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Abstract  
Background Attention is now focusing on the influence of rapid increases in atmospheric CO2 
concentration on nutrient cycling in ecosystems. An understanding how elevated CO2 affects plant 
utilization and acquisition of phosphorus (P) will be critical for P management in order to maintain 
ecosystem sustainability in P-deficient regions.  
Scope This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants 
and P acquisition from soil. A number of knowledge gaps on elevated CO2-P associations are 
highlighted. 
Conclusions Significant increases in P demand by plants are likely to happen under elevated CO2 
due to the stimulation of photosynthesis, and subsequent growth responses to elevated CO2. 
Elevated CO2 alters P acquisition through changes of root morphology and increases in rooting 
depth. Moreover, the quantity and composition of root exudates are likely to change under elevated 
CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid 
cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from 
sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to 
microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and 
physiological aspects is needed to improve understanding of how elevated CO2 might affect the use 
and acquisition of P by plants.  
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Abbreviations: FACE, free air CO2 enrichment; LMWCs, Low-molecular-weight carboxylates; N, 
nitrogen; NMR, nuclear magnetic resonance; PEPc, phosphoenolpyruvate carboxylase; Pi, 
inorganic P; Po, organic P; TCA, tricarboxylic acid cycle. 
 
INTRODUCTION 
 
The concentration of CO2 in the atmosphere continues to increase. It has increased from 270 µL L-1 
prior to the Industrial Revolution to 384 µL L-1 in 2009, and 394 µL L-1 in 2013 (Leakey et al., 
2009; Goufo et al.,  2014). The rate of change of CO2 concentration has accelerated with models 
predicting that the CO2 concentration will increase to 550 µL L-1 by the middle of this century and 
climb up to 800 µL L-1 by the end of this century (Long and Ort, 2010; Feng et al., 2014).     
 
Elevated atmospheric CO2 concentrations can enhance photosynthetic rates in plants. They can 
therefore act as a carbon “fertilizer” to induce increases in net ecosystem CO2 exchange and 
contribute to increases in net primary productivity (Arnone et al., 2000; Kimball et al., 2002; Tian 
et al., 2013; Sakurai et al., 2014). Thus elevated CO2 is likely to stimulate the growth of many plant 
species (Poorter, 1998; Sakurai et al., 2014). However, an increase in the growth of plants will need 
an increased supply of essential plant nutrients. In fact, limitations in supply of nutrients such as 
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nitrogen (N), may offset the positive effects of elevated CO2 on photosynthesis, thereby, 
constraining species growth (Drake et al., 1997; Ainsworth et al., 2003). Decreases in N 
concentration in the leaf and entire plant have been associated with photosynthetic acclimation (Stitt 
and Krapp, 1999; Nowak et al., 2004; Ainsworth and Long, 2005). The need for extra N supply 
under elevated CO2 is indicated by the work of Reich et al. (2006) who found that there was a 20–
25% increase in plant biomass by elevated CO2 with enriched N, in comparison to only 8–12% with 
at insufficient N supply. The impact of elevated CO2 on the N cycle in ecosystems, and on soil N 
mineralization and immobilization, and organic matter decomposition and turnover have been well 
studied (Hungate et al., 2003; Luo et al., 2004; Schneider et al., 2004; Wang et al., 2013; Xu et al., 
2013). In comparison, the impact of elevated CO2 on interactions between soil P supply and plant 
growth need further interpretation.    
 
Now P is a unique nutrient among the essential plant nutrients with respect to increasing 
atmospheric CO2 concentrations, and is the focus of this review. Phosphorus plays an essential role 
in plant metabolism as it is involved in conserving and transferring energy in cell metabolism 
(Raghothama, 1999; Abel et al., 2002; Jin et al., 2006; Lambers et al., 2006), and is an 
indispensable structural component of nucleic acids, coenzymes, nucleotides, phosphoproteins, 
phospholiqids and sugar phosphates (Schachtman et al., 1998; Veneklaas et al., 2012). The growth 
increases from elevated CO2 are likely to require more P, which is taken up from the available P 
pool in soil (Edwards et al., 2005; Gentile et al., 2012; Jin et al., 2012). A number of studies have 
reported that both the magnitude and the direction of the growth response of plants to elevated CO2 
depend on the availability of P (BassiriRad et al., 2001; Jin et al., 2011). However, only a small 
proportion of total soil P (generally < 1%) is in the form of labile phosphate ions which are 
available to plants (Richardson et al., 2009a). This means that the plant-available P concentrations 
in soils are small despite the total P in soils being in the range of 200–3000 mg P kg-1. This presents 
challenges to plants in acquiring sufficient P from the soil to meet their needs. 
 
It is not surprising then that plants have developed special P acquisition strategies to adapt to the 
small concentrations of available P forms in the soil. The first is the ability of the roots to 
proliferate, extend and explore the soil. This would include growing root hairs, proteoid roots (some 
species) and basal roots (Keerthisinghe et al., 1998; Hodge, 2004; Ramaekers et al., 2010; Haling et 
al., 2013). The second is to develop mycorrhizal associations, where arbuscular mycorrhizal fungi 
form symbiotic associations with plant roots, with mycorrhizal hyphae increasing the P absorbing 
surfaces to increase the spatial availability of P (Facelli et al., 2010; Shen et al., 2011; Brown et al., 
2013). The third is to be able to modify the rhizosphere environment to increase P mobilization. 
This mainly involves proton efflux to acidify the rhizosphere, carboxylate exudation to mobilize 
sparingly soluble P via chelation and ligand exchange, and the secretion of phosphatases to 
mineralize organic P forms in the soil (Po) (Pang et al., 2010; Zhang et al., 2010; Lynch, 2011; 
Bayuelo-Jiménez and Ochoa-Cadavid, 2014). For details, readers are referred to recent reviews by 
Lambers et al. (2006) and Richardson et al. (2011).  
 
These strategies facilitate the mobilization of P from these non-labile pools, thereby P availability 
has been enhanced over a large timescale in weathered soils with the evolution of these strategies 
(Lambers et al., 2008). These evolved strategies induce feedback processes between plants and 
soils, which are relevant to the photosynthetically fixed C and its allocation (Buendía et al., 2014). 
Increased C fixation and more below-ground investments promote P-enhancing processes in the soil 
(DeLucia et al., 1997; Allen et al., 2003).  
 
 Thus, an important consideration here is that elevated CO2 will generally increase the C allocations 
to roots and the increase in root C will stimulate root growth (Rogers et al., 1992; 1994; Li et al., 
2012) and increase exudate secretions from the roots. This, in turn, will influence conditions in the 
rhizosphere which is the interface between plant roots and soil (Paterson et al., 1997; Haase et al., 



2008; Drigo et al., 2013). The changes in rhizosphere environment are likely to affect P acquisition 
by plants. Questions therefore arise as to whether plant P demand on the one hand and P acquisition 
on the other will be affected more by the increase of atmospheric CO2 concentrations. 
Understanding this supply-demand balance for labile soil P will be important for developing P 
management strategies in agricultural systems to cope with increasing atmospheric CO2 
concentrations. 
 
In this review, we will examine the current state of knowledge with respect to plant P demand under 
elevated CO2 and then focus on the associated mechanisms of P acquisition. These will include 
changes in root morphology, root exudates and relevant rhizosphere processes that may affect P 
mobilization and transformations in soils. The need for further research into P functioning in 
ecosystems in an elevated CO2 environment will then be highlighted.   
 
PLANT P DEMANDS UNDER ELEVATED CO2  
 
Plant P requirement can be divided into the need for external soil P, and the need for internal P 
within the plant tissues. The external P requirement is the available P in soil that is required to 
produce 90% of the maximum plant yield (Sattar et al., 2011). Similarly, the internal P requirement 
is the P concentration in the plant to achieve 90% of maximum yield (Loneragan and Asher, 1967; 
Sattar et al., 2011). The external and internal P requirements therefore represent the P-acquisition 
efficiency and P-use efficiency for yield production, respectively (Föhse et al., 1988; Veneklaas et 
al., 2012). 
 
The external P requirement is likely to increase with increased plant growth under eCO2 (Table 1). 
However, the extent of this requirement will depend on the plant species. In general, the growth 
response to elevated CO2 is greater in C3 species than C4 species, since the CO2 saturation point in 
C3 species (50–150 mg L-1 CO2) is higher than C4 species (1–10 mg L-1 CO2), and the 
photosynthetic capability can be greatly enhanced in C3 species under elevated CO2 (Wand et al., 
1999; Lee 2011). For example, the yield of wheat (C3) increased by 31% with elevated CO2 at 500–
700 µL L-1 in a Free Air CO2 Enrichment (FACE) facility (Mauney et al., 1994; Amthor, 2001; 
Jablonski et al., 2002), whereas sorghum (C4) yield was not increased in the same environment 
(Ottman et al., 2001). Within C3 species, legume species display larger growth responses to 
elevated CO2 (600–700 µL L-1) than non-legume species due to the enhanced N2 fixation (Stöcklin 
and Körner, 1999; Joel et al., 2001; Cernusak et al., 2011). Interestingly, a meta-analysis showed 
that trees had a greater response to elevated CO2 (475–600 µL L-1) than legumes and C3 grasses in 
dry matter production (Ainsworth and Long, 2005). Since the plant P demand generally increases 
along with growth stimulated by elevated CO2 (Edwards et al., 2005; Gentile et al., 2012; Zhang et 
al., 2014), this larger growth response by trees than C3 species and legumes grown under elevated 
CO2 suggests that trees would exhibit a higher P demand under elevated CO2. 
 
The critical levels for the external P requirements have not been established under elevated CO2. 
However, a number of studies with different plant species found that the external P requirements 
were greater under elevated CO2 than under ambient CO2 (Conroy et al., 1990; Barrett and Gifford, 
1995; Lewis et al., 2010; Jin et al., 2012). This can be seen in Table 1 where most species increased 
P uptake by shoots in response to elevated CO2 concentrations. This was the cases with the growth 
of cotton wood (Populus deltoides) in a sand-gravel root medium with P supplied at six 
concentrations from 0.004 to 0.5 mM (Lewis et al., 2010). A similar situation was reported for 
chickpea (Cicer arietinum L.) and field pea (Pisum sativum L.) grown in a P-deficient Vertisol with 
increasing added P from 0 to 16 mg P kg-1 soil (Jin et al., 2012). In these studies, maximum growth 
to added P was not achieved. Nevertheless, they showed a similar result that the growth responses 
to elevated CO2 (550 to 700 µL L-1) were more pronounced under P-sufficient than P-deficient 
conditions. 



 
Elevated CO2 is likely to affect the internal P requirement of plants because elevated CO2 alters P 
utilization within plant tissues (Niu et al., 2013a). Although the internal P in many species have 
been investigated under ambient CO2 environments (e.g. Ankomah and Oseikofi, 1992; Reuter and 
Robionson, 1997; Sattar et al., 2011), the effects of elevated CO2 on the internal P requirement 
remain inconclusive. Some studies have found that elevated CO2 results in a decrease or no change 
in the P concentration in the shoots of species such as chickpea (Jin et al., 2012), wheat (Wolf, 
1996; Fangmeier et al., 1999), Hordeum vulgare (Manderscheid et al., 1995), Eucalyptus grandis 
(Conroy et al., 1992), Calluna vulgaris (Whitehead et al., 1997), Lolium perenne (Gentile et al., 
2011) and Agrostis capillaries (Newbery et al., 1995). In contrast, foliar P concentrations in Pinus 
radiata, Pinus caribaea and Bouteloua eriopoda increased under 660–700 µL L-1 compared to 340–
350 µL L-1 (Conroy et al., 1990; BassiriRad et al., 1997) (Table 1). However, none of these studies 
established the internal P requirement under elevated CO2. Interestingly, Conroy et al. (1990) found 
that the biomass of pine species continued to increase under elevated CO2 even with a foliar P 
concentration reaching around 1.5 g kg-1 dry weight. In comparison, under ambient CO2, the 
biomass did not increase when P concentration exceeded 1.0 g kg-1 dry weight.    
 
PLANT P UTILIZATION UNDER ELEVATED CO2 
 
 The two forms in which P exists in plant tissue are the free inorganic orthophosphate form (Pi) and 
the organic P form (Po). Most of the cellular Pi is stored in the vacuole and acts as a buffer to meet 
the Pi demands from the cytoplasm (Veneklaas et al., 2012). The largest Po pool in plant is the 
nucleic acid pool, which accounts for 40–60% of the total Po pool. In this pool, RNA is the 
dominant component, with ribosomal RNA (rRNA) making up more than 80% of this pool (Kanda 
et al., 1994). The rRNA is required for synthesizing proteins like the enzyme Rubisco which 
functions in photosynthesis and so contributes to plant growth (Elser et al., 2010; Reef et al., 2010).  
 
Elevated CO2 is likely to affect the transformation of P from inorganic to organic form in plant 
tissue, thereby mediating the P-use efficiency. The increase in photosynthetic rate and plant growth 
under elevated CO2 is linked to the concentration of the Rubisco enzyme, because all of the carbon 
assimilated by autotrophic organisms is metabolized by this enzyme (Ainsworth et al., 2003). It is 
expected that elevated CO2 increases the Rubisco concentration, and this will require more Pi being 
transformed into Po for the synthesis of Rubisco because Po is a major component of rRNA 
involved in the synthesis of the enzyme (Reef et al., 2010; Veneklaas et al., 2012). Thus, the P-use 
efficiency would increase, as greater proportion of P in plant tissue is used for photosynthesis-
associated metabolisms and assimilation. 
 
Internal redistribution of P within the plant may be altered by elevated CO2. More than 50% of P in 
plants is redistributed to new growing points, especially during later growth stages and under P-
deficient conditions (Aerts, 1996). The growth rates decline during the reproductive stage, including 
root expansion and so P uptake by root systems decrease. Thus, there is a shift from uptake-
dominated P supply to remobilization-dominated P supply. However, when plants are exposed to 
elevated CO2, both the growth rate of the shoots increases together with an increase in the carbon 
allocation to roots, and this generally increases the root-to-shoot C ratio (Ainsworth et al., 2003; Jin 
et al., 2011). How these changes affect P redistribution in plant is not known. In addition, the extent 
of the translocation of P to developing grain is not known. However, it is likely that increasing the 
grain yield response under elevated CO2 will result in increased P exports in the grain from the 
field, given the high content of phytate P in cereal grain (Buddrick et al., 2014). 
  
THE EFFECT OF ELEVATED CO2 ON PLANT STRATEGIES TO ACQUIRE P   
 



Current crop production in P-deficient soils is heavily reliant on the application of P fertilizers. 
However, more intensive P fertilization is likely to become problematic in the long term, to provide 
for the increasing P demands of crops under elevated CO2, because reserves of phosphate ore 
deposits are finite (Lynch, 2011). There are also concerns about the environmental impact resulting 
from intensive P fertilization. Thus, it is increasingly important to improve plant P acquisition and 
P-use efficiency under elevated CO2. 
 
Elevated CO2 is likely to affect the P acquisition strategies in a number of ways (Figure 1). The 
increase in C assimilation in plants grown under elevated CO2 is likely to lead to a considerable 
response in root growth including changes in root architecture and morphology that will affect P 
acquisition from soil profiles. Second, the composition and quantity of root exudates are likely to 
alter under elevated CO2 and hence these will change rhizosphere properties such as pH, Eh and the 
capacity for chelation and ligand exchange, which in turn will affect P availability. Third, these root 
exudates may also modify the association between microorganisms and P transformations. These 
impacts on P acquisition strategies under elevated CO2 are addressed in the following sections.    
 
Root morphology traits under elevated CO2 in relation to P acquisition 
 
As P is an immobile nutrient in soil, then increases in root length and root branching under elevated 
CO2 may increase  the plant’s capacity to acquire P from the soil. The effect of a larger root system 
is shown by the work of Hammond et al. (2009). They reported that P uptake in Oryza sativa and 
Brassica oleracea genotypes under low-P supply (Hammond et al., 2009) was correlated with root 
surface area, lateral root length, lateral root growth rate and the number of lateral roots. In addition, 
the root hairs also contributed to P acquisition with direct evidence coming from studies with 
mutant plants with no root hairs (Bates and Lynch, 2000), and from the comparison of species and 
genotypes that have contrasting length and density of root hairs (Richardson et al., 2011). These 
changes in root morphology that develop in response to P deficiency are important for P-acquisition 
efficiency by plants (Lambers et al., 2006; Pang et al., 2010).   
 
It is likely that there will be changes in root morphology in response to elevated CO2 and that these 
will alter the P-acquisition efficiency. The increase in photosynthetic C allocation to roots under 
elevated CO2 results in root growth being stimulated more than the growth of other plant organs 
(Norby et al., 1992; Benlloch-Gonzalez et al., 2014). The elevated CO2-mediated increase in root 
growth will bring about increases in root length, root number, root diameter and root branching. 
Yang et al. (2007) showed that compared to ambient CO2 (350 µL L-1), 550 µL L-1 increased root 
biomass by 45%, root volume by 44% and number of adventitious roots by 31%, and overall root 
length by 37% when rice plants were grown in a Stagnic Anthrosol soil. A greater number of root 
clusters, and a higher percentage of lateral roots were also observed in white lupin (Lupinus albus 
L.) grown under elevated CO2 (Watt and Evans, 1999; Campbell and Sage, 2002). Similar trends 
were found in chickpea, soybean, wheat, sorghum and cotton (Del Castillo et al., 1989; Rogers et 
al., 1992, 1994; Jin et al., 2012, 2013). These changes in root morphology result in an increase in 
the spread of roots through the root zone which should lead to increases in nutrient uptake (Baker et 
al, 1990; Idso and Kimball, 1991, 1992; Rogers et al., 1992). A similar result occurred in the study 
by Jin et al. (2011) who reported a significant positive relationship between root length and P 
uptake under both ambient CO2 and elevated CO2. The longer roots under elevated CO2 in that 
study resulted in greater P acquisition. Thus it appears that root growth positively responds to 
elevated CO2 enabling the roots to explore a larger volume of soil, and this will increase the plant’s 
ability to take up nutrients (Nie et al., 2013), especially immobile phosphate ions.  
 
The response of root morphology to elevated CO2 and the impact on P acquisition are 
fundamentally regulated at the genetic level. Ainsworth et al. (2006) reported that there were 327 
independent genes that were CO2-responsive when soybean plants were exposed to elevated CO2 



while Raghothama (1999) reported that there were more than 100 genes were involved in plant 
response to low-P stress.  
 
Auxin genes including auxin-responsive promoters (Chandler, 2009) and auxin transport genes 
(Santelia et al., 2005) are thought to be the most responsive genes to elevated CO2 and external P 
status. Auxins are hormonal compounds that regulate plant growth processes, such as the initiation 
and elongation of root hairs (Pitts et al., 1998; Schiefelbein, 2000). Niu et al. (2011) found that 
elevated CO2 resulted in the expression of auxin-specific genes, which were likely to enhance the 
growth of root hairs in Arabidopsis. On the other hand, auxin genes that are responsive to P 
availability are involved in the regulation of the P starvation response in roots (Nacry et al., 2005; 
Jain et al., 2007). The expression of auxin-responsive genes responds to P deficiency by stimulating 
pericycle cells to produce lateral roots (López-Bucio et al., 2005). Pérez-Torres et al. (2008) further 
showed that P deficiency increased the expression of the auxin receptor TRANSPORT INHIBITOR 
RESPONSE 1 (TIR1), which enhanced the sensitivity of auxins to increase the emergence of lateral 
roots. Therefore, the expression of these plant genes within a given environment triggers molecular, 
physiological and cellular processes that modify root architecture (Gilroy and Jones, 2000; Niu et 
al., 2013b). Further investigation of these genetic factors that mediate the root development will be 
required to reveal the molecular mechanisms whereby the plant adapts to P deficiency and to 
elevated CO2 environments. Specifically, the quantitative relationship between auxins and pericycle 
cell division leading to the development of new roots, and the elevated CO2/P supply responsive 
molecular pathways that regulate the expression of auxin-responsive genes warrant future studies.  
 
Rhizoshphere processes in response to elevated CO2 and their impact on P availability 
 
The effect of elevated CO2 on rhizosphere properties is likely to impact on the ability of plants to 
acquire P from the soil. Elevated CO2 is likely to increase the C flow from plant to soil by 
increasing the release of root exudates (Lin et al., 2000; Song et al., 2014). These exudates contain 
functional molecules which facilitate an increase in rhizosphere P solubility, and hence improve P 
nutrition to plants (Richardson et al., 2009). Furthermore, root exudates are responsible for changes 
of rhizosphere pH and increases in microbial activity (Shen et al., 2011). These effects of elevated 
CO2 can change P availability in the rhizosphere and consequently influence plant P acquisition 
(Norby et al., 2001; de Graaff et al., 2006). 
 
Root exudates 
Exudates released from roots into the rhizosphere can affect the availability of soil P to plants 
(Randall et al., 2001; Betencourt et al., 2012). Low-molecular-weight carboxylates (LMWCs) 
present in root exudates have been considered to be Pi-mobilizing agents (Johansson et al., 2009). 
The effectiveness of these carboxylates to mobilize P largely depends on carboxyl (-COOH) and 
hydroxyl (-OH) functional groups in these molecules. Citrate (tricarboxylic acid) exhibits the 
greatest ability to desorb P, followed by oxalate (dicarboxylic acid), with malate, malonate and 
tartarate being moderately effective (Bolan et al., 1994; Jones, 1998; Jones et al., 2009; Richardson 
et al., 2009). Citrate is particularly effective at mobilizing P from Al-P and Fe-P complexes in acid 
soils (Bolan et al., 1994), and Ca-P in calcareous soils, or from rock phosphate fertilizer 
(Dinkelaker et al., 1989).  
 
The mechanism by which the carboxylates in root exudates affect soil P mobilization under elevated 
CO2 is not known. It is proposed by Shen et al. (2011) that P is mobilized by desorbing and 
chelating P from Al- and Fe-P complexes and from other non-labile pools. However, the extent that 
elevated CO2 increases P desorption depends on whether elevated CO2 stimulates the release of 
those carboxylates that are effective in mobilizing inorganic P (Pi).  
 



Significant volumes of root exudates have been measured following elevated CO2 exposure (Cheng  
and Johnson, 1998; van Ginkel et al., 2000; Allard et al., 2006). For example, after 34 weeks of 
growth under elevated CO2, the exudation of soluble C compounds from roots of short-leaf pine 
increased by 50% (Norby et al., 1987). Similarly, the exudation of low-molecular-weight organic 
compounds increased by 120–160% and amino acids increased by 250% when Pinus sylvestris L. 
was grown for 5 weeks in a nutrient solution under elevated CO2 (700 µL L-1) in comparison to 
ambient CO2 (350 µL L-1) (Johansson et al., 2009). Haase et al. (2007) also found that the release of 
malate, which is the major organic acid in the exudates from Phaseolus vulgaris L., increased by 
177% after the plants were exposed to elevated CO2 (800 µL L-1) for 18 days. The increase of these 
organic compounds is likely to mobilize P in the rhizosphere but to date the mobilisation of P in the 
rhizosphere has not been quantitatively assessed.  
 
There are even fewer studies that have investigated the composition of root exudates in response to 
elevated CO2. One investigation was carried out by Watt and Evans (1999) to measure the 
composition of organic acid anions including citrate, oxalate, α-ketoglutarate, malate, succinate, 
pyruvate, and fumarate from white lupins (Lupinus albus L.) grown under  elevated CO2 (700 µL L-

1). They did not find any significant effect of elevated CO2 on the composition of these anions 
during 4 weeks of hydroponic culture. It may be that the release of organic acid anions in response 
to elevated CO2 varies with plant species, growth stage and conditions. Further research to screen P-
efficient plant species for their efflux of organic acid anions in response to elevated CO2 is 
recommended. Such work would improve our understanding on the adaptive mechanism of plant 
species to P deficiency under elevated CO2. 
 
How the P-mobilizing carboxylates in root exudates respond to elevated CO2 need to be interpreted 
at the metabolic level. The carboxylates  released by roots are thought to the products from the 
glycolytic pathway and the tricarboxylic acid cycle (TCA), that occur in roots with the involvement 
of the phosphoenolpyruvate carboxylase (PEPc) enzyme (Johnson et al., 1996; Massonneau et al., 
2001). Malate for example is generated from the carboxylation of PEP to produce glycolytic end-
product PEPc (Cramer et al., 2005). It has been experimentally shown using 14C labeling that an 
increase in C supply was accompanied by the enhanced specific activity of PEPc and exudation of 
organic acid anions (Johnson et al., 1996; Uhde-Stone et al., 2003). Interestingly, elevated CO2 
increased the transcription levels of genes encoding enzymes of glycolysis and the TCA cycle. 
Under elevated CO2, the TCA cycle accelerated with higher substrate availability (Ainsworth et al., 
2006). Under P deficiency, PEPc activity was also increased in plants such as chickpea and oilseed 
rape (Hoffland et al., 1992; Moraes and Plaxton, 2000). Thus, the regulation of the synthesis-
associated genes for these enzymes is essential for the production of P-mobilizing carboxylates in 
the glycolytic pathway and TCA under elevated CO2. 
 
The phenolics are a group of secondary metabolites that mobilize P in soil, and are likely to be 
influenced by elevated CO2 as well. A study on the biosynthesis of phenolics showed that the 
activity of the principle phenolic biosynthetic enzyme in Senecio vulgaris increased under elevated 
CO2 (Hartley et al., 2000). Based on a two-year field experiment in open-top chambers (375 vs. 550 
µL L-1), Goufo et al. (2014) reported that the concentration of most phenolic compounds, such as 
apigenin, sinapicacid, chlorogenic acid, caffeic acid, protocatechuic acid, tricin, and apigenin 7-O-
glucoside increased significantly in the rhizosphere of mature rice under elevated CO2. These 
results indicate that elevated CO2 enhances the release of phenolics from root systems, and these 
may in turn increase the P availability in soils. The role of phenolics in mobilizing P has been 
illustrated in calcareous and acid soils. Hu et al. (2005a, b) showed that phenolics such as caffeic, 
protocatechuic, p-coumaric and vanillic acid exhibit varying capabilities in P mobilization. Their 
effectiveness depends on the number of phenolic hydroxyl groups that phenolics have and the 
position of carboxyl group on the benzoic ring. Furthermore, isoflavonoids are a class of phenolic 
compounds that are increasingly exuded from white lupin roots under P deficiency. These 



isoflavonoids include genistein and hydroxygenistein and their corresponding mono- and di-
glucoside conjugates (Weisskopf et al., 2006). The exudation of these isoflavonoids mainly occur in 
juvenile and immature cluster roots, and are thought to inhibit the soil microflora from breaking 
down P-mobilizing citrate in the exudates (Weisskopf et al., 2006).    
 
Rhizosphere pH 
 
Soil pH can greatly influence the solubility of P in soils (Shen et al., 2011). In acid soils where the 
concentrations of trivalent Fe and Al are high, labile inorganic P (Pi) in soil solution is easily 
precipitated as Fe- and Al-phosphates or sorbed onto Fe- and Al-(hydr)oxides. In contrast, in 
alkaline soils where Ca is the major cation, Pi is predominantly precipitated as Ca-phosphates 
(Richardson et al., 2009b). Thus soil pH from 6.0 to 7.0 provides optimal conditions for P solubility 
(Hinsinger, 2001). Given this relationship between soil pH and P availability, then any process that 
alters soil pH will influence P availability in the soil solution. 
 
There are a number of ways that elevated CO2 is able to change P availability by modifying the 
rhizophere pH. The first is that elevated CO2 may change the quantity of organic acid anions and 
associated protons released in exudates from plant roots, leading to pH changes in the rhizosphere 
(Guo et al., 2012). Organic acid anions have often been associated with release of protons as a 
source of rhizosphere acidification (Hoffland et al., 1989; Hinsinger et al., 2003). For example, the 
release of citrate from cluster roots of white lupin was associated with strong rhizosphere 
acidification (Neumann and Römheld, 1999), which suggests that H+ ions released to accompany 
the efflux of citrate were a major component of the observed acidification of the rhizosphere. As 
elevated CO2 is likely to increase the exudation of organic acid anions, the H+ extrusion 
accompanying this exudation would lower pH and thereby enhance P mobilization in alkaline soils 
rather than acidic soils (Lynch, 2011; Bayuelo-Jiménez and Ochoa-Cadavid, 2014). 
 
The second way that elevated CO2 might impact on rhizosphere pH results from the large amount of 
CO2 derived from the respiration of the root and the microbes in the rhizosphere under elevated 
CO2. The increased activities of rhizosphere microorganisms (Jin et al., 2014) under elevated CO2 
are likely to increase CO2 concentration in soil (Matamala and Schlesinger, 2000; Carrillo et al., 
2014) and this CO2 will dissolve in soil H2O to form H2CO3. As a result, the pH in the rhizosphere 
is likely to decrease. However, this scenario in term of rhizospheric pH may be marginal, because 
gaseous CO2 diffuses much faster than H2CO3 in solution (Anoua et al., 1997), and only neutral to 
alkaline soils can respond to the change in soil CO2 concentrations because H2CO3 with its first pK 
of 6.36 remains undissociated at acidic pH values (Lindsay, 1979). 
 
The third way that elevated CO2 impacts on rhizosphere pH involves N2-fixing legumes. When 
legumes fix N2, the plants take up more cations than anions and thus extrude H+ ions from their 
roots to maintain charge balance (Tang et al., 1997). Given that elevated CO2 stimulates nodulation 
and N2-fixation (Prévost et al., 2010), then legume plants are likely to extrude more H+ ions and 
decrease the rhizosphere pH, relative to non-legumes, under elevated CO2. It would be interesting to 
determine the pH variation in the rhizosphere of legumes and non-legumes in response to elevated 
CO2. Changes in rhizosphere pH in response to elevated CO2 would depend on the balance between 
the cation-anion exchange across the plasma membranes of the root cells of the plants being 
compared.  
 
Rhizosphere microorganisms 
 
Elevated CO2 directly influences the density, diversity and functioning of the rhizosphere microbial 
communities (Paterson et al., 1996; Hodge and Millard, 1998; Haase et al., 2008). Drissner et al. 
(2007) found that soil microbial biomass increased by 48.1% and the Shannon index (species 



diversity in a community) of bacterial community structure increased by 12.5% after Trifolium 
repens L. and Lolium perenne L. had grown under elevated CO2 in a FACE facility for 9 years. 
Similarly, microbial growth rate per unit soil mass in the rhizosphere of Populus deltoids was up to 
58% higher under elevated CO2 than under ambient CO2 (Blagodatskaya et al., 2010). In addition, 
microbial respiration and the metabolic quotient of microbes in the rhizosphere of wheat increased 
significantly under elevated CO2 (Jin et al., 2014).  
 
Elevated CO2 is able to specifically affect the abundance of some microbial genera, which may 
directly facilitate P solubilisation in the rhizosphere. In one study, Drigo et al. (2009) found that the 
abundance of Pseudomonas bacteria in the rhizosphere increased under elevated CO2, with active 
populations of P. fluorescens, P. aeruginosa, P. trivialis and P. tutida being detected. Both P. 
fluorescens and P. putida are considered to be P-solubilizing microorganisms that produce 
metabolites that release phosphate ions from sparingly soluble inorganic P-bearing compounds 
(Egamberdiyeva and Höflich, 2003; Krey et al., 2013). Similarly, P-solubilizing bacteria associated 
with proteoid roots of Telopea speciosissima are able to release P from calcium phosphate (Wenzel 
et al., 1994). This suggests that elevated CO2 is likely to benefit these P-solubilizing 
microorganisms. However, the magnitude of this effect depends on the P compounds in soils, and 
the plant species, which in turn will determine the abundance of the P-solubilizing microbial species 
in their rhizospheres (Wenzel et al., 1994).   
 
Arbuscular mycorrhizal fungi (AMF) are likely to be stimulated by elevated CO2, which will assist 
P acquisition by the host plant. In this symbiotic relationship, AMF provides their host plants with 
mineral nutrients, such as P in exchange for carbohydrates supplied to the AMF (Kiers et al., 2011). 
This two-way transfer of resources is certainly affected by elevated CO2, because elevated CO2 
increases C allocation to the roots of the host plant (Gamper et al., 2004). Studies have found that 
the AMF hyphal network is enlarged by elevated CO2, resulting in nutrient absorption being 
significantly increased (Gamper et al., 2004; Staddon et al., 2004). With a meta-analysis, Treseder 
(2004) also found that mycorrhizal fungal abundance increased relative to root length under 
elevated CO2. Furthermore, shifts in active AMF species under elevated CO2 conditions were 
convincingly confirmed using stable isotope (13C) probing and subsequent real-time PCR 
techniques (Drigo et al., 2010). The increase in symbiotic activity between AMF and plants under 
elevated CO2 leads to an expectation that mycorrhizal plant species will adapt better to P-deficient 
soils compared to non-mycorrhizal species in the elevated CO2 environment.  
 
On the other hand, it cannot be ignored that elevated CO2-induced increases in the microbial 
biomass and activity will mean that these microbes may compete for more P, resulting in P 
immobilization. The P immobilized by microbes is not negligible, because soil microorganisms 
constitute a small but significant component of total soil P, typically accounting for around 2% to 
10% (Achat et al., 2010; Richardson and Simpson, 2011). A recent study found that microbial P in 
the rhizosphere increased by more than 20% when wheat plants were grown under elevated CO2, 
indicating microbes were the main source of P immobilization occurring under elevated CO2 (Jin et 
al., 2014). The microbial C/P ratio did not change under elevated CO2 in that study, indicating the 
increase of microbial P was attributed to the change of microbial biomass C, rather than any change 
in P  composition in microorganisms. This indicates the importance of microbial populations in 
enhanced P immobilization in the rhizosphere. 
 
Rhizosphere enzymes 
 
The change in rhizosphere enzyme activity in response to elevated CO2 is likely to affect P 
mineralization in the rhizosphere. The activities of many enzymes were stimulated by root 
proliferation under elevated CO2 (Haase et al., 2008) including invertase (48%), xylanase (23%), 
urease (24%), protease (40%) and alkaline phosphomonoesterase (54%) (Drissner et al., 2007). 



Most of these enzymes are involved in nutrient transformation and include phosphatases which are 
enzymes that catalyse the transformation of Po to Pi. A study at a tundra site showed that 
phosphatase activity on the root surface of Eriophorum vaginatum was 254% higher under elevated 
CO2 compared to ambient CO2, and this contributed to a more than 40% increase in the annual P 
release within tussocks (Moorhead and Linkins, 1997). On the other hand, elevated CO2 did not 
alter either the acid or the alkaline phosphatase activity in the rhizosphere of chickpea or field pea 
grown in a P-deficient Vertisol (Jin et al., 2012). Furthermore, Haase et al. (2008) found that the 
activity of phosphatases in the rhizosphere of Phaseolus vulgaris L. decreased under elevated CO2. 
The discrepancy between the studies may be explained by differences in organic matter content of 
the soils. The P availability in soils with high organic matter (>117 g C kg-1 soil) in the arctic tundra 
ecosystem is likely to depend on phosphatase activity (Moorhead and Linkins, 1997), while the 
content of organic matter the soils used in the latter studies were less than  
1 g C kg-1 soil.  
 
Understanding the mechanisms by which elevated CO2 affects phosphatase enzymes still remains a 
challenge. Phosphatase enzymes are either of plant or microbial origin. A wide range of plant 
species secrete phosphatases into their rhizosphere. These plant species include sorghum (Sorghum 
bicolor), cowpea (Vigna unguiculata) and mung bean (Vigna radiata) (Tarafdar and Claassen, 
2001; Lambers et al., 2006). Similarly, soil microorganisms like Aspergillus sp. and mycorrhizas 
produce phosphatases (Tarafdar, 1995). In this respect, the question is raised as to how elevated 
CO2 affects (i) the population of phosphatase-producing microbes in the rhizosphere, (ii)  the 
activity of phosphatases exuded from the roots of plant species and (iii) what each of these 
contributes to P mineralization. However, it is necessary to quantitatively identify the origin of 
phosphatases before investigating the elevated CO2 effect on them. 
 
More recently, the link between phosphatase activity and photosynthate supply has been 
established. Spohn and Kuzyakov (2013) developed an approach to studying the distribution of 
phosphatases and photosynthetic C supply using 14C imaging and soil zymography, which provides 
in situ mapping of the two-dimensional distribution of enzyme activity in soil. This approach allows 
us to understand the relationship between elevated CO2-driven changes in the allocation of below-
ground photosynthates and the spatial distribution of phosphatase activity. The 14C labeling and 
zymography are achievable under elevated CO2. 
 
P TRANSFORMATION BETWEEN P POOLS IN THE RHIZOSPHERE UNDER 
ELEVATED CO2 

 
Phosphorus transformations in the rhizosphere are continuously occurring, resulting in changes in 
the P availability to plants (Cross and Schlesinger, 1995). A study on cereals and legumes showed 
that both Pi and Po fractions (NaHCO3- and NaOH-extractable) were depleted in the rhizosphere 
and the depletion decreased gradually with distance from the roots (Nuruzzaman et al., 2006). This 
depletion in available P in turn can be replenished by mineralization of Po and dissolution from 
non-labile Pi pools (Vu et al., 2008).  
 
The P fractions in the rhizosphere have been reported to be altered by elevated CO2. Following 5 
years of exposure to elevated CO2 in a FACE experiment, Khan et al. (2008) demonstrated that the 
NaOH- and HCl-extractable P increased in the rhizosphere, rather than becoming depleted. With 
chickpea and wheat grown under elevated CO2 for 6 weeks, Jin et al. (2013) found that elevated 
CO2 significantly increased NaHCO3- and NaOH-extractable Po in the rhizosphere. This indicated 
that P immobilization had occurred in the rhizosphere under elevated CO2.   
 
On a much larger timescale than spans decades or centuries, the mobilization rate of P from soil 
minerals is likely to increase with increases in atmospheric CO2 concentration. This view is based 



on the proposition that the enhancement of P mobilization will depends on vegetation processes 
(Gifford et al., 1992, 1996). The vegetation is likely to evolve and develop P-acquisition strategies 
that enable plants to grow and compete in impoverished low-P soils such as ancient soils in 
Australia and southwestern Africa (Lambers et al., 2008). Increased C supply to the roots under 
elevated CO2 will be assisting these strategies, and gradually alter them at the genetic level in the 
plant.  
 
The mechanisms for potential P transformations under elevated CO2 are thought to be related to the 
increased C allocation to underground. The increased input of photosynthates to the roots is likely 
to stimulate root exudation of organic compounds, which would help to mobilize P from sparingly 
soluble inorganic P sources (Paterson et al., 1997; Wasaki et al., 2005). Furthermore, these 
compounds could putatively affect microbial activities and functions (Richardson, 2001; 
Richardson et al., 2009a, 2011), and may accelerate the priming effect, or the turnover of organic 
matter in the rhizosphere. As a consequence, Po mineralization is likely to be increased. On the 
other hand, the stimulation of microbial activities may increase microbial demand for P and result in 
P immobilization. A 13C-labeling study elucidated that the increased photosynthetic C input in the 
rhizosphere under elevated CO2 led to a larger amount of P being immobilized by soil microbes (Jin 
et al., 2014). Whether mobilization or depletion of P in the rhizosphere occurs in response to 
elevated CO2 depends on the dominant P fluxes that occur at the time.  
 
Appropriate methodologies are available to investigate the biochemical reactions that become 
dominant in P transformations. Radioisotopes 32P or 33P has been used to investigate the P dynamics 
in soil (McLaughlin et al., 1988; Daroub et al., 2000; Vu et al., 2010; Noack et al., 2014). Studies 
reported that as much as 25% of added 33P in soil was recovered in soil microorganisms (Oberson et 
al., 2001), and 20–27% of added 33P in Po fractions (Bühler et al., 2003; Bünemann et al., 2004), 
highlighting the importance of biological transformation P in soil. In addition, a new precipitation 
approach using 31P NMR (nuclear magnetic resonance) is able to characterize Po molecules in soils 
(Vestergren et al., 2012). The approach would be useful in understanding these P fluxes that occur 
in the rhizosphere in response to elevated CO2.  
 
THE IMPACT OF ELEVATED CO2 ON P MINERALIZATION OF PLANT RESIDUES  
 
The change in quality of plant residues under elevated CO2 is likely to influence the P cycling in 
ecosystems. A fundamental change of quality in residues produced in the elevated CO2 environment 
will be the reduction in N concentration in the residues, particularly of non-legumes (Butterly et al. 
2015). Cotrofo et al. (2005) provide experimental data showing that N concentrations in plant 
tissues generated under elevated CO2 declined by an average of 14% based on existing data. Thus, 
with the increased C:N ratio, the decomposition rate of plant residue may be limited by the lower N 
concentrations, and lowered further in the N-deficient soils (Viswanath et al., 2010). Similarly, the 
increase in C:P ratio may occur under elevated CO2, since elevated CO2 leads to decrease of P 
concentration in some species such as Glycine max, Eucalyptus grandis and Agrostis capillaries 
(Conroy et al., 1992; Newbery et al., 1995; Gifford et al., 2000). As a consequence, the high C:P 
may further inhibit the decomposition process of plant residues, combined with N limitation. The 
slow decomposition will mean that the residues returned to soil over a longer time scale result in a 
reduced rate of P transformation from organic to inorganic forms, which will lower the P supply to 
plants over time. Whether this scenario occurs in the future depends on how P-acquisition strategies 
evolve on the capability of plant regulating root exudates, altering microbial functions, and thereby 
favoring the P mineralization. 
 
Identifying the magnitude of the P supply from decomposing residues is a challenge. It has been 
reported that about 40–60% of P in residues is water-soluble and can be mineralized into soils at 
initial stages of decomposition (Ha et al., 2008). However, if plant residues with a C:P ratio more 



than 300 are added to soils, then a net immobilization of P is likely to occur (Iyamuremye et al., 
1996; Ha et al., 2008). Under elevated CO2, it is not certain whether the water-soluble P 
composition varies in residues, and whether the increased C:P ratio exceeds the threshold. These 
will be associated with their C chemistry which determines the form of P incorporated in residues. 
In addition, the N:P ratio in residues is a significant factor which will determine whether 
mineralization or immobilization of P will occur when the residue is incorporated into soil 
(Kwabiah et al., 2003). This raises a question as to which nutrient (N or P) becomes the dominant 
factor limiting P supply during the decomposition of residues  in the elevated CO2 environment. 
This question will require answers from long-term investigations.     
  
FUTURE PERSPECTIVES  
 
Phosphorus nutrition in the plants growing in the terrestrial domain is likely to undergo 
considerable change under elevated CO2. Although there is limited information on the difference in 
the impact of elevated CO2 on P nutrition between agricultural and natural ecosystems, it is likely 
that differences between these systems will occur. The P acquisition of plant originated from P 
fertilizer would considerably change in the agricultural ecosystem, while the internal and external P 
utilization would tend to be intensively improved in the natural ecosystem.   
 
It is likely that increases in P fertilization rates will be required in agricultural systems with 
increases in the concentrations of atmospheric CO2. More P would be needed to meet the increased 
demand for P by crop plants resulting from the ‘CO2 fertilisation effect’ on crop growth. The 
required increase in P fertilizer rates will depend on the balance between extra P demand by crop 
species under eCO2, and the increased capacity of roots to mobilize soil P and to forage for the 
labile P in soil. Nevertheless, for crop plants in general, the evidence suggests that increased P 
fertilization will be required to improve the adaptability of cropping systems to increasing 
atmospheric CO2 concentrations. This is a concern as the need for more P fertilizer inputs raises 
about long term sustainability and food security, and environmental impact. Supplies of P rock for 
manufacturing P fertilizer are finite and we have learnt how the loss of P from agricultural systems 
can impact negatively on terrestrial water bodies.   
 
Plants in natural systems will continue to adapt to changing environmental conditions. Plants have 
adapted to low P soils by developing P acquisition strategies, and this will continue in the future. 
There will be increasing selection pressure for P-acquisition efficiency, by plants and plant-microbe 
associations in the high-C environment. They will utilize and exploit the increased C flow to their 
roots to more efficiently mobilise and/or forage for labile P forms in the soil. The mechanisms for 
this selection might include the development of longer roots, more lateral roots and root hairs, 
changes in the quantity and composition of root exudates, and changes in the activities and/or 
functions of microbes and plant-microbe associations. These adaptation strategies will enable plants 
to compete for P in the elevated CO2 environment. 
 
Optimizing P management for crop plants in the future requires a more detailed understanding of 
plant-soil interactions in response to elevated CO2 (Figure 1). This includes understanding the 
biochemical processes as to how elevated CO2 mediates C allocation to root development, root 
metabolism, and the release of root exudates in the rhizosphere. Improved understanding is also 
needed on how these processes affect microorganisms in the rhizosphere, because these 
microorganisms can impact significantly on P availability.   
 
A range of experimental approaches are suggested for further research. The first is to undertake 
geno-to-pheno investigations from the CO2-induced gene expression in the plants and how this 
expression influences root architecture formation and the root-exudate metabolism, as both will 
affect P acquisition. A second approach would be to use photosynthetic 13C tracing studies to 



identify soil microbial communities that are responding to elevated CO2 and are involved in either 
immobilization or mineralization of P in the rhizosphere. A third approach would be to identify P-
containing molecules in the rhizosphere using NMR to determine the quantity and the composition 
of these molecules during the P transformations under elevated CO2. These studies need to be 
undertaken with different plant species in different soils.  
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FIG. 1. Proposed mechanisms by which elevated CO2 impacts plant P nutrition. 
 
  



 
 
 
 
Table1.  Plant P requirement under elevated CO2 

Plant gena Plant species elevated CO2  
ppm 

P uptake   Root growth References 

Cereal (C3) Oryza sativa 
 
 

550 Total P↑ 
Tissue [P] ↑ 
P-use efficiency↑ 

- Yang et al. (2007) 

Legume (C3) 
Legume (C4) 

Trifolium repens 
Stenotaphrum secundatum 

700 - Root biomass with P 
addition ↑ 

Edwards et al. (2005) 

Legume (C3) Glycine max 700 P-uptake efficiency↑ 
Total P↑ 
Tissue [P]↓ 

Root dry weight↑ Cure et al. (1988) 
Israel et al. (1990) 

Legume (C3) Cicer arietinum 550 Total P↑ Root dry weight↑ Jin et al. (2012) 
 Pisum sativum  Tissue [P]↓ Root length↑  
Cereal (C3) Triticum aestivum 700 Total P↑ 

Tissue [P]↓ 
Root dry weight↑  
Root length↑ 

Jin et al. (2013) 

Legume Medicago sativa 700  Root dry weight↑ 
Nodulation ↑ 

Goudriaan and de 
Ruiter (1983) 

Legume Vicia faba 700  Root dry weight↑ Goudriaan and de 
Ruiter (1983) 

Legume Lupinus albus L. 410 and 740 P uptake↑ Proteoid roots↑ Campbell and Sage 
(2002) 

  700 - Onset of cluster 
rootlets early↑ 

Watt and Evans 
(1999) 

Wood Populus alba L.  
Populus nigra L. 

550 - - Khan et al. (2008) 

Wood Populus grandidentata 
(C3) 

692  Root dry weight↑ 
Root length↑ 

Zak et al. (1992)  

Wood Pteridium aquilinum 539 Tissue [P]↑  Whitehead et al. 
(1997) 

Wood Eucalyptus grandis 660 P contents↑ 
Leaf [P] ↓ 

Root/shoot↓ Conroy et al. (1992) 

Grass Lolium perenne 700 - Root dry weight↑ Goudriaan and de 
Ruiter (1983) 

Grass Agrostis capillaris 700 Shoot [P] ↑  
P uptake↑ 

- Newbery et al. (1995) 

Grass Calluna vulgaris 539 Tissue [P] ↑  Whitehead et al. 
(1997) 

[P], P concentration; ↑, increase; ↓, decrease. 
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