered by gently shaking the roots. Each soil sample was separated into three parts: one part (around 50 g) was kept in 4 °C for microbial biomass and respiration measurements; one (around 15 g) was air-dried for P fractionation and ¹³C measurements, and the third sample (around 3 g) was frozen immediately following harvest in liquid nitrogen, and stored at -80 °C for the analysis of microbial molecular properties.

Roots were washed with deionized water to remove any adhered soil. Root morphology was measured following scanning with an EPSON EU-35 scanner (Seiko Epson Corp., Japan), and images analysed using WinRhizo Pro version 2003b programme (Régent Instruments Inc., Québec, CA). All plant material was dried at 70°C for 72 h and the dry weights were recorded. Subsamples of the root and shoot material were finely ground prior to determining P concentration colorimetrically (Motomizu et al., 1983) following acid digestion (Yuen and Pollard, 1954).

Air-dried soil samples were mixed thoroughly and finely ground before further analysis. Soil P fractionation for samples was performed using a modified Hedley sequential P fractionation scheme (Guppy et al., 2000; Butterly et al., 2009). The stable ¹³C isotope ratios in soil and plant samples were analyzed with an isotope ratio mass spectrometer (Delta^{plus}, Finnigan MAT GmbH, Bremen, Germany).

With fresh soil samples, the microbial biomass carbon (MBC) was extracted by chloroform fumigation according to Vance et al. (1987). Total organic C (TOC) in the extracts was determined following dichromate oxidation (Heanes, 1984; Conyers et al., 2011). Total MBC is calculated as the difference in TOC concentration in extracts between fumigated and non-fumigated soils. Microbial P was measured according to Brookes et al. (1984).

For microbial respiration measurement, 10 grams of fresh soil sample and 2 ml of CO₂-free water were added separately into two plastic vials. The two vials were placed into a sealed half-pint (237 ml) mason jar. Soil was incubated for 24 h at 25°C, and then the CO₂ concentration in the jar was measured using an Infra-red Gas Analyser (Servomex 4210 Industrial Gas Analyser, Cowborough, UK) (Zibilske, 1994; Rukshana et al., 2012).

Total DNA was extracted from frozen soil samples using the FastDNA SPIN kit for soil (MP BIomedicals; Solon, OH, USA) following the manufacturer's instructions. Total DNA was quantified using a NanoDrop Sqectrophotometer (Bio-Rad Laboratories Inc.). Five micrograms of DNA of each soil sample was loaded into 4.9 ml of cesium trifluoracetate (CsTFA) (Sigma) solution with a starting buoyant density of 1.60 g ml⁻¹. Density gradient centrifugation was performed in a Vti-65.2 vertical rotor at 179,000 g (43,500 rpm) for 40 h

at 20°C (Sul et al., 2009). After centrifugation, the gradients were fractionated according to Dunford and Neufeld (2010). Then, the DNA from heavy and light fractions were quantified for bacterial 16S rDNA (ribosomal DNA) and fungal 18S rDNA by quantitative PCR using the Absolute QPCR SYBR green mix (Ab Gene, Epsom, UK) (Sul et al., 2009). Regarding the standard of quantitative PCR, extracted rhizosphere DNA was amplified by PCR. The PCR product was cloned into *Escherichia coli*. One *Escherichia coli* clone containing an insert of bacterial or fugal origin was randomly chosen and went through a colony PCR procedure using the plasmid enclosed primer. This PCR product was then used to make a series of known concentrations of a standard (Drigo et al., 2007). The primers of PCR were 357f and 517r for bacterial 16S rDNA (Muyzer et al., 1993) and ITS1-F and ITS2 for fungal 18S rDNA (Gardes and Bruns, 1993).

2.4. Statistical Analysis

Statistical analysis was performed with Genstat 13 (VSN International, Hemel Hemspstead, UK). A two tailed t-test was used to assess the differences between the two CO₂ treatments (one-way ANOVA) (Steel and Torrie, 1980).

3. Results

3.1. Plant growth and P uptake

Elevated CO₂ increased shoot dry weight by 47% (Fig. 1a), and root dry weight by 188% (Fig. 1b). Consequently, the root-to-shoot ratio increased from 0.39 under aCO₂ to 0.77 under eCO_2 (Fig. 1c). Root length increased by 58% under eCO_2 compared to aCO_2 (Fig. 1d).

Plant P concentration and P uptake were strongly affected by eCO_2 . Compared to aCO_2 , eCO_2 decreased P concentrations in shoot by 21% and in roots by 20% (Fig. 2a, b). Plant P concentrations under both CO_2 treatments were above the critical level of P deficiency for this stage of growth (Reuter and Robinson, 1997). Elevated CO_2 increased total P uptake by 35% due to the increased biomass production (Fig. 2c). However, eCO_2 did not significantly affect P uptake per unit root length (Fig. 2d), which averaged 0.11 mg P m⁻¹.

3.2. P fractionation in the rhizosphere

Although NaHCO₃-Pi was lower in the rhizosphere than the unplanted soil, elevated CO₂ did not affect other P fractions (Fig. 3a). However, organic P (Po) extracted by NaHCO₃ (NaHCO₃-Po) and NaOH (NaOH-Po) accumulated in the rhizosphere when plants were grown under eCO₂ (Fig. 3). Compared to aCO₂, eCO₂ increased NaHCO₃-Po by 160% (Fig. 3b) and NaOH-Po by 53% (Fig. 3d). Compared with the no-plant control, NaOH-Po increased in the rhizosphere of wheat under both aCO₂ and eCO₂ while NaHCO₃-Po increased only under eCO₂.

3.3. Microbial properties

Microbial P in the rhizosphere increased from 5.2 mg kg⁻¹ under aCO₂ to 7.1 mg kg⁻¹ under eCO₂, a 37% increase (Fig. 4a). Microbial C exhibited the same pattern with a 29% increase under eCO₂ compared to aCO₂ (Fig. 4b). Hence, microbial C/P ratio in the rhizosphere was not altered by eCO₂ (Fig. 4c). In addition, microbial P was higher while microbial C/P ratio was lower in the rhizosphere compared to the no-plant control.

Elevated CO₂ markedly increased microbial respiration in the rhizosphere with 0.6 μ g C h⁻¹ g⁻¹ soil, double that measured under aCO₂ (Fig. 5a). Similarly, the metabolic quotient of microbes in the rhizosphere increased to 2.8 mg g⁻¹, i.e. a 65% increase, when plants were

grown under eCO_2 (Fig. 5b). Metabolic quotient was higher in the rhizosphere than the unplanted soil, whereas the rhizosphere effect on microbial respiration was significant only under eCO_2 .

3.4. ¹³C allocation

Elevated CO₂ increased the allocation of ¹³C into roots and rhizodeposition. Although ¹³C atom‰ excess in shoot was not affected by CO₂ treatment (Fig. 6a), eCO₂ increased ¹³C atom‰ excess in roots by 57% (Fig. 6b). The greater allocation of ¹³C to roots under eCO₂ also resulted in 0.28 atom‰ excess in the rhizosphere, double that under aCO₂ (Fig. 6c). The ¹³C atom‰ excess in the control soil without plants did not significantly differ between aCO₂ and eCO₂, and was significantly (P < 0.001) lower compared to soil where plants were present, resulting in only 0.02 atom‰ excess on average. The amount of ¹³C allocated to root or efflux into soil was 111% higher under eCO₂ than aCO₂ (data not shown).

It was evident that the fixed ¹³C was incorporated into soil microorganisms. Elevated CO₂ increased the copy number of 16S rDNA from ¹³C-DNA and ¹²C-DNA fractions by 76% and 78%, respectively (Fig. 7a). Elevated CO₂ also increased the copy number of 18S rDNA that was determined from ¹³C-DNA fractions, while there was no difference on the copy number of total 18S rDNA between aCO₂ and eCO₂ (Fig. 7b).

4. Discussion

This study found that Po associated with readily labile P fractions (NaHCO₃- and NaOH-extractable) increased in the rhizosphere of wheat grown in a P-sufficient Vertisol clay soil under eCO₂. The results are consistent with our previous study which found an increase in the NaOH-Po pool in the rhizosphere of two legumes – chickpea and field pea grown under eCO₂, when P was supplied to a P-deficient soil (Jin et al., 2012). This suggests that some P in the rhizosphere is temporally immobilised under eCO₂.

It has been speculated that the immobilization of P in the rhizosphere under eCO_2 would be largely attributed to rhizosphere-associated microorganisms. This study confirmed this assumption and showed that microbial P increased proportionally with microbial biomass in response to eCO_2 (Fig. 3). No difference on microbial C/P ratio between aCO_2 and eCO_2 was observed (Fig. 3), further indicating that the increase in microbial P in the rhizosphere soil was due to the increasing microbial biomass rather than enhanced efficiency of P accumulation by microbes. The pattern of P utilised by microbes was not influenced by eCO_2 . Thus, eCO_2 stimulates microbial populations, which in turn temporarily immobilize P.

The turnover of microbial P is largely driven by the availability of C (Richardson and Simpson, 2011). The turnover time of microbial biomass in cropping soils varied from 42 to 160 d due to C amendment (Oehl et al., 2004). Drigo et al. (2008) stated that this stimulation was because soil microorganisms are often C-limited. Increased C availability in the rhizosphere under eCO₂ occurred in this study as ¹³C abundance in the rhizosphere of wheat almost doubled under eCO₂, and there was no accumulation of ¹³C in the soil in the noplant controls (Fig. 6). This affirmatively infers that roots exude more C compounds under eCO₂, which significantly stimulates metabolic processes of microbes, and may consequently alter the turnover of microbial P.

Microbial ¹³C-DNA was separated from total DNA in this present study to investigate the

relative contribution of the plant root exudates to direct stimulation of microbial community in the rhizosphere. The copy numbers of 16S-rDNA (bacterial) and 18S-rDNA (fungal) in the ¹³C fractions were significantly higher under eCO₂ than aCO₂ (Fig. 7), but the proportion of ¹³C incorporation into bacteria was higher than for fungi (Fig. 7). The result indicates that the influence of eCO₂ on microbial community in the rhizosphere was predominantly on bacteria, rather than fungi during the short-period exposure of plants to eCO₂ in this study. The increase in root exudates under eCO₂ stimulated C flow between the plant and the bacterial population in the rhizosphere. The increase in microbial respiration of the rhizosphere soil from the eCO₂ treatment also supports that the increased C efflux as root exudates and rhizodeposits under eCO₂ stimulated microbial activity. In control soil without plants under eCO₂, only negligible amounts of ¹³C were detected in the soil (Fig. 6). Quantitative alterations in C supply have been shown to increase microbial biomass and activity (Zak et al., 1993; Hungate et al., 2000; van Ginkel et al., 2000), and nutrient cycling (Jones et al., 1998).

Interestingly, eCO_2 appears to alter the structure of microbial communities. For example, the abundance of the active *Pseudomonas* in the rhizosphere increased under eCO_2 , including *P*. *fluorescens*, *P. aeruginosa*, *P. trivialis* and *P. tutida* (Drigo et al., 2009). Treseder (2004) also reported that mycorrhizal fungal abundance increased relative to root length in response to eCO_2 . These microbial genus were considered to be important in P transformations (Egamberdiyeva and Höflich, 2003; Krey et al., 2013). However, the identity of the specific species of microorganisms in the rhizosphere underpinning P immobilization in response to eCO_2 requires elucidation.

In this study, the extent of microbial P increase in response to eCO_2 was less than that of NaHCO₃-Po and NaOH-Po (Figs. 3 and 4). This may be partially attributed to the incomplete extraction of microbial P with the fumigation method, but the total microbial P estimated by a factor of k_{EC} (Joergensen, 1996) was still lower than Po. Thus, changes in microbial P cannot fully explain the increased Po in the rhizosphere. This could be attributed to two causes. Firstly, cell debris following microbial death can be a cause of the increases in Po (Beck and Sanchez, 1994; Boschetti et al., 2009). In this study, the microbial respiration rate and metabolic quotient were greater under eCO₂ than aCO₂ (Fig. 5), indicating that the turnover of microbes in the rhizosphere was increased by eCO₂. This increased turnover of microbes could generate more microbial residues and this is likely to further facilitate the accumulation of various Po forms including mononucleotides, nucleic acids and phospholiqids, which are microbial origin, and extractable by NaHCO₃ and NaOH (Turner et al., 2003; Romanyà and Rovira, 2009).

Secondly, root-derived P could also contribute to the increased Po under eCO₂ (Jin et al., 2013). Boschetti et al. (2009) assessed changes in soil P fractions by *Lotus corniculatus* and found that the Po concentration was positively and significantly correlated with root biomass, indicating that the increase in Po in the rhizosphere was related to root production. In this present study, higher root-to-shoot ratio under eCO₂ (Fig. 1) indicates the enhanced allocation of C belowground (Fig. 6). The increased ¹³C enrichment in the rhizosphere of wheat in response to eCO₂ further confirmed that root-derived materials increased markedly (Fig. 6). These organic compounds include sloughing of living cells and exudation (Lynch and Whipps, 1990), which are likely to be P-enriched because of the relative high P concentration of P found in plant tissues compared to soil. Although plant P concentration was higher under aCO₂ than eCO₂ (Fig. 2), the rate of accumulation of root-derived materials in the rhizosphere was higher under eCO₂, because eCO₂ level significantly increased ¹³C efflux per unit root length (data not shown). Thus, total amount of P-enriched materials from roots accumulated

in the rhizosphere under eCO₂. However, to date, the quantity and composition of P-enriched compounds in response to eCO₂ have not been elucidated. The use of ³¹P NMR (nuclear magnetic resonance spectroscopy) may help identifying specific organic P compounds and their origins in soil samples (Vestergren et al., 2012).

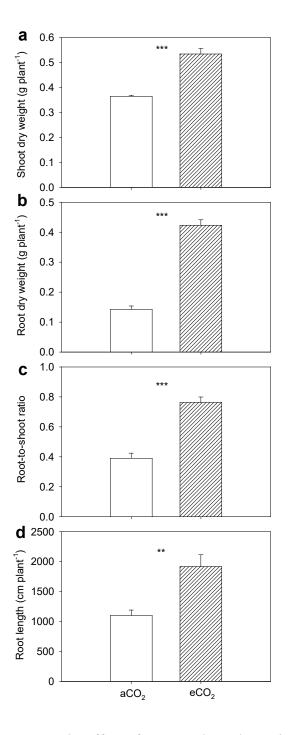
Elevated CO_2 did not affect the NaHCO₃-Pi depletion in the rhizosphere, which coincided with nil CO₂ effect on P uptake per unit root length (Figs. 2, 3). This indicates that the additional P uptake by plants grown under eCO_2 (Fig. 1) came from greater soil exploration by roots. Greater root biomass and length under eCO_2 further support this view (Fig. 1). Similar results were also found in a previous study on chickpea and field pea (Jin et al., 2012). It is worthy to note that these results were obtained under P sufficient conditions. When plants were supplied with deficient P, there was no additional P uptake observed under eCO_2 . This was probably because P deficiency diminished plant growth response to eCO_2 and P concentration in plant tissues did not differ between aCO_2 and eCO_2 (Jin et al., 2013).

However, the increased Po in the rhizosphere under eCO_2 may specifically contribute to the additional P uptake, since it may be potentially available to plants. With enhanced metabolic activity of microbes under eCO_2 (Fig. 5), a large proportion of this P-enriched materials could be mineralized over time. This is because most plant-derived organic materials pass through the soil microbial biomass at some point in time (Ryan and Aravena, 1994). Hence, the question here is to what extent the accumulation of Po under eCO_2 may account for the additional P uptake. To answer this question, further study is needed to quantify the dynamics of Po at various growth stages.

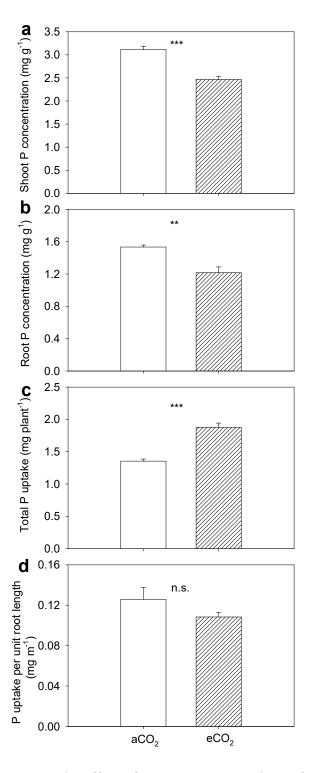
5. Conclusions

Microbial P is a main contributor to the accumulation of Po in the rhizosphere of wheat grown under eCO₂. The quantification of labelled-¹³C flow in the plant-soil-microbe continuum in this study illustrates that eCO₂ favors photosynthetic C efflux into the rhizosphere, which stimulates microbial biomass and activity to immobilize P. Among microbial populations, bacteria are more responsive to the increased photosynthetic C flow under eCO₂. Apart from microbial P, root-derived materials may also constitute to P-enriched compounds and accumulates in the rhizosphere under eCO₂. Future work is necessary to assess how the specific species of microbes in response to eCO₂ are involved in P transformation. In addition, the spectral technology with ³¹P-NMR would be useful to identify the organic P compounds released from plants exposed to eCO₂.

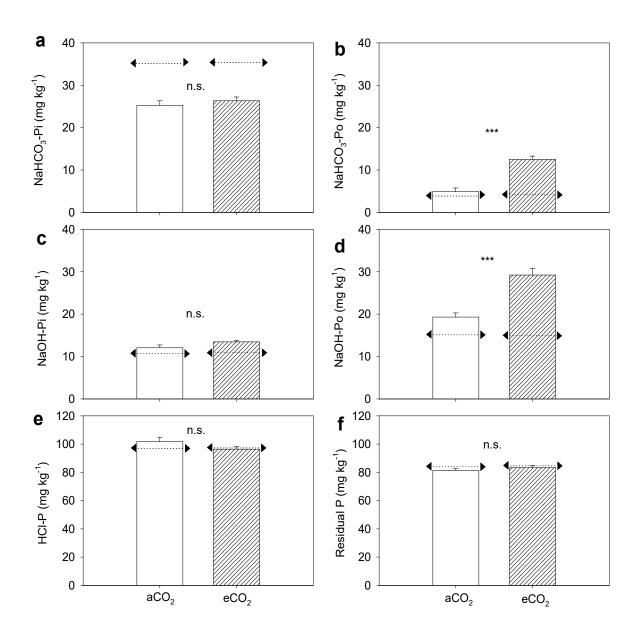
Acknowledgement

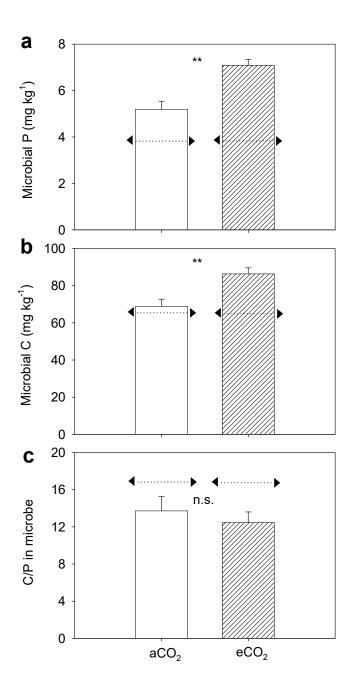

This research was supported by an Australian Research Council *Linkage Project* (LP100200757). We thank Dr Zhenhua Yu and Mr Tengxiang Lian (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences), and Ms Jen Wiltshire (La Trobe University) for technique supports and Associate Professor Chengrong Chen (Griffith University) for his comments on the protocol.

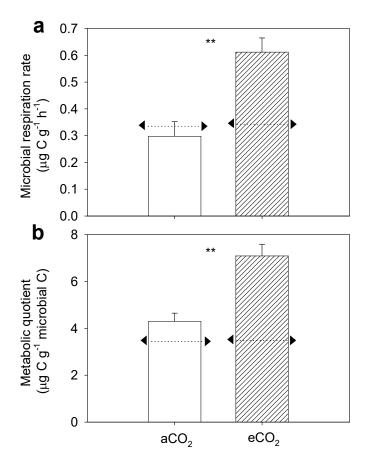
References

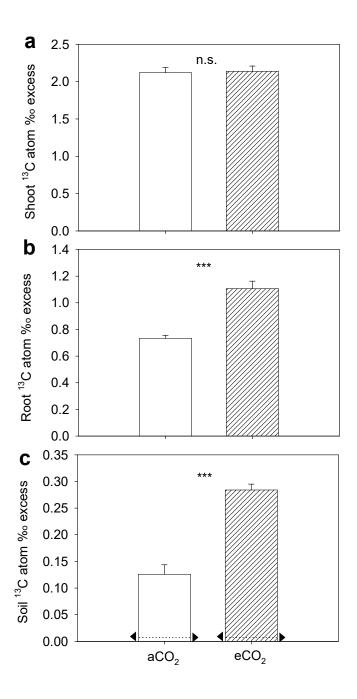

Achat, D.L., Morel, C., Bakker, M.R., Augusto, L., Pellerin, S., Gallet-Budynek, A., Gonzalez, M., 2010. Assessing turnover of microbial biomass phosphorus: combination of an isotopic dilution method with a mass balance model. Soil Biol. Biochem. 42, 2231–2240.

- Ahlgren, J., Djodjic, F., Borjesson, G., Mattsson, L., 2013. Identification and quantification of organic phosphorus forms in soils from fertility experiments. Soil Use Manage. 29, 24–35.
- Beck, M.A., Sanchez, P.A., 1994. Soil phosphorus fraction dynamics during 18 years of cultivation on a Typic Paleudult. Soil Sci. Soc. Am J. 58, 1424–1431.
- Boschetti, N.G., Quintero, C.E., Giuffre, L., 2009. Phosphorus fractions of soils under Lotus corniculatus as affected by different phosphorus fertilizers. Biol. Fert. Soil 45, 379–384.
- Boschker, H.T.S., Nold, S.C., Wellsbury, P., Bos, D., de Graaf, W., Pel, R., Parkes, R.J., Cappenberg, T.E., 1998. Direct linking of microbial populations to specific biogeochemical processes by ¹³C–labelling of biomarkers. Nature 392, 801–805.
- Brookes, P.C., Powlson, D.S., Jenkinson, D.S., 1984. Phosphorus in the soil microbial biomass. Soil Biol. Biochem. 16, 169–175.
- Butterly, C.R., Buenemann, E.K., McNeill, A.M., Baldock, J.A., Marschner, P., 2009. Carbon pulses but not phosphorus pulses are related to decreases in microbial biomass during repeated drying and rewetting of soils. Soil Biol. Biochem. 41, 1406–1416.
- Conyers, M.K., Poile ,G.J., Oates, A.A., Waters, D., Chan, K.Y., 2011. Comparison of three carbon determination methods on naturally occurring substrates and the implication for the quantification of 'soil carbon'. Soil Res. 49, 27–33.
- de Graaff, M.A., van Groenigen, K.J., Six, J., Hungate, B., van Kessel, C., 2006. Interactions between plant growth and soil nutrient cycling under elevated CO₂: a meta-analysis. Global Change Biol, 12, 2077–2091.
- Drigo, B., Kowalchuk, G.A., Yergeau, E., Bezemer, T.M., Boschker, H.T.S., Van Veen, J.A., 2007. Impact of elevated carbon dioxide on the rhizosphere communities of *Carex arenaria* and *Festuca rubra*. Glob Change Biol. 13, 2396–2410.
- Drigo, B., van Veen, J.A., Kowalchuk, G.A., 2009. Specific rhizosphere bacterial and fungal groups respond differently to elevated atmospheric CO₂. ISME J. 3, 1204–1217.
- Drigo, B., Kowalchuk, G.A., van Veen, J.A., 2008. Climate change goes underground: effects of elevated atmospheric CO₂ on microbial community structure and activities in the rhizosphere. Biol. Fert. Soil 44, 667–679.
- Dunford, E.A., Neufeld, J.D., 2010. DNA stable-isotope probing (DNA-SIP). J Visual. Exp. 42, e2027, DOI: 10.3791/2027.
- Egamberdiyeva, D., Höflich, G., 2003. Influence of growth-promoting bacteria on the growth of wheat in different soils and temperatures. Soil Biol. Biochem. 35, 973–978.
- FAO-UNESCO, 1976. Soil Map of the World, 1:5 000 000 vol. X, Australia. UNESCO, Paris
- Gardes, M., Bruns, T.D., 1993. Its primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhiza and rusts. Mol. Ecol. 2, 113–118.
- Guppy, C.N., Menzies, N.W., Moody, P.W., Compton, B.L., Blamey, F.P.C., 2000. A simplified, sequential, phosphorus fractionation method. Commun. Soil Sci. Plant Anal. 31, 1981–1991.
- Heanes, D.L., 1984. Determination of total organic C in soil by an improved chromic-acid digestion and spectrophotometric procedure. Commun. Soil Sci. Plant Anal. 15, 1191–1213.
- Hungate, B.A., Jaeger, C.H., Gamara, G., Chapin, F.S., Field, C.B., 2000. Soil microbiota in two annual grasslands: responses to elevated atmospheric CO₂. Oecologia 124, 589–598.
- Jin, J., Tang, C., Armstrong, R., Butterly, C., Sale, P., 2013. Elevated CO₂ temporally enhances phosphorus immobilization in the rhizosphere of wheat and chickpea. Plant Soil 368, 315–328.
- Jin, J., Tang, C., Armstrong, R., Sale, P., 2012. Phosphorus supply enhances the response of legumes to elevated CO₂ (FACE) in a phosphorus-deficient Vertisol. Plant Soil 358, 91–104.
- Joergensen, R.G., 1996. The fumigation-extraction method to estimate soil microbial biomass: Calibration of the k(EC) value. Soil Biol Biochem. 28, 25–31.
- Johansson, E.M., Fransson, P.M.A., Finlay, R.D., van Hees, P.A.W., 2009. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO₂. Soil Biol. Biochem. 41, 1111–1116.
- Jones, T.H., Thompson, L.J., Lawton, J.H., Bezemer, T.M., Bardgett, R.D., Blackburn, T.M., Bruce, K.D., Cannon, P.F., Hall, G.S., Hartley, S.E., Howson, G., Hones, C.G., Kampichler, C., Kandeler, E., Ritchie, D.A., 1998. Impacts of rising atmospheric carbon dioxide on model terrestrial ecosystems. Science 280, 441–443.
- Klute, A. 1986. Water Retention: Laboratory Methods. In: Methods of Soil Analysis, Part I, Physical and Mineralogical Methods, 2nd Edition. Agronomy Number 9, American Society of Agronomy, Madison, WI. pp. 635-662.
- Krey, T., Vassilev, N., Baum, C., Eichler-Loebermann, B., 2013. Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur. J. Soil Biol. 55, 124–130.
- Lynch, J.M., Whipps, J.M., 1990. Substrate flow in the rhizosphere. Plant Soil 129, 1-10.


- Motomizu, S., Wakimoto, T., Toei, K., 1983. Spectrophotometric determination of phosphate in river waters with molybdate and malachite green. Analyst 108, 361–367.
- Muyzer, G., de Waal, E.C., Uitterlinden, A.G., 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes encoding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700.
- Oehl, F., Frossard, E., Fliessbach, A., Dubois, D., Oberson, A., 2004. Basal organic phosphorus mineralization in soils under different farming systems. Soil Biol. Biochem. 36, 667–675.
- Reuter, D.J., Robinson, J.B., 1997. Plant analysis: an interpretation manual (2nd edition). CSIRO Publishing, Collingwood, Australia.
- Richardson, A.E., Simpson, R.J., 2011. Soil microorganisms mediating phosphorus availability. Plant Physiol. 156, 989–996.
- Romanyà, J., Rovira, P., 2009. Organic and inorganic P reserves in rain-fed and irrigated calcareous soils under long-term organic and conventional agriculture. Geoderma 151, 378–386.
- Rukshana, F., Butterly, C.R., Baldock, J.A., Xu, J.M., Tang, C., 2012. Model organic compounds differ in priming effects on alkalinity release in soils through carbon and nitrogen mineralisation. Soil Biol. Biochem. 51, 35–43.
- Ryan, M.C., Aravena, R., 1994. Combining ¹³C natural abundance and fumigation-extraction methods to investigate soil microbial biomass turnover. Soil Biol. Biochem. 26, 1583–1585.
- Srivastava, S.C., Singh, J.S., 1988. Carbon and phosphorus in the soil biomass of some tropical soils of India. Soil Biol. Biochem. 20, 743–747.
- Steel, R.G., Torrie, J.H., 1980. Principles and procedures of statistics: A biometrical approach. (2nd edition). McGraw-Hill, New York
- Subedi, K.D., Ma, B.L., Liang, B.C., 2006. New method to estimate root biomass in soil through root-derived carbon. Soil Biol. Biochem. 38, 2212–2218.
- Sul, W.J., Park, J., Quense, J.F., Rodrigues, J.L.M., Seliger, L., Tsio, T.V., Zylstra, G.J., Tiedje, J.M., 2009. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl. Environ. Microbiol. 75, 5501–5506.
- Tang, C., Robson, A.D., Dilworth, M.J., 1990. A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius L. New Phytol. 115, 61–67
- Treseder, K.K., 2004. A meta-analysis of mycorrhizal responses to nitrogen, phosphorus and atmospheric CO₂ in field studies. New Phytol. 164, 347–355.
- Turner, B.L., Cade-Menum, B.J., Westermann, D.T., 2003. Organic phosphorus composition and potential bioavailability in semi-arid arable soils of the Western United States. Soil Sci. Soc. Am J. 67, 1168–1179.
- van Ginkel, J.H., Gorissen, A., Polci, D., 2000. Elevated atmospheric carbon dioxide concentration: effects of increased carbon input in a *Lolium perenne* soil on microorganisms and decomposition. Soil Biol. Biochem. 32, 449–456.
- Vance, E.D., Brookes, P.C., Jenkinson, D.S., 1987. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 19, 703–707.
- Vandenkoornhuyse, P., Mahe, S., Ineson, P., Staddon, P., Ostle, N., Cliquet, J.B., Francez, A.J., Fitter, A.H., Young, J.P.W., 2007. Active root-inhabiting microbes identified by rapid incorporation of plant-derived carbon into RNA. Proc. Natl. Acad. Sci. U.S.A. 104, 16970–16975.
- Vestergren, J., Vincent, A.G., Jansson, M., Persson, P., Ilstedt, U., Gröbner, G., Giesler, R., Schleucher, J., 2012. High-resolution characterization of organic phosphorus in soil extracts using 2D 1H-31P NMR correlation spectroscopy. Environ. Sci. Technol. 46, 3950–3956.
- Whiteley, A.S., Thomson, B., Lueders, T., Manefield, M., 2007. RNA stable-isotope probing. Nature Protocols 2, 838–844.
- Yuen, S.H., Pollard, A.G., 1954. Determination of nitrogen in agricultural materials by the Nessler Reagent. II. Micro-determination of plant tissue and soil extracts. J. Sci. Food Agr. 5, 364–369.
- Zak, D.R., Pregitzer, K.S., Curtis, P.S., Teeri, J.A., Fogel, R., Randlett, D.L., 1993. Elevated atmospheric CO₂ and feedback between carbon and nitrogen cycles. Plant Soil 151, 105–117.
- Zibilske, L.M., 1994. Carbon mineralization. In: Weaver RW, Angle ES, Bottomley PS (eds.), Methods of Soil Analysis, Part 2: Microbiological and biochemical properties. SSSA, Madison, WI, USA, pp. 835–864.


Fig. 1 The effect of CO₂ on shoot dry weight (a), root dry weight (b), and root-to-shoot weight ratio (c) of wheat after exposed to ambient (380 ppm) (aCO₂) or elevated CO₂ (800 ppm) (eCO₂) for 6 weeks. Columns are means of four replicates \pm standard error. ** and *** indicate the difference between the CO₂ treatments being significant at *P* < 0.01 and *P* < 0.001, respectively.


Fig. 2 The effect of CO₂ on concentrations of P in shoot (a) and roots (b), total P uptake (c) and P uptake per unit root length (d) of wheat after exposed to ambient (380 ppm) (aCO₂) or elevated CO₂ (800 ppm) (eCO₂) for 6 weeks. Columns are means of four replicates \pm standard error. **, *** and n.s. indicate the difference between the CO₂ treatments being significant at *P* < 0.01, *P* < 0.001 and *P* > 0.05, respectively.


Fig. 3 The effect of CO₂ on NaHCO₃-extractable inorganic P (Pi) (a), and NaHCO₃extractable organic P (Po) (b), NaOH-Pi (c), NaOH-Po (d), HCl-P (e) and residue P (f) in the rhizosphere of wheat after exposed to ambient (380 ppm) (aCO₂) or elevated CO₂ (800 ppm) (eCO₂) for 6 weeks. The arrow-ended short lines represent the value obtained in the no-plant control soil. Columns are means of four replicates \pm standard error. *** and n.s. indicate the difference between the CO₂ treatments being significant at *P* < 0.001 and *P* > 0.05, respectively.

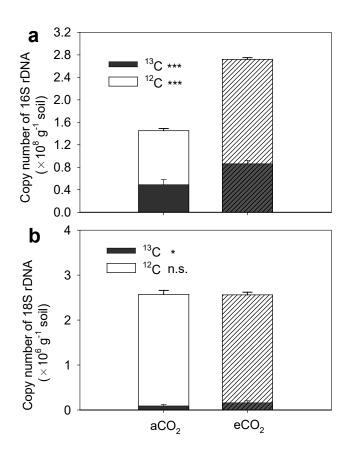

Fig. 4 The effect of CO₂ on microbial P concentration (a), microbial biomass carbon (b), and microbial C-to-P ratio (c) in the rhizosphere of wheat after exposed to ambient (380 ppm) (aCO₂) or elevated CO₂ (800 ppm) (eCO₂) for 6 weeks. The arrow-ended short lines represent the value obtained in the no-plant control soil. Columns are means of four replicates \pm standard error. ** and n.s. indicate the difference between the CO₂ treatments being significant at P < 0.01 and P > 0.05, respectively.

Fig. 5 The effect of CO₂ on microbial respiration rate (a) and metabolic quotient (b) in the rhizosphere of wheat after exposed to ambient (380 ppm) (aCO₂) or elevated CO₂ (800 ppm) (eCO₂) for 6 weeks. The arrow-ended short lines represent the value obtained in the no-plant control soil. Columns are means of four replicates \pm standard error. **, the differences between the CO₂ treatments are significant at *P* < 0.01.

Fig. 6 The ¹³C atom‰ excess in shoot (a), root (b) and rhizosphere soil (c) after 5-day pulselabelling of ¹³CO₂. All plants were grown under ambient (380 ppm) or elevated CO₂ (800 ppm) for 6 weeks. The arrow-ended short lines represent the corresponding value in each soil treatment without growing plants. Columns are means of four replicates \pm standard error. *** and n.s. indicate the difference between the CO₂ treatments being significant at *P* < 0.001 and *P* > 0.05, respectively.

Fig. 7 16S rDNA (a) and 18S rDNA (b) copy number in ¹²C- and ¹³C-DNA samples that were from the rhizosphere of wheat grown under ambient (380 ppm) or elevated CO₂ (800 ppm) for 6 weeks. Columns are means of four replicates \pm standard error. ***, * and n.s. indicate the difference between the CO₂ treatments being significant at *P* < 0.001, *P* < 0.05 and *P* > 0.05, respectively.