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Abstract. We show that an elementary class of algebras is closed un-
der the taking of homomorphic images and direct products if and only
if the class consists of all algebras that satisfy a set of (generally simul-
taneous) equations. For classes of regular semigroups in particular this
allows an interpretation of a universal algebraic nature that is formulated
entirely in terms of the associative binary operation of the semigroup,
which serves as an alternative to the approach via so called e-varieties. In
particular we prove that classes of Inverse semigroups, Orthodox semi-
groups, and E-solid semigroups are equational in our sense.

1. Introduction

Groups may be characterized in terms of their binary operation alone as
they form the class of semigroups that are both left and right simple, which
is to say that a semigroup S is a group if and only if aS = Sa = S for all
a ∈ S. Since this introduces the theme of the paper let us observe that the
given pair of conditions on S may be expressed by saying that the equations
ax = b and ya = b are always solvable in S, meaning that the class G of all
groups is defined within the class of semigroups by the equations:

G: (∀a, b ∈ S) (∃x, y ∈ S) : (ax = b) ∧ (ya = b) (1)

A second observation is that G is a class of semigroups closed under the op-
erations H and P, which are respectively the taking of homomorphic images,
and the taking of direct products, but G is not closed under the taking of
subsemigroups, so that G does not represent a semigroup variety. Many fun-
damental semigroup classes are {H,P}-closed classes in this way and we may
easily identify natural equational bases, as we show in Section 2. In general
we will use the phrase equation system in preference to simply equation, to
allow for the fact that they are typically systems of simultaneous equations
(grouped by conjunction) and that we allow arbitrary quantification. This
also avoids confusion with the common use of “equation” synonymously with
“identity” in the context of varieties. Nevertheless, we allow equational basis
to refer to any family of equation systems that characterise a class.

In Section 3 we prove the fundamental model theoretic theorem underlying
this idea that being that an elementary class C of algebras is {H,P}-closed
if and only if C consists of all algebras for which there exist solutions to a
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certain set of equation systems. The reverse direction is clear but the for-
ward implication is a consequence of Lyndon’s positivity theorem (see [11] or
Corollary 8.3.5 of [8]). In Section 4 we find equational bases for the {H,P}-
classes of Inverse semigroups, Orthodox semigroups, and E-solid semigroups
(semigroups whose idempotent generated part is a union of groups). The
final section is on equation systems that are universally solvable in any semi-
group.

General background on semigroup theory will be assumed. We direct the
reader to the books [3, 7, 9, 10] and our textual source for universal algebra
is [1]. Standard location theorems for Green’s relations and properties of
regularity will be used without further comment. The symbol S stands for a
semigroup and we denote the set of idempotents of S by E(S) or sometimes
simply by E. We write V (A) to denote the set of inverses of members of
the subset A of S. One fact drawn upon in Section 4 is that in a regular
semigroup S, V (En) = En+1, from which it follows that the idempotent
generated subsemigroup 〈E〉 of S, is itself regular (see [6]).

2. Examples of equational bases for {H,P}-classes of
semigroups

In the following, S always denotes a semigroup, and unless otherwise
stated, quantification is over elements of S.

Example 2.1. (i) Reg, the class of all regular semigroups may be de-
fined by the single equation a = axa, which is to say

Reg: (∀a) (∃x) : axa = a. (2)

(ii) CR, the class of all completely regular semigroups (unions of groups)
has an equational basis in our sense given by:

CR :(∀a) (∃x) : (a = axa) ∧ (x = xax) ∧ (ax = xa) (3)

for if S ∈ CR then for any a ∈ S we take x as the group inverse of
a in order to satisfy the equation system (and indeed that solution
x is then unique). Conversely, given that S satisfies this equation
system we have that x ∈ V (a) and a H x as a = a2x = xa2 and
x = x2a = ax2, so that Ha is a group and therefore S is a union of
groups.

(iii) It is easy to show that the class SL of all semilattices of groups may
be defined by augmenting the equations (3) for SL as follows:

(∀a, b) (∃x) : (a = axa) ∧ (x = xax) ∧ (ax = xa) ∧ (axb = bax).

However this class may also be defined by just two equations:

SL : (∀a, b) (∃x, y) : (a = axa) ∧ (ab = bya). (4)

To see this, given that S ∈ SL then the first equation is satisfied by
regularity. Now Hab = Hba = H, a group with identity e say. Hence
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be, ea ∈ H so we put y = e(be)−1ab(ea)−1e (where inversion is in the
group H) and then

bya = be(be)−1ab(ea)−1ea = e(ab)e = ab.

Conversely if S satisfies the given equations then S is certainly reg-
ular. Take a ∈ S, e ∈ E(S). Then there exists y ∈ S such that
ae = eya, whence eae = e2ya = eya = ae. Similarly there exists
z ∈ S such that ea = aze, whence eae = aze2 = aze = ea. Therefore
ae = eae = ea, which shows that idempotents are central and we
conclude that S is a semilattice of groups.

We note also that Theorems 5.1 and 5.2 of [12] show that the
second equation over S1 characterises semigroups in which H is a
congruence such that S/H is commutative.

(iv) The class CS of completely simple semigroups is defined by the CR
equations along with one other:

CS : (∀a, b) (∃x, y) :

(a = axa) ∧ (x = xax) ∧ (ax = xa) ∧ (a = abay) (5)

To see this we note that any completely simple semigroup S must
satisfy the CR equation system (3) and since for any a, b ∈ S we
have a H aba, it follows that there are always solutions to the final
equality in (5) as well. Conversely, given that S satisfies the equation
system we already have that S is completely regular while the final
equality in (5) implies that a ≤J b is true for all a, b ∈ S. Hence S
is completely simple.

We may sometimes abbreviate certain collections of equalities by expres-
sions that are shorter and the meaning of which is clearer. However, if the
equalities required are simultaneous, meaning that they contain common
variables, these abbreviations may not suffice and the equations may need
to be listed explicitly to convey the required duplication of variables between
equations. However the equations ((∀a) (∃x) : ax = xa = a) may be short-
ened to x = 1 and similarly ((∀a) (∃x) : ax = xa = x) can be written as
x = 0. When dealing with long strings it is sometimes convenient to write
the equation w = w2 as w ∈ E, although this is an abuse of notation as w is
a word in a free semigroup pre-image of S while E = E(S). We adopt the
convention in our equations that letters taken from the front of the alphabet,
a, b, c are parameters, which means they are quantified by a ∀ symbol, while
x, y, z denote variables, meaning that they are quantified by the symbol ∃.

Example 2.2. (i) Let IG be the class of all semigroups S for which each
element has a group inverse: IG can be captured as the conjunction
of equational properties as described above:

IG : (∀a) (∃x, y) : (x ∈ V (a)) ∧ (x H y) ∧ (y ∈ E(S))
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(ii) By the class Cr of cryptogroups is meant those semigroups S that
are completely regular and for which H is a congruence (so that
CS ⊆ Cr). The class Cr is defined by the CR equations (3) together
with the equation systems defined by ab H axb and ba H bax:

Cr : (∀a, b) (∃x) :

(a = axa) ∧ (x = xax) ∧ (ax = xa) ∧ (ab H axb) ∧ (ba H bax) (6)

For supposing that S is a cryptogroup then S is completely regular
and since H is a congruence and a H ax (as ax = xa) it follows that
the additional equations are also satisfied. Conversely if S satisfies
our equations then S is certainly a union of groups. Suppose that
a H c in S. Then e = ax = xa is the idempotent in the class
Ha = Hc. Similarly there is a solution x = d say to the given
equations so that c = cdc, d = dcd and cd = dc, from which it follows
that cd = ax = e. It then follows from our equations that for any
b ∈ S we have ab H eb H cb and by symmetry we obtain that H is
also a left congruence, and therefore H is a congruence on S, which
is to say that S is a cryptogroup.

Example 2.3. (i) Semigroups with a right identity (resp. right zero)
are defined by the equation

(∃x) (∀a) : ax = a (resp. ax = x) (7)

We also have of course the left and the two-sided versions of these,
the two-sided cases respectively being the classes of Monoids (M),
and Semigroups with zero. In accord with the comment above, we
may express these respectively via the equations x = 1 and x = 0.
We do however explicitly call attention to this equational basis for
M :

M: (∃x) (∀a) : ax = xa = a (8)
The order of the logical quantifiers ∀ and ∃ in the equation systems
of (1) to (6) is ∀ . . . ∃ . . . whereas in (7) and (8) the order is reversed.
What is more M cannot be represented by an equational basis of
the form ∀∗ ∃∗ (meaning any, possibly 0, number of ∀ followed by
any, possibly zero, number of ∃) because any class defined in that
way is closed under the taking of ascending chains of algebras (this
is the easy half of The Chang-Łos-Suszko Preservation Theorem; see
[2, Theorem 5.2.6]). However, this is not true ofM as may be seen
by considering the semilattice represented by the infinite ascending
chain E = e1 < e2 < . . . . The initial sub-chain En = {e1 < e2 <
· · · < en} is a monoid with identity element en. We thus have an
infinite ascending chain of semigroups E1 ≤ E2 ≤ . . . for which E,
the union of the chain, is a semilattice that lacks an identity element,
which is to say that the En (n ≥ 1) are all monoids yet their union
E is not.



ALGEBRAS DEFINED BY EQUATIONS 5

(ii) Semigroups with a maximum J -class. The two element null semi-
group N has a maximum J -class, but its square N × N does not,
so the class of semigroups with maximum J -class is not P-closed.
It turns out that this example is the main obstacle to being {H,P}-
closed, as routine arguments show that the following properties are
equivalent for a semigroup S:
• S has a maximum J -class J and S/(S − J) is not a null semi-
group;
• S has a maximum J -class J and the Rees quotient S/(S − J)
is not isomorphic to N ;
• S satisfies equation (9):

(∃x) (∀a) (∃y, z) : (yxz = a), (9)

Equation (9) has three quantifier alternations, and we now show
that this is necessary. By the Chang-Łos-Suszko Preservation The-
orem, it suffices to show that there is a subsemigroup chain A1 ≤
A2 ≤ . . . satisfying Equation (9) and such that

⋃
j≥1Aj fails Equa-

tion (9), and a subsemigroup chain B1 ≤ B2 ≤ . . . failing Equation
(9), but such that

⋃
j≥1Bj satisfies Equation (9). For the semigroups

Ai we may use the semigroups Ei of Example 2.3(i): the union E
fails (9). For Bj , we begin by considering the denumerably gener-
ated combinatorial Brandt semigroup Bω, whose set of elements is
{0}∪{(i, j) | i, j ∈ ω = {0, 1, 2, . . . }} with 0 acting as a multiplicative
zero element and with multiplication

(i, j)(k, `) =

{
(i, `) if j = k

0 otherwise.

For each i = 1, 2, . . . , choose Bi to be the subsemigroup of Bω on
the set {0} ∪ {(j, k) | j, k ≤ i − 1} ∪ {(i, i)}, with two maximal J -
classes. Then each Bi fails (9), yet the union is Bω, which has a
single maximum J -class and satisfies (9).

(iii) The class J of simple semigroups (semigroups with a single J -
class) are, by definition, defined by the condition that for all a, b ∈ S
there are solutions x, y ∈ S1 to the equation a = xby. In those
circumstances however, by replacing b by aba we may find solutions
u, v ∈ S1 such that a = (ua)b(av) so that x = ua and y = av furnish
solutions x, y ∈ S that satisfy our equation a = xby. In summary we
have the following equational basis for J :

J -simple semigroups : (∀a, b) (∃x, y) : a = xby (10)

(iv) A non-example: D the class of bisimple semigroups. The class of
R-simple semigroups (aS1 = bS1 for all a, b ∈ S) has the equational
basis: ((∀a, b ∈ S) (∃x ∈ S) : a = bx); the left-right dual to this de-
fines the class of L -simple semigroups while the conjunction of these
equations defines the class of H -simple semigroups, which coincides
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with G, the class of all groups. There is something to check here
however. Satisfaction of the equation ax = b certainly guarantees
R-simplicity. Conversely R-simplicity ensures a solution of ax = b
over S1. Clearly for distinct elements a, b, the defining equation takes
solutions from S, so only the case where a = b is problematic. Since
the one-element group satisfies every equation we may assume that
|S| ≥ 2. Then for any a ∈ S take b ∈ S such that b 6= a. Then
there exists x, y ∈ S such that ax = b and by = z. It follows that
t = xy ∈ S is such that a = at, giving a solution in S for the case
a = b also. However the distinction between S and S1 is important
when it comes to D , for it is unique among the five Green’s relations
in that the class of D-simple (bisimple) semigroups is closed under
H but not P. Bisimple semigroups are defined by the following triple
disjunction of equational bases:

(∀a, b) (∃t, u, v, x, y) :(
(a = tu) ∧ (t = av) ∧ (t = xb) ∧ (b = yt)

)
∨
(
(a = xb) ∧ (b = ya)

)
∨
(
(a = bx) ∧ (b = ay)

)
(11)

For suppose that S satisfies (11) and let a, b ∈ S. If the first equation
set in (11) applies to a and b then a R t L b, while the second
and third sets imply that a L b and a R b respectively. In any
event it follows that S is bisimple. Conversely let S be any bisimple
semigroup and let a, b ∈ S. Then there exists x ∈ S such that
a R x L b and so we may satisfy the first equation set in (11)
for a and b unless a = x or x = b. If we have that a = x, then
a L b and the second equation set in (11) is solvable. Dually, if
b = x then a R b and the third equation set in (11) can be solved
for a and b. Hence if S is bisimple then S satisfies (11). It follows
that the class of bisimple semigroups is closed under the taking of
homomorphic images but, (as we now show), not under the taking of
direct products and this is the reason why there is no redundancy in
the list of disjunctions in (11) for, as our main theorem of Section 3
shows, if a class of algebras is closed under H and P then all but one
of these sets of equations in such a disjunction will be redundant.

Let X be a countable infinite set. The Baer-Levi semigroup B is
the subsemigroup of the full transformation semigroup TX consisting
of all one-to-one mappings α : X → X such that |X \ Xα| is infi-
nite. It is well known and easily verified that B is R-simple, right
cancellative, and idempotent free; in consequence B is L -trivial.
In particular it follows that there are no factorizations of the form
a = ta in S (as then ta = t2a whence t = t2 by right cancellativity)
or what is the same, a 6∈ Ba for all a ∈ B. Therefore B is an example
of a bisimple semigroup that satisfies the third equation set in (11)



ALGEBRAS DEFINED BY EQUATIONS 7

but not the other two sets. Its left-right dual, B∗, will by symme-
try also be bisimple and satisfy the second equation set in (11) but
not the other two. (As another example of a semigroup that is left
simple, left cancellative, idempotent free and hence R-trivial, take
the semigroup S of all surjections on X for which every kernel class
is infinite.) The semigroup B × B∗ is then an example of a direct
product of two D-simple semigroups that is not itself D-simple: in-
deed B ×B∗ is D-trivial (but J -simple), by virtue of the following
observation.

Proposition 2.4. Let S (resp. T ) be a semigroup that satisfies the condition
that for all a ∈ S, a 6∈ Sa (resp. for all b ∈ T, b 6∈ bT ). Then S × T is
D-trivial.

Proof. We first check that S×T is right trivial. Suppose that (a, b) R (c, d)
say. Then either (a, b) = (c, d) or there exists (x, y), (u, v) ∈ S × T such
that (a, b)(x, y) = (ax, by) = (c, d) and (c, d)(u, v) = (cu, dv) = (axu, byv) =
(a, b). But then we have t = yv ∈ T and b = bt, contradicting that b 6∈ bT .
Therefore it follows that S × T is right trivial. By symmetry it follows that
S × T is also left trivial and hence S × T is D-trivial. �

(v) Let RG denote the class of right groups, by which we mean semi-
groups that are right simple (aS = S) and left cancellative ((ab =
ac)→ (b = c)). Another characterization of RG is the class of semi-
groups for which there is always a unique solution to the equation
ax = b (a, b ∈ S). The solvability of the equation ax = b how-
ever does not in itself imply uniqueness: the Baer-Levi semigroup is
an example of a right simple, right cancellative semigroup in which
the equation ax = b always has infinitely many solutions. However
right groups are also characterized as those semigroups that are right
simple and contain an idempotent (see [7] for details) and as such
the class is determined by the availability of solutions to a pair of
equations:

RG: (∀a, b) (∃x, y) : (ax = b) ∧ (y = y2) (12)

(vi) Any variety V of semigroups (a class closed under the operators H, P,
and S, the taking of subalgebras) is, by Birkhoff’s theorem, defined
by some countable set of identities, which are equations that may be
expressed without the use of the existential symbol ∃. The following
easy proposition is indicative of the kind of result that our approach
leads to: it shows for example that the equation systems holding in a
variety V are precisely those holding on the denumerably generated
V-free algebra (precisely as is the case for identities).

Proposition 2.5. Let K be a class of algebras in a countable signature that
is defined by a family of equation systems. Then K is a variety if and only
if K contains the denumerably generated HSP(K)-free algebras.
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Proof. The forward direction is trivial. Now assume that the denumerably
generated HSP(K)-free algebras lie in K . Then as H(K) = K it follows that
K contains all countably generated members of HSP(K). However as K
is defined by a family of equation systems it is an elementary class (defin-
able in first order logic) and hence is determined by its countably generated
members. As these coincide with HSP(K) it follows that HSP(K) = K. �

(vii) The dual idea to that which arises in (vi) is of a class defined by an
equation set that is free of the symbol ∀. For example the class:

Id : (∃x) : x = x2 (13)

is the class of all semigroups S with idempotents, which is to say
that E(S) 6= ∅. We note that Id is the minimum semigroup class
of this kind as any semigroup S with an idempotent e satisfies every
equation p = q that is free of the ∀ quantifier as is seen by acting the
substitution x → e on each variable x of p = q. We return to this
topic in Section 5.

3. The equational representation theorem for {H,P}-classes

A formula of the predicate calculus is in prenex form if it is written as a
string of quantifiers (referred to as the prefix ) followed by a quantifier-free
part (referred to as the matrix ). An equation system, as informally described
in Section 1, is a sentence in prenex form, whose matrix is a conjunction of
atomic formulas. Familiar examples include identities (universally quantified
equation systems) and primitive positive sentences (extensionally quantified
equation systems). When the quantifiers are all universal, we also refer to
a ∀1 equation system, while a primitive positive sentence will be referred to
as a ∃1 equation system. Inductively, a ∀i+1 equation system is an equation
system of the form (∀x1 . . . ∀xni+1)φ(x1, . . . , xni+1) where φ(x1, . . . , xni+1) is
an ∃i equation system, with a dual definition for an ∃i+1 system.

We note that in the case of ∀1 equation systems, we may use the property(
(∀x)φ(x) ∧ ψ(x)

)
↔
(
(∀x)φ(x)) ∧

(
(∀x)ψ(x)

)
in order to remove conjunctions (in favour of sets of quantified atomic formu-
las), however this is not in general true once existentially quantified variables
are present. Equation systems are exactly the positive (that is, negation-free)
Horn sentences (sentences with at most one positive literal or atom).

The following result is an extension of Lyndon’s Positivity Theorem (see [11],
or [8, Corollary 8.3.5]), and applies in all signatures, including those involv-
ing relations. The result is in the style of the many classical preservation
theorems of model theory, though is not to be found in standard references
such as [2] and [8], nor in other surveys such as [13]. In the case of relations,
by a surjective homomorphic image, we mean there is a homomorphism that
maps its domain onto the co-domain; it does not necessarily map the rela-
tions on the domain structure onto those of the co-domain structure.
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Theorem 3.1. An elementary class equals the class of models of some family
of equation systems if and only if it is closed under taking homomorphic
images of direct products. If the elementary class is the model class of a
single sentence, then it is a class of models of a single equation system.

Proof. One direction is easy: equation systems are preserved under direct
products and under homomorphic images. We now must show that if K is
an elementary class closed under taking surjective homomorphic images and
direct products, then it can be axiomatised by a family of equation systems.
Our method of proof will automatically derive the second statement in the
theorem. The hard work is performed by Lyndon’s positivity theorem, which
states that a sentence closed under taking surjective homomorphic images
is equivalent to a positive sentence. Thus there is no loss of generality in
assuming that K = {H,P}(K) is the class of models of a set Σ of positive
sentences. Our remaining task is to show that disjunctions can be removed
from these sentences.

Consider a sentence from Σ; we assume it is a ∀t, for, if we are given a
∃t sentence, we may augment Σ with the initial condition (∀a), where a is
a symbol that does not appear elsewhere in Σ, and so replace Σ with an
equivalent ∀t+1 sentence. Therefore we may take it that the quantifier Qt is
∀ if t is odd and ∃ if t is even. We may write our sentence as:

ρ = (∀x1,1 . . . ∀x1,n1)(∃x2,1 . . . ∃x2,n2) . . . (Qkxk,1 . . . Qk xk,nk
)

ρ(x1,1, . . . x1,n1 , x2,1, . . . , x2,n2 , . . . , xk,1 . . . , xk,nk
).

Moreover, there is no loss of generality in assuming that k is even, as we may,
if necessary, append a final (∃x) quantifier, where the symbol x does not
appear in the matrix ρ, giving an equivalent sentence. We assume that the
matrix of ρ is written as a finite conjunction of disjunctions; say

∧
1≤i≤m γi,

where each γi is a finite disjunction:

γi = αi,1 ∨ · · · ∨ αi,ri

where each αi,j is an atomic formula involving some subset of the full set of
variables x1,1, . . . , xk,nk

. If ri = 1 for i = 1, . . . ,m then there is nothing to
prove. Otherwise, if there is i such that ri ≥ 2, we shall show that there
is a j ∈ {1, . . . , ri} such that the conjunct γi may be replaced by the single
atomic formula αi,j . Repeating this for each conjunct will see us arrive at
the desired ∨-free sentence. The quantifiers remain unchanged throughout.

Without loss of generality then, we may assume that ri ≥ 2 for some i.
For each j = 1, . . . , ri let ρj be the result of replacing γi by αi,j in ρ. Note
that ρj ` ρ so that the class of models satisfied by (Σ ∪ {ρj}) \ {ρ} is a
subclass of K. We wish to show that there is some j such that the reverse
containment holds.

Assume by way of contradiction that no such j exists. In this case, for
each j ∈ {1, . . . , ri} there is a model M j ∈ K such that ρj fails in M j . We
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will now use the fact that M := Π1≤j≤riM j ∈ K and so M |= ρ in order to
produce the required contradiction.

For each j: as M j 6|= ρj there is an n1-tuple a1,1,j , . . . , a1,n1,j such that

M j 6|= (∃x2,1 . . . ∃x2,n2) . . . (Qkxk,1 . . . Qkxk,nk
)

ρj(a1,1,j , . . . , a1,n1 , x2,1, . . . , x2,n2 , . . . , xk,1, . . . , xk,nk
).

Equivalently

M j |= (∀x2,1 . . . x2,n2) . . . (Q′kxk,1 . . . Q
′
kxk,nk

)

¬ρj(a1,1,j , . . . , a1,n1,j , x2,1, . . . , x2,n2 , . . . , xk,1, . . . , xk,nk
) (14)

where again Q′k denotes the opposite quantifier to Qk.
Now let a1,1, . . . , a1,n1 ∈M be the ri-tuples formed from these violating

tuples from each M j , which is to say that

a1,l(j) = a1,l,j (1 ≤ l ≤ n1) (15)

Now M � ρ, and so there exist elements a2,1, . . . , a2,n2 ∈M such that

M � (∀x3,1 . . . ∀x3,n3) . . . (Qkxk,1 . . . Qkxk,nk
)

ρ(a1,1, . . . , a1,n1 , a2,1, . . . , a2,n2 , x3,1, . . . , x3,n3 , . . . , xk,1, . . . , xk,nk
) (16)

We continue inductively in this way and assume that for some t ≥ 1, for
each j ∈ {1, . . . , ri} there exists elements

a1,1,j , . . . , a1,n1,j , . . . , a2t−1,1,j , . . . , a2t−1,n2t−1,j ∈M j

such that

M j � (∀x2t,1 . . . ∀x2t,n2t) . . . (Qkxk,1 . . . Qkxk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t−1,1,j , . . . , a2t−1,n2t−1,j ,

x2t,1, . . . , x2t,n2t, . . . , xk,1, . . . , xk,nk
) (17)

And with
am,l(j) = am,l,j (1 ≤ l ≤ nm) (1 ≤ m ≤ 2t− 1) (18)

there exist elements a2t,1, . . . , a2t,n2t ∈M such that with

M � (∀x2t+1,1 . . . ∀x2t+1,n2t+1) . . . (Qkxk,1 . . . Qk,nk
)

ρ(a1,1, . . . , a1,n1 , . . . , a2t,1, . . . , a2t,n2t , x2t+1,1, . . .

. . . , x2t+1,n2t+1 . . . , xk,1, . . . , xk,nk
) (19)

The base t = 1 case of (17), (18), and (19) is given by (14), (15) and (16)
respectively. We now verify that we may increment each of the three parts
of the inductive hypothesis, they being (17), (18), and (19), from t to t+ 1
and thereby continue the induction.

We use (19) to project from M to each M j by making substitutions
in (17):

x2t,1 7→ a2t,1,j = a2t,1(j), . . . , x2t,n2t 7→ a2t,n2,j = a2t,n2(j) (20)
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Then from (17) we have:

M j � (∃x2t+1,1 . . . ∃x2t+1,n2t+1) . . . (Qkxk,1 . . . Qkxk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t,1,j , . . . , a2t,n2t,j ,

x2t+1,1, . . . , x2t+1,n2t+1, . . . , xk,1, . . . , xk,nk
) (21)

Substituting witnesses x2t+1,l,j 7→ a2t+1,l,j (1 ≤ l ≤ n2t+1) in (21) then
increments (17) from t to t+ 1:

M j � (∀x2t+2,1 . . . ∀x2t+2,n2t+2) . . . (Qkxk,1 . . . Qkxk,nk
)

¬ρj(a1,1,j , . . . , a1,n1,j , . . . , a2t+1,1,j , . . . , a2t+1,n2t+1,j ,

x2t+2,1, . . . , x2t+2,n2t+2, . . . , xk,1, . . . , xk,nk
) (22)

Next we put a2t+1,l(j) = a2t+1,l,j (1 ≤ l ≤ n2t+1), which, together with (20),
increments (18) from t to t+ 1. Finally, by (19) we may substitute in M :

x2t+1,1 7→ a2t+1,1, . . . , x2t+1,n2t+1 7→ a2t+1,n2t+1 ,

and call up witnesses:

x2t+2,1 7→ a2t+2,1, . . . , x2t+2,n2t+2 7→ a2t+2,n2t+2

such that

M � (∀x2t+3,1 . . . ∀x2t+3,n2t+3) . . . (Qkxk,1 . . . Qk,nk
)

ρ(a1,1, . . . , a1,n1 , . . . , a2t+2,1, . . . , a2t+2,n2t+2 ,

x2t+3,1, . . . , x2t+3,n2t+3 , . . . , xk,1, . . . , xk,nk
) (23)

which increments (19) from t to t+ 1, and so the induction continues. This
recursive procedure eventually yields a tuple

ā = (a1,1, . . . , a1,n1 , . . . , ak,1, . . . , ak,nk
) (24)

such that M � ρ(ā) but for each j, (1 ≤ j ≤ ri), M j � ¬ρj(āj), where
āj represents the tuple obtained from (24) by projecting onto the jth co-
ordinate:

āj = (a1,1,j , . . . , a1,n1,j , . . . , ak,1,j , . . . , ak,nk,j).

Now for all i′ = 1, . . . , k, we have that γi′(ā) is true in M and also γi′(āj)
holds in each M j . Now M j � ¬ρj(āj) and for i′ 6= i the conjunct γi′ appears
in ρj ; as we have noted, M j � γi′(āj), and so it follows that αi,j(āj) must
be false in M j . But as γi(ā) is true in M , there must exist j ∈ {1, . . . , ri}
with αi,j(ā) true. But then, we obtain the contradiction that αi,j(āj) is true
in M j . Arrival at this contradiction completes the proof. �

Because the class operators H and P are related in composition by PH ≤
HP, Theorem 3.1 can be re-expressed as stating that an elementary class K
is definable by an equation system if and only if K = HP(K). If we wish
to drop the assumption that K is an elementary class, we need more care.
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Elementary classes are those closed under taking ultraproducts and elemen-
tary embeddings, however in the presence of H and P, we may ignore ul-
traproducts because they are particular cases of applications by HP. Thus
Theorem 3.1 can be rephrased as “a class K is the class of models of some
equation systems if and only if it is closed under E, H and P”, where E de-
notes closure under taking elementary embeddings. In addition to the afore-
mentioned containment PH ≤ HP, it is possible to show that HE ≤ EHP,
which points toward the composite EHP as being a single closure operator
equivalent to iterated closure under combinations of E, H and P. Unfortu-
nately the authors are not aware of a useful containment between PE and
EHP. We refer simply to {E,H,P}-closed classes and even {E,H,P}-classes,
though {E,H,P}∗-closed may be more technically correct. An interesting
consequence of Theorem 3.1 is that all equationally defined classes arise as
reducts of varieties. This is of course well-known for inverse semigroups and
groups (as semigroups), but is not otherwise immediately obvious for other
{E,H,P}-classes.

The class of reducts of a variety is always closed under ultraproducts and
direct products, but in general need not be closed under taking homomor-
phic images, nor subalgebras, nor even elementary embeddings. There are
plentiful easy examples demonstrating the failure of the first two of these
closure properties. For the case of elementary embeddings, we observe that
real vector spaces form a variety (with vector addition as binary and R-many
unary operations for scalar multiplication). The class of reducts to the empty
signature has no countably infinite members, and hence is not an elementary
class. When the class of reducts of members of a variety is closed under H
and E (as they are for groups and inverse semigroups), then Theorem 3.1
shows that the class is definable by the equation systems. We now show a
converse to this statement.

Theorem 3.2. Let L be a signature and K an {E,H,P}-closed class of
L -structures. Then K is the class of reducts of a variety V in a signature
extending L . If K is finitely axiomatisable in first order logic, then V can
be chosen to be finitely based, and of finite signature.

Proof. As K is closed under taking homomorphic images, direct products and
elementary embeddings, it can be axiomatised by a family of equation sys-
tems by Theorem 3.1. If K is finitely axiomatisable in first order logic, then
the Completeness Theorem for first order logic ensures that it can equiva-
lently be axiomatised by a finite family of equation systems. We now explain
how to replace each equation system in the family of equation systems by
an identity in some extended signature. A finite number of new operations
is added for each equation system, so that if the family of equation systems
defining K is finite, then so also will the resulting variety (after all equation
systems are replaced) be finite.
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Consider a signature L and a sentence (∀~x) (∃y)φ(~x, y) in L , where ~x
abbreviates x1, . . . , xn (for some n, possibly 0) and where φ(~x, y) may con-
tain other quantified variables that are not displayed. Let f be a new n-
ary operation symbol. It easily verified that the models of (∀~x) (∃y)φ(~x, y)
are precisely the L -reducts of models of (∀~x)φ(~x, f(x1, . . . , xn)). Indeed,
if M |= (∀~x) (∃y)φ(~x, y) then we may expand the signature L of M to
include f by defining f at each tuple ~a ∈ Mn to be any witness x to
(∃x)φ(~a, x). This expansion of M is not necessarily unique, but all such
expansions are models of (∀~x)φ(~x, f(x1, . . . , xn)). Conversely any model
N of (∀~x)φ(~x, f(x1, . . . , xn)) has its L -reduct a model of (∀~x) (∃y)φ(~x, y),
as the value of f at any tuple ~a ∈ Nn provides the witness x required in
(∃x)φ(~a, x). This process is known as Skolemisation; see [2, §3.3] or [8,
§3.1] for example. An application Skolemisation to an equation system pro-
duces an equation system with one fewer existential quantifiers. Repeated
applications eventually leads to an equation system without any existential
quantifiers. Such an equation system is a finite set of identities. �

As a first example, Skolemising the defining equation (∃x)(∀a)xa = ax =
a for monoids (as semigroups), we introduce a nullary operation e to replace
x to obtain (∀a) ea = ae = a, the familiar definition as a semigroup with con-
stant. As a second example, we consider the result of applying Skolemisation
to the definition (1) for the class of groups as semigroups. The given sentence
is (∀a∀b)(∃x∃y) ax = b ∧ ya = b. Skolemising once (using the symbol \ for
the introduced Skolem function) we obtain (∀a∀b)(∃y) a(a\b) = b ∧ ya = b,
and then a second time (using /) we obtain (∀a∀b) a(a\b) = b & (b/a)a = b
(note that b/amight have more consistently been written as a/b, however it is
immediately clear that the required value is the element ba−1). Thus groups
(as semigroups) are the class of reducts of the variety with two additional
binary operations \, / defined by the identities a(a\b) = b and (b/a)a = b in
addition to associativity of the semigroup multiplication.

4. Equational bases for e-varieties of semigroups

The theory of semigroup e-varieties was devised by T.E. Hall [6] and oth-
ers in order create an interface between the theory of regular semigroups and
universal algebra. The theory endows {H,P}-closed classes of regular semi-
groups with the structure of a varietal type through introduction of unary
operations corresponding to choices of inverses for elements of the regular
semigroups involved. From Section 3 we know that we may, at least in prin-
ciple, represent such classes by equational bases using only the associative
binary operation with which the semigroup is naturally endowed. We shall
henceforth refer to these as {E,H,P}-bases, indicating that they determine
a defining set of equations for a class that is closed under E, H and P.

Three fundamental classes that form e-varieties are the classes I of all
inverse semigroups, O of orthodox semigroups, and ES of so-called E-solid
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semigroups. In this section we obtain finite equational bases for these bench-
mark e-varieties. The bases each involve choosing inverses for two arbitrary
members a, b ∈ S and adjoining a second set of equations that ensure that
all products of the associated idempotents of a certain length (length 3 for
ES and for O, and 2 for I) have a particular property associated with the
class (are group members for ES, are idempotents for O, and commute with
one another in the case of I).

We begin with the equational basis problem for the class ES of all E-solid
semigroups, which are those regular semigroups S that satisfy the solidity
condition that for idempotents e, f, g ∈ E(S)

e L f R g → ∃h ∈ E(S) : e R h L f (25)

Note that O ⊆ ES and ES ∩ IG = CR. We make use of the fact, taken
from [5], that a semigroup S is E-solid if and only if S is a regular semi-
group for which the idempotent-generated subsemigroup 〈E(S)〉 is a union
of groups.

Theorem 4.1. The class ES of all E-solid semigroups S is the {E,H,P}-
class with two-part {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a), y ∈ V (b)) (26)

In addition to (26) the basis includes:

(∀p = g1g2g3 : gj ∈ F = {ax, xa, by, yb} (∃z ∈ S)(z ∈ V (p), zp = pz) (27)

Proof. We have in mind that it is implicit that equation system (27) really
abbreviates a family of 43 equation systems, each incorporating (26) within:

(∀a∀b) (∃x∃y∃z) : x ∈ V (a) ∧ y ∈ V (b) ∧ z ∈ V (p) ∧ zp = pz

where p denotes the product g1g2g3 for g1, g2, g3 ∈ {ax, xa, by, yb}.
If S is E-solid then S is regular and so satisfies the equation system (26).

Moreover, since 〈E(S)〉 is a union of groups, it follows that for any product
of idempotents p = Πk

i=ifi (fi ∈ E(S)), we may take some zp ∈ Ek+1 ∩V (p)
to be the group inverse of p in Hp and so satisfy (27). Note that since each of
the gj in (27) is idempotent, (27) implies that the product of three or fewer
members of F has a group inverse.

Conversely, suppose that S satisfies the equation systems (26) and (27);
by (26) S is regular. Take a, b ∈ E(S) and take x, y ∈ S so that (26) and
(27) are satisfied. Then xa L a R ax and p = xa · ax = xax = x, and so
by (27) Hx is a group. It follows that ax ·xa ∈ Ha∩E(S) and so ax ·xa = a,
and similarly by · yb = b. Now suppose that a, f, b ∈ E(S) are such that
a L f R b. We then have xa L f R b so that xa · b = xa · by · yb ∈ E(S).
Therefore Hxab is a group. We thus have the following D-class structure for
D = Da in which the H -classes of each given entry is a group, for we now
observe by (27) that yb · xa is a group element located as shown.
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x xa xab

ax a ...

f b by
ybxa yb y

Moreover a L yb · xa R yb, which lets us conclude, again by (27), that

ab H a · yb = ax · xa · yb ∈ E(S) and so Hab is a group.

Therefore the idempotent h ∈ Hab fulfills the requirements of the E-solid
condition (25) and so S is E-solid. �

Theorem 4.2. The class O of orthodox semigroups S is the {E,H,P}-class
with two-part {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a), y ∈ V (b)) (28)

In addition to (28) the basis includes:

(∀p = g1g2g3 : gj ∈ F = {ax, xa, by, yb}) (p ∈ E(S)) (29)

Proof. Clearly, since the members of F are idempotents, the equations (28)
and (29) have solutions in an orthodox semigroup S. Conversely suppose
that S satisfies (28) and (29). Let a ∈ E(S) and take any b ∈ V (a). We
shall show that b ∈ E(S). Since in any regular semigroup V (E) = E2, it
follows from this that E = E2, which is to say that S is orthodox. With x, y
satisfying the equations of (28) and (29) we have x = xax = xa · ax ∈ E.
Then ax ·xa ∈ E(S)∩Ha so that ax ·xa = a. We have the following D-class
diagram, the remaining entries of which are explained below.

x xa xaby

ax a ... ab aby

ba b by
yba yb y

Since ba ∈ E(S) we have xa·by ∈ E(S) placed as shown; hence by·xa = ba.
Similarly since ab ∈ E(S) we have yb·a = yb·ax·xa ∈ E(S) as shown. Hence
a · yb = ax · xa · yb ∈ E(S) so that a · yb = ab. Putting these factorizations
together gives:

b = b · ab = b · ayb = ba · yb = by · xa · yb ∈ E(S),

which completes the proof. �

Theorem 4.3. The class I of inverse semigroups S is the {E,H,P}-class
with two-part {E,H,P}-basis:

(∀a, b) (∃x, y) : (x ∈ V (a), y ∈ V (b)) (30)

In addition to (30) the basis includes:

(∀p = g1g2 : gj ∈ F = {ax, xa, by, yb}) (g1g2 = g2g1) (31)
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Proof. Clearly any inverse semigroup satisfies (30) and (31) so only the con-
verse is in question. By (30) S is regular so let us take a, b ∈ E(S). (We
require only three of the six equations specified by (31)). From (31) we ob-
tain x = xax = xa·ax = ax·xa, whence x = ax = xa and so x = axa = a. In
the same way b = y. Putting g1 = ax, g2 = yb we then obtain from (31) that
ab = ax · yb = yb · ax = ba. Since S is regular and every pair of idempotents
of S commute we have proved that S an inverse semigroup. �

Example 4.4. The products of length 3 in Theorems 4.2 and 4.1 cannot be
replaced by products of length 2 as in Theorem 4.3.

Proof. We demonstrate this by finding an assignment of an inverse to each
member of a regular semigroup S in such a way that S satisfies the equation
system (28) and the length two version of equation system (29):

(∀p = g1g2 : gj ∈ F = {ax, xa, by, yb}) (p ∈ E(S)) (32)

However, S is not E-solid (and so also not orthodox).
Let S be the 0-rectangular band with non-zero D-class D defined by the

first ‘eggbox’ of the following three diagrams, where an asterisk denotes an
idempotent:

* * *
* *

* *
*

1
1

1
1

2 2 2
2 2

2 2
2

We see that S is regular but not E-solid since, for example, the entry
at position (2, 4) is not idempotent despite the presence of idempotents at
positions (2, 2), (3, 2), and (3, 4). We shall write (i, j) (1 ≤ i, j ≤ 4) to
denote the element of D in that corresponding position in the diagram. Let
a ∈ D. We shall choose x ∈ V (a) writing this selection in the form a → x.
We assign (1, 1) ↔ (2, 2), (1, 2) → (1, 2), (2, 1) → (2, 1), (3, 3) ↔ (4, 4),
(3, 4)→ (3, 4), (4, 3)→ (4, 3); (1, 3)↔ (4, 2), (1, 4)↔ (3, 2); (2, 3)↔ (4, 1),
(2, 4)↔ (3, 1).

In the second diagram the idempotent products of the form ax or xa
(under the previous assignment) are indicated by the numeral 1, which are
all starred in the first diagram.

In the third diagram the non-zero products of pairs of idempotents of
the form ax or yb (a, b ∈ S) are indicated by the numeral 2. Since each
instance of the numeral 2 lies in a starred square in the first diagram, it
follows that, with the given assignment of inverses, S satisfies the equations
of (28) and (32) but S is not E-solid. Therefore the equational basis given
by (28) and (32) does not imply E-solidity. �

5. Universally Satisfied Equations

Given an {E,H,P}-class C there are two natural tasks arising. The first
is the determination of an equational basis for C, which was the subject of
Section 4. In this section we examine the other side of the coin, which is the
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question of finding all equations satisfied by C. Here we shall solve the latter
problem for one class only, that being the class generated by P = (Z+,+)
and for equations of the type ∀ . . . ∃. As a corollary we obtain a description
of the class of equations without parameters solvable in every semigroup.

We shall denote a typical semigroup equation as e : p = q where p, q ∈
FA∪X , the free semigroup on A ∪X, where A and X are disjoint countably
infinite sets. Elements of A will follow instances of the ∀ quantifier while
those drawn from X will follow the ∃ symbol. We shall denote the number
of instances of the letter y ∈ A ∪X in a word w ∈ FA∪X by |w|y, with the
length of w simply denoted by |w|. Define the content of w as the set

c(w) = {y ∈ A ∪X : |w|y ≥ 1}.
Definition 5.1. An equation e : p = q (p, q ∈ FA∪X) is semigroup universal
if e is satisfied by every semigroup S.

In this section we adopt the abbreviation that an equation is universal
if it is a semigroup-universal equation. This is is not to be confused with
“universally quantified equation”, which in this article is referred to as an
“identity”.

We will make use of elementary results on subsemigroups of P . Our source
here is Chapter 2 Section 4 of the book by Grillet [4] who therein gives the
original sources of these and other related facts on numerical semigroups.

Theorem 5.2 (Proposition II.4.1 and Corollary 4.2 of [4]). (i) Let S be
a subsemigroup of P = (Z+,+). Then there exists a unique integer
d ≥ 1 such that S consists of multiples of d and S contains all suffi-
ciently large multiples of d.

(ii) A subsemigroup S of (Z,+) either contains only non-negative inte-
gers, or only non-positive integers, or is a subgroup of (Z,+). In the
latter case, S = dZ for some d ≥ 0.

Corollary 5.3. Let m1, . . . ,mn ∈ Z with gcd(m1, . . . ,mn) = d. Define

S = S(m1, . . . ,mn) = {t1m1 + · · ·+ tmmn, ti ≥ 1, (1 ≤ i ≤ n)}.
Then S is a subsemigroup of (Z,+). Moreover if all the integers mi are
positive then S is a subsemigroup of P = (Z+,+) and further d is the unique
integer such that S ⊆ dZ+ and there exists k ∈ Z+ such that {da : a ≥ k} ⊆
S.

Proof. Clearly S is a subsemigroup of P . In the case where all the mi ≥ 1,
by Theorem 5.2(i), there exists a unique positive integer d1 that has both
the properties that S ⊆ d1Z+ and there exists a positive integer k such
that d1a ∈ S for all a ≥ k . On the other hand d|s for all s ∈ S so that
S ⊆ dZ+. It follows that d|kd1 and d|(k + 1)d1, whence d is a factor of
their difference, and so d|d1. On the other hand, for any 1 ≤ i ≤ n we may
write m1 + · · · + mn = pd1 and m1 + · · · + 2mi + · · · + mn = qd1 for some
p < q ∈ Z+. Then we have mi = (q − p)d1 and so d1|mi for all 1 ≤ i ≤ n.
Therefore d1|d = gcd{m1, . . . ,mn}. We conclude that d1 = d. �
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Definition 5.4. Let e be of the form (∀a1, . . . , am) (∃x1, . . . , xn) : p = q.
Let ri = |p|xi , si = |q|xi , pj = |p|aj , qj = |q|aj . We shall write ri − si as mi

and qi−pi as nj ; let d stand for gcd{m1, . . . ,mn} and d′ for gcd{n1, . . . , nm}.

Theorem 5.5. Let e : p = q be an equation written in the notation of
Definition 5.4. Then p = q holds in P if and only if for any given positive
integers ai (1 ≤ i ≤ m) there exist positive integers ti (1 ≤ i ≤ n) (depending
on the ai) such that:

n∑
i=1

timi =
m∑
i=i

aini,

which is equivalent to the statement that S(n1, . . . , nm) ⊆ S(m1, . . . ,mn).

Proof. In P , after a substitution xi → ti, our equation p = q takes on the
form:

(p1a1+· · ·+pmam)+(r1t1+· · ·+rntn) = (q1a1+· · ·+qmam)+(s1t1+· · ·+sntn)

⇔
m∑
i=1

(pi − qi)ai +

n∑
i=1

(ri − si)ti = 0

⇔
n∑

i=1

timi =

m∑
i=i

aini

The integers ri− si = mi and qi−pi = ni, which are fixed and may be nega-
tive, are determined by the equation e. It follows that p = q will be solvable
in P if and only if every linear combination of the ni in positive integers is a
linear combination in positive integers of the mi, which is equivalent to the
statement of the theorem. �

Theorem 5.6. Let e : p = q be an equation written in the notation of
Definition 5.4. Let d = gcd(m1, . . . ,mn) and d′ = gcd(n1, . . . , nm). Suppose
for some x, y ∈ c(pq), |p|x < |q|x and |p|y > |q|y. Then e : p = q is solvable
in P if and only if d|d′.

Remark 5.7. If n1 = · · · = nm = 0, we put d′ = 0 and then d|d′ for all
d ∈ Z+. We note that in this case, S(n1, . . . , nm) = {0} = d′Z.

Proof. By hypothesis, some of the integersmi are positive and some are nega-
tive, from which it follows from Theorem 5.2(ii) that S1 := S(m1, . . . ,mn) =
d1Z for some d1 ≥ 1. Since d1 ∈ S1 it follows that d|d1. On the other hand,
by the argument in the proof of Corollary 5.3, d1|d also and therefore d1 = d
and so S1 = dZ.

For d′ 6= 0, d′|ni for all 1 ≤ i ≤ m; in any event it follows that S(n1, . . . , nm) ⊆
d′Z. Now suppose that d|d′ so that d′ = dy say. Then

S(n1, . . . , nm) ⊆ d′Z = dyZ ⊆ dZ = S(m1, . . . ,mn),

and so by Theorem 5.5, e is solvable in P . Conversely suppose that e may be
solved in P . By Corollary 5.3, S(n1, . . . , nm) contains a set of the form {ad′ :
a ≥ k} for some fixed positive integer k. Take p to be a prime with p ≥ k+d.
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Then pd′ ∈ S(n1, . . . , nm). By Theorem 5.5, pd′ ∈ S(m1, . . . ,mn) = dZ. We
then have d|pd′. However d and p are relatively prime (as p > d) and so d|d′,
thus completing the proof. �

Corollary 5.8. Let e : p = q be an equation without parameters. Let c(pq) =
{x1, . . . , xn}. Then e is universal if and only if either:

(i) |p|xi = |q|xi for all i = 1, 2, . . . , n or
(ii) for some x, y ∈ c(pq), |p|x < |q|x and |p|y > |q|y.

Proof. If (i) applies to e then for any semigroup S take s ∈ S and substitute
xi → s (1 ≤ i ≤ n) in e; this yields s|p| = s|q|, which is true in S as
|p| = |q| and therefore e is universal. Next suppose that (ii) holds. Then e
is equivalent in P to the equation e′ : pa = qa where a ∈ A is a parameter.
Since d′ = 0, the condition d|d′ holds whence it follows from Theorem 5.6
that e′ is solvable in P and therefore e is likewise. Now taking any s ∈ S we
have 〈s〉 is a homomorphic image of P and hence e is solvable in 〈s〉. Since
e has no parameters, any solution of e in 〈s〉 is also a solution of e in S and
therefore e is universal.

Conversely suppose that neither conditions (i) nor (ii) hold for e. Without
loss we may assume that |p| ≤ |q|. Suppose that for some i (1 ≤ i ≤ n)
|p|xi > |q|xi . Then, since |p| ≤ |q| it would follow that for some other
subscript j we would find that |p|xj < |q|xj , contradicting the assumption
that condition (ii) does not hold. Therefore |p|xi ≤ |q|xi for all 1 ≤ i ≤ n.
Moreover, since condition (i) does not hold either, for at least one subscript
i the previous inequality is strict. Any substitution xi → ti (ti ∈ Z+) in P
therefore yields respective positive integers p′ and q′ say with p′ < q′. In
particular p′ 6= q′ and so that e cannot be satisfed in P and therefore e is
not universal. �

Example 5.9. Let us consider

e : x91x
23
2 a

2
1a

13
2 a3 = x301 x

8
2a

11
1 a

7
2a

10
3 .

Here m1 = 9−30 = −21, m2 = 23−8 = 15, and d = gcd(m1,m2) = 3; n1 =
11− 2 = 9, n2 = 7− 13 = −6, n3 = 10− 1 = 9, and d′ = gcd(9,−6, 9) = 3.
Then d = d′ so d|d′ and by Theorem 5.6, e is solvable. Particular selections
for a1, a2, and a3 lead to solvable linear diophantine equations.

Example 5.10. The equation

e : x13y24a2b5 = x10y16a13b19

is an instance in which each of the variables (x and y) occurs more often
on the left than they do on the right so that Theorem 5.6 does not apply.
Nonetheless Theorem 5.5 shows us that e is solvable in P . We have m1 =
13−10 = 3,m2 = 24−16 = 8, n1 = 13−2 = 11, n2 = 19−5 = 14. We note
that 34 = (6× 3) + (2× 8), 35 = (1× 3) + (4× 8), 36 = (4× 3) + (3× 8). It
follows that

{k ∈ Z : k ≥ 34} ⊆ {3t1 + 8t2 : t1, t2 ≥ 1} = T.
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Now {11t1 + 14t2 : t1, t2 ≥ 1} ∩ {k ∈ Z : k ≤ 33} = {11 + 14 = 25}
and (3 × 3) + (2 × 8) = 25 ∈ T also. Hence {n1t1 + n2t2 : t1, t2 ≥ 1} ⊆
{m1t1 +m2t2 : t1, t2 ≥ 1} and so e is solvable in P . For a particular instance
we put a = 2 and b = 3 giving the diophantine equation:

3t1 + 8t2 = (2× 11) + (3× 14) = 64;

hence 2t2 ≡ 1 (mod 3) so t2 = 2 + 3t, giving 3t1 + 8(2 + 3t) = 64, whence
3t1 = 48 − 24t and so t1 = 16 − 8t. Since t1, t2 ≥ 1 there are two solutions
given by t = 0, 1 which are respectively t1 = 16, t2 = 2 and t1 = 8, t2 = 5.
Substituting x = 16 and y = 2 yields a common value of 275 for both sides
of the equation e, while putting x = 8 and y = 5 gives 243 on each side.
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