
Adaptive Multi-Subswarm Optimisation for Feature Selection on
High-Dimensional Classification

Binh Tran1,2, Bing Xue1, Mengjie Zhang1
1 School of Engineering and Computer Science,

Victoria University of Wellington,
Wellington, New Zealand

2 Can Tho University, Can Tho, Viet Nam
{binh.tran, bing.xue, mengjie.zhang}@ecs.vuw.ac.nz

ABSTRACT
Feature space is an important factor influencing the performance
of any machine learning algorithm including classification meth-
ods. Feature selection aims to remove irrelevant and redundant
features that may negatively affect the learning process especially
on high-dimensional data, which usually suffers from the curse
of dimensionality. Feature ranking is one of the most scalable fea-
ture selection approaches to high-dimensional problems, but most
of them fail to automatically determine the number of selected
features as well as detect redundancy between features. Particle
swarm optimisation (PSO) is a population-based algorithm which
has shown to be effective in addressing these limitations. However,
its performance on high-dimensional data is still limited due to the
large search space and high computation cost. This study proposes
the first adaptive multi-swarm optimisation (AMSO) method for
feature selection that can automatically select a feature subset of
high-dimensional data more effectively and efficiently than the
compared methods. The subswarms are automatically and dynami-
cally changed based on their performance during the evolutionary
process. Experiments on ten high-dimensional datasets of varying
difficulties have shown that AMSO is more effective and more effi-
cient than the compared PSO-based and traditional feature selection
methods in most cases.

KEYWORDS
Feature selection, Particle swarm optimisation, High-dimensional
data, Classification
ACM Reference Format:
Binh Tran1,2, Bing Xue1, Mengjie Zhang1. 2019. Adaptive Multi-Subswarm
Optimisation for Feature Selection on High-Dimensional Classification. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
9 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
High-dimensional data is increasingly involved in machine learning
applications. Thousands of collected features bring challenges to
the existing learning algorithms due to the curse of dimensionality

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
Conference’17, July 2017, Washington, DC, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

and the existence of irrelevant and/or redundant features. These
features not only unnecessarily increase the search space of the
problem but also obscure the effect of the relevant features on
showing hidden patterns of the data. Therefore, it is necessary to
perform feature selection (FS) on these datasets to select a subset of
features that can improve the performance of learning algorithms.

FS is a challenging combinatorial optimisation problem due to
its large search space of 2N possible subsets from N original fea-
tures. An exhaustive search is impractical even for a problem with
hundreds of features. Therefore, heuristic search such as sequen-
tial forward or backward selection methods and their variants are
used instead [13]. However, these greedy search methods may get
stuck into local optima, especially in the large search space of high-
dimensional data.

One of the most scalable FS approaches to high-dimensional data
is feature ranking [7], where features are first ranked based on a
certain criterion and then a predefined number of top-ranked fea-
tures will be chosen as the final subset. Although its running time
is proportional to the number of features, this approach requires a
predefined number of features to be selected, which is usually un-
known in practice. Feature interaction is another challenge where
individually irrelevant features may become useful and relevant
features may become redundant when combined with other fea-
tures. This phenomenon is usually overlooked by this approach. A
quick remedy for feature ranking is appending a second stage to re-
move redundant features from the ranked list [6, 22]. This approach
has shown to be effective in many problems. However, since the
first stage ranks features individually and the second stage scans
features from the most to least relevant features, these methods
may be stuck in local optima. Therefore, a more powerful search
technique is needed to obtain better solutions.

Using a population-based search to maintain multiple candidate
solutions simultaneously, particle swarm optimisation (PSO) is well-
known with global search ability. In PSO, each particle represents
a candidate solution. By sharing their best found solutions with
each other, particles fly towards fruitful areas and explore better
solutions. PSO has been applied and shown promise in feature
subset selection [20]. However, the performance of PSO for FS on
high-dimensional data is still limited due to the huge search space.
Different strategies have been proposed to improve its performance
on such data. The most common one is the two-stage approach
where the first stage uses a criterion to remove irrelevant or less
relevant features to reduce the number of features given to PSO
in the second stage [3, 11]. This approach has shown to be more
effective thanks to the ability of (implicitly) considering feature

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

2

interaction in the second stage. However, since the first stage does
not consider feature interaction and the number of selected features
has to be predefined, potentially useful features may be left out.
Therefore, instead of removing features before applying PSO to
narrow the search space, this study applies the divide and conquer
principle to reduce the search space of the problem and shorten the
PSO running time.

In this paper, an adaptive multi-subswarm optimisation (AMSO)
method is proposed for FS on high-dimensional data where each
subswarm searches for solutions in different subspaces of the prob-
lem and dynamically changes subspace by shrinking the particle
length based on its performance during the evolution. Note that this
approach is different from cooperative coevolution, which uses mul-
tiple subpopulations, each dealing with a subproblem. Specifically,
this study addresses the following research questions:
• How to apply the divide and conquer principle in a flexi-
ble and dynamic way that enables PSO to effectively and
efficiently search in small subspaces while still covering the
whole large search space;
• Whether the proposed algorithm can select very small fea-
ture subsets that can achieve better accuracy than using the
original feature set; and
• Whether the proposed algorithm can achieve better per-
formance than the compared PSO-based and traditional FS
methods in terms of accuracy and running time.

2 BACKGROUND
2.1 Particle Swarm Optimisation
PSO is a population-based algorithm [12]. PSO maintains a swarm
of particles where positions are N -dimension real-value vectors
representing different candidate solutions of a N -dimension prob-
lem. A particle moves in the search space according to its velocity
which is updated based on its own inertia, its personal experience
about the best position (called personal best or pbest), and the best
position it has communicated from others (called global best or
дbest if particles are fully connected). Eqs. (1) and (2) are used to
update velocity and position of a particle at time t + 1, respectively.

v t+1id = w ∗ v
t
id + c1 ∗ r1i ∗ (p

t
id − x

t
id) + c2 ∗ r2i ∗ (p

t
дd − x

t
id) (1)

x t+1id = x
t
id + v

t+1
id (2)

where vid and xid are the velocity and position of the ith particle
in dimension d .w is the inertia weight showing the importance of
following its ownmovingmomentum. pbest and gbest positions (pid
and pдd) are used in the second and third terms of Eq. (1) associated
with acceleration constants (c1 and c2) and random values (r1i and
r2i) to guide particles to search for the best solutions.

When applying PSO to FS, a feature subset is encoded in the
position of the particle. Position values range from 0 to 1 in the
position vector indicates whether the corresponding feature should
be selected or not based on a predefined threshold (e.g. 0.6).

2.2 Related Work
In the last decades, many PSO-based FS methods have been pro-
posed and shown promise on high-dimensional data [19]. Different
approaches have been used to improve its performance. For ex-
ample, to address the problem of early convergence of PSO in the

large search space, дbest is reset based on the majority voting of
all pbest if дbest does not improve for a number of iterations [11].
Similarly, pbest [21] or particle [5] are reset when PSO stagnates.
Enhancing the particle updating mechanism is another way to im-
prove its performance on a large search space [16]. To maintain
swarm diversity in feature selection on high-dimensional data, Gu
et al. [8] applied the competitive swarm optimiser (CSO) [4] where
particles learn from randomly selected competitors instead of дbest
and pbest . Another popular approach is to reduce the number of
features using a filter measure before applying PSO [11, 16]. Local
search is also applied on particles [17], or pbest [19], or дbest [15]
to exploit the fruitful areas detected by PSO.

In general, although the existing PSO-based FS methods have
shown to be effective, their performance is still limited when using
a fix-length representation for all particles. This prevents PSO from
scaling well to higher dimensionality.

3 THE PROPOSED METHOD - AMSO
3.1 The proposed AMSO representation
AMSO aims to divide the whole search space into smaller subspaces
so that multi-swarms can search more effectively. To achieve this
goal, features are sorted in the descendant order of their relevance,
which can be measured by any criterion. In this study, AMSO uses
symmetrical uncertainty (SU) to rank features. In other words, indi-
vidually relevant features are presented in the very first dimensions
of the particle representation vector.

Based on this representation, we divide the search space into
multiple smaller subspaces so that it is easier for PSO to find better
solutions. Specifically, the whole swarm is divided into many sub-
swarms with different particle lengths but all start from the first
feature of the representation as shown in Fig. 1. This figure shows
an example of AMSO with 5 subswarms for a problem with 2000
features. Particles in each subswarm will have the same length so
that they can focus their search on the same set of possible solutions
and effectively sharing their experience. Given N as the number of
original features (and also the maximal length of particles), andM
as the number of subswarms, the length of particles in subswarm s ,
ParLens is calculated based on Eq. (3).

ParLens = s ∗
N
M

(3)

As can be seen from the unfilled upper right “triangle” in Fig. 1,
this strategy reduces the computation for velocity and position up-
dating by roughly half. It also divides the search space into multiple
smaller subspaces, making it easier for PSO to find better solutions.
On one hand, since individual relevant features are presented in
the very first dimensions of the particle representation, subswarms
with short lengths are likely to include reasonably good solutions.
On the other hand, AMSO still considers longer solutions in the
longer subswarms which may contain less relevant features but
may provide a better classification accuracy when combining with
other features.

3.2 Subswarm Updating
During the evolutionary process, each subswarm can automatically
adjust its particle length to focus its search on better subspaces.
This strategy enables AMSO to further reduce its search space to a

3. THE PROPOSED METHOD - AMSO 3

 400 800 1200 1600 2000ParLen:

Sub. 1

Sub. 2

Sub. 3

Sub. 4

Sub. 5

Figure 1: AMSO example with 5 subswarms and N = 2000.

Sub.1

Sub.2

Sub.3

Sub.4

Sub.5

400

800

1200

1600

2000

1200

240

480

720

960

Unchanged

ParLen: Before After

Figure 2: Subswarmupdating examplewith Subswarm3 con-
taining дbest .

smaller and more suitable one, enabling it to reach better solutions
in a shorter time. However, if subswarm updating is applied too
often, it can negatively affect the AMSO performance. An adequate
time should be given for AMSO to learn and converge. Therefore,
subswarm updating is only applied when AMSO seems to stagnate
in a local optimum which can be detected based on the improve-
ment of дbest . If дbest does not improve for β iterations, subswarm
updating is called. At this point, AMSO will determine the best sub-
swarm which is the one in which the current best solution (дbest)
is found. The length of this best subswarm will become the new
maximal length of AMSO.

Algorithm 1 describes the pseudo-code of the subswarmupdating
mechanism. The subswarm updating procedure starts with using
the length of the current дbest particle as the new maximal length.
Based on this new maximal length (MaxLen), the lengths of each
subswarm s is recalculated using s ∗ MaxLen

M . The particles will
then be shortened by removing the less relevant features at the end
of the positions and re-evaluated to be ready for the new iteration.

Fig. 2 shows an example of applying this mechanism on a prob-
lem with the maximum length of 2000 and 5 subswarms. Assume
the current дbest is found in subswarm 3. This subswarm will be
kept unchanged, while the others will be cut to fit their new lengths.
Note that in order to maintain as much information as possible
in the particles, this procedure processes the subswarms in the as-
cending order of their lengths. This makes sure that the new length
is always smaller than the current length. As can be seen from
Fig. 2, after subswarm updating, the total length of all particles is
significantly reduced.

3.3 Particle Updating
Premature convergence is one of the issues of PSO when apply-
ing on high-dimensional problems. Different strategies have been
proposed to address this problem. Cheng et al. [4] proposed the
competitive swarm optimiser (CSO) in which particles learned from
randomly selected competitors. The whole swarm is divided into
two groups and pair-wise comparisons are done to determine the
winner and the loser. The latter will learn from the former which
is kept unchanged (i.e. only half of the swarm is changed in each
iteration). дbest is also replaced by the mean values of all particle’s

Algorithm 1: Subswarm Updating
input :Current swarm
output :New swarm

1 begin
2 M ← Number of subswarms ;
3 NewMaxLen ← Length of дbest ;
4 k ← 1;
5 for Each subswarm s (from the shortest to the longest) do
6 if ParLens , NewMaxLen then
7 ParLen ← k × NewMaxLen ÷M ;
8 Remove the last dimensions of all particles in s to have

ParLen dimensions;
9 Calculate fitness of all particles in s ;

10 k = k + 1;
11 end
12 end
13 end

position (Mean). Eq. (4) shows CSO’s updating formula for vt+1ld ,
which is the velocity of the loser l in dimension d at time t + 1.

v t+1ld = r1l ∗ v
t
ld + r2l ∗ (x

t
wd − x

t
ld) + ϕ ∗ r3l ∗ (Meantd − x

t
ld) (4)

where r1l , r2l , and r3l are random values, xl and xw are the loser
and winner positions, respectively. ϕ is a weight showing the im-
portance ofMean position.

CSO was originally proposed for continuous optimisation prob-
lems. Although it has been applied and shown promise in FS [8],
its updating mechanism has two drawbacks when applying to FS
which is a combinatorial optimisation problem. Firstly, although
completely ignoring the personal experience (pbest) can increase
diversity [4], it may also degrade PSO performance especially on
high-dimensional search space. Secondly, when applying CSO to
FS [8], the continuous value of a position’s dimension is converted
into a binary value indicating whether the corresponding feature is
selected or not. Therefore, the average position of all particles may
not be meaningful, and become misleading. In this study, AMSO
uses a simpler updating mechanism that avoids these problems.

Since each subswarm searches for solutions in one subspace,
it is more meaningful to share experience among particles of the
same subswarm. AMSO applies a similar competitive updating
mechanism as in CSO [4] in which particles in each subswarm are
randomly divided into two groups and pair-wise comparisons are
done to determine the winner and the loser. The latter will learn
from the former which is kept unchanged. However, in AMSO, the
loser l learns from pbest of its winner pw using a new updating
mechanism as shown in Eq. (5) in whichw, c, and r are the inertia
weight, acceleration constant and random value, respectively. In
this updating formula, pbest of the winner (pwd) is used to guide
the search instead of the winner’s current position and theMean
position all particles. By learning from the best experience of the
winner, the loser has more chance to reach better solutions. Fur-
thermore, applying competition within each subswarm also helps
PSO keep its diversity.

v t+1ld = w ∗ v
t
ld + c ∗ r ∗ (p

t
wd − x

t
ld) (5)

4

3.4 Fitness Function
Feature evaluation is an important component contributing to the
success of a FS algorithm. The two main approaches to evaluating
features are wrapper and filter methods, which are based on a learn-
ing algorithm and the intrinsic characteristics of the training data,
respectively. Therefore, wrapper measures usually obtain better per-
formance than filters with the cost of higher computation time. On
the other hand, filters are said to achieve better generalisation than
wrappers. AMSO unites the strengths of both approaches by com-
bining K-Nearest Neighbour (KNN) and a distance measure using
a weight (µ) as shown in Eq. (6). Because KNN is a distance-based
algorithm, the increased computation cost is minor.

f itness = (µ · AvдBalAcc + (1 − µ) · Distance) (6)
where AvдBalAcc is the average over 10-fold cross-validation on
the training set of the balanced accuracy (BalAcc) calculated based
on Eq. (7).

AvдBalAcc =
1
10

10∑
f old=1

(
1
c

c∑
i=1

T PRi)f old (7)

where c is the number of classes of the problem, and the true positive
ratioTPRi is the proportion of correctly identified instances in class
i . Since there is no bias to any specific class, the weight for each
class is set to 1/c .

The Distance measure [2] is calculated based on Eq. (8). This
filter measure is used to maximise the distance between instances of
different classes (Db) and minimise the distance between instances
of the same class (Dw). In this study, Manhattan distance is used
to measure the distance between two instances Dis(Vi ,Vj) since
it is more suitable than Euclidean distance for high-dimensional
data [1]. Eq.s (9, 10, and 8) show the calculation of Db ,Dw and
Dis(Vi ,Vj), respectively.

Distance =
1

1 + exp−5(Db−Dw)
(8)

where

Db =
1
|S |

|S |∑
i=1

min
{j |j,i,class(Vi),class(Vj)}

Dis(Vi ,Vj) (9)

Dw =
1
|S |

|S |∑
i=1

max
{j |j,i,class(Vi)=class(Vj)}

Dis(Vi ,Vj) (10)

Dis(Vi ,Vj) =
N∑
f =1
|Vi f −Vj f | (11)

3.5 The Overall Algorithm
Algorithm 2 presents the overall algorithm of AMSO. Given the
population size PopSize and the number of subswarmsM , all sub-
swarms will have the same number of particles (SubswarmSize)
equal to PopSize/M . The length of each particle (ParLen) in each
subswarm is then calculated based on Eq. 3 each subswarm is then
initialised and evolved separately using the updating mechanism as
described in Section 3.3. If дbest is not changed after β iterations,

Algorithm 2: AMSO Algorithm
input :PopSize, N , M, MaxI ter, β, θ
output :Selected Features

1 begin
2 Rearrange features in descending order of SUC ;
3 MaxLen ← N ;
4 for Each subswarm s: 1 to M do
5 SubswarmSize ← PopSize/M ;
6 ParLen ← s × N ÷M ;
7 Randomly initialise s with SubswarmSize particles having

ParLen;
8 Calculate fitness of particles in s using Eq. (6);
9 Update pbest , дbest ;

10 end
11 while (Not reach MaxI ter) do
12 for Each subswarm s: 1 to M do
13 Randomly divide s into two groups;
14 Apply pair-wise comparision to determine loser s and

winner s;
15 Update loser s’ velocity based on Eq. (5);
16 Update loser s’ position based on Eq. (2);
17 Calculate fitness of particles in s using Eq. (6);
18 Update pbest , дbest ;
19 if дbest does not change β iterations then
20 MaxLen ← дbest length;
21 Update subswarms based on MaxLen //Sec. 3.2;
22 Recalculate fitness of particles in s using Eq. (6);
23 end
24 end
25 end
26 Return position indexes in дbest that have values larger than θ ;
27 end

subswarm updating is applied to automatically change all the sub-
swarms except for the one that has the length of дbest . The while
loop continues until the maximum iterations is reached, дbest is
then returned as AMSO’s feature subset.

PSO is well-known with its ability in quickly detecting fruitful
areas in the search space. However, once there, it is difficult for
PSO to perform local search to fine tune its solutions. Although
local search adds more computation cost, a careful integration of
local search in PSO can effectively and efficiently improve PSO
performance on high-dimensional data. Therefore, in this study,
AMSO applies the local search procedure using the same way as
[19] in the updating pbest step at Lines 8 and 17 of Algorithm 2, i.e.
after updating each pbest .

4 EXPERIMENT DESIGN
Table 1 shows the number of features, instances and classes of the
ten high-dimensional datasets [18] used to test the performance of
AMSO. The last two columns show the percentage of instances of
the smallest class and the largest class, respectively. The datasets are
presented in the ascending order of #Features. With thousands of
features, very small numbers of instances compared to their dimen-
sionality, and highly unbalanced class distribution, the problems in
these datasets become challenging to machine learning algorithms.

5. RESULTS AND ANALYSIS 5

Table 1: Datasets

Dataset #Features #Ins. #Class %Smallest
class

%Largest
class

SRBCT 2,308 83 4 13 35
Leukemia 1 5,327 72 3 13 53
DLBCL 5,469 77 2 25 75
9Tumor 5,726 60 9 3 15
Brain Tumor 1 5,920 90 5 4 67
Brain Tumor 2 10,367 50 4 14 30
Prostate 10,509 102 2 49 51
Leukemia 2 11,225 72 3 28 39
11Tumor 12,533 174 11 4 16
Lung Cancer 12,600 203 5 3 68

Table 2: Parameter settings

Parameters Settings
Population Size (PopSize) #features/20 (restriction to 300)
Maximum iterations (MaxI ter) 100
c1 = c2 or c 1.49445
w 0.9 − 0.5 ∗ current iterat ionmax iterat ion
θ (Threshold for selecting feature) 0.6
Communication topology Fully connected (PSO)
µ (fitness weight) 0.8 (PSO, AMSO)
M (number of subswarms) 13 (AMSO)
β (for subswarm updating) 7 (AMSO)

Due to the small number of instances in these datasets, 10-fold
cross validation was used to create training and test sets. One
fold is used for testing and the remaining nine folds are used to
train the FS method. The training set is input to the FS methods to
learn a good feature subset. Note that the test set is not seen by all
the methods during their FS process. The training and test sets are
transformed based on the feature subset and put into KNN (K=1) for
performance evaluation. 30 independent runs were conducted with
different random seeds on each training set, yielding 300 results
(30 runs × 10 folds) for each dataset.

The performance of AMSO was evaluated by comparing the
classification accuracy of KNN using the features selected by AMSO,
standard PSO, and the CSO-based FS method [8] proposed in 2018.
Table 2 shows PSO parameter settings for the three methods. The
number of subswarms (M) and the maximum iterations that дbest
does not improve to change subswarms (β) are chosen from the
ranges [8,15] and [5,10], respectively, based on a grid search on
the Brain1 dataset. The best combination of 13 and 7 is used for all
datasets. µ is set as 0.8 to bias towards the classification accuracy.
AMSO was also compared with CSO since both have a similar
updating mechanism as described in Section 3.3. CSO was run with
the same PSO settings as AMSO using the author’s code. AMSO’s
source code is available at https://github.com/tnbinh/AMSO.

We also compare AMSO with other FS methods including the
linear forward selection (LFS) [9], the correlation-based FS method
(CFS) [10], and the fast correlation-based FS method (FCBF) [22].
These methods are chosen due to their popularity and the abil-
ity to automatically determine the number of selected features as
our proposed method. These methods represent typical traditional
approaches to FS.

Table 3: Average test results.

Dataset Method Time(m) Size Best Mean ± Std S

SRBCT

Full 2308.0 87.08 +
PSO 8.2 1119.4 92.50 89.51 ± 1.56 +
CSO 19.9 85.4 100.00 93.29 ± 3.52 +
AMSO 2.0 63.7 100.00 99.75 ± 0.39

Leuk1

Full 5327.0 79.72 +
PSO 41.2 2615.5 87.36 80.60 ± 2.55 +
CSO 251.8 170.1 96.81 88.45 ± 3.90 +
AMSO 7.6 51.5 97.64 93.50 ± 1.84

DLBCL

Full 5469.0 83.00 +
PSO 47.6 2681.0 86.33 83.67 ± 1.52 +
CSO 394.8 30.1 100.00 94.30 ± 4.05 =
AMSO 8.8 50.6 99.17 93.70 ± 2.59

9Tumor

Full 5726.0 36.67 +
PSO 39.2 2811.9 45.00 42.72 ± 1.42 +
CSO 373.4 220.3 68.33 59.50 ± 3.72 –
AMSO 6.2 52.2 60.00 55.33 ± 3.46

Brain1

Full 5920.0 72.08 +
PSO 66.6 2917.2 77.08 73.73 ± 2.21 +
CSO 462.1 207.6 86.67 79.93 ± 3.09 –
AMSO 12.8 93.5 85.00 78.00 ± 3.24

Table 4: Average test results.

Dataset Method Time(m) Size Best Mean ± Std S

Brain2

Full 10367.0 62.50 +
PSO 80.5 5117.2 67.08 61.99 ± 2.91 +
CSO 950.8 90.43 90.83 80.44 ± 6.28 –
AMSO 12.2 62.1 84.17 74.62 ± 3.87

Prostate

Full 10509.0 85.33 +
PSO 160.6 5193.7 88.33 86.00 ± 1.49 +
CSO 2369.9 357.2 95.17 88.99 ± 2.68 +
AMSO 24.3 49.9 95.17 92.61 ± 1.38

Leuk2

Full 11225.0 89.44 +
PSO 120.6 5535.7 92.22 89.83 ± 1.00 +
CSO 1845.2 88.6 98.33 91.72 ± 3.16 +
AMSO 17.5 57.2 96.67 94.85 ± 0.99

11Tumor

Full 12533.0 71.42 +
PSO 418.5 6205.0 75.59 71.81 ± 1.75 +
CSO 6288.6 588.6 84.47 79.52 ± 2.35 +
AMSO 94.1 324.4 89.19 83.86 ± 1.84

Lung

Full 12600.0 78.05 +
PSO 574.2 6234.7 82.72 78.77 ± 1.53 +
CSO 5565.9 226.4 93.79 87.72 ± 2.93 +
AMSO 238.1 196.8 93.46 89.71 ± 2.24

5 RESULTS AND ANALYSIS
Table 5 shows the average results including running time, feature
subset size, the best and average test accuracy of KNN (K=1) using
AMSO’s returned feature subsets from 30 runs. AMSO results are
compared with the original feature set (“Full”), PSO and CSO. The
last column presents the results of the Wilcoxon statistical test
(with 5% significance level) showing whether the proposed method
significantly outperforms (+), or has a similar (=) or worse (–) result
than the method in the corresponding line. This means that the
more “+”, the better the proposed method. The smallest running

https://github.com/tnbinh/AMSO

6

time, feature subset size and the best average test accuracy obtained
on each dataset are highlighted in bold.

5.1 AMSO Results
5.1.1 AMSO versus Full. As can be seen from the “Size” column

of Table 5, AMSO’s feature subsets are two to three orders of mag-
nitude smaller than the original feature sets on all datasets. The
highest reduction can be seen on Prostate, where AMSO selects
about 50 features from the 10509 features. With a much smaller size,
these feature subsets help KNN improve its classification accuracy
more than 10% on seven out of the ten datasets with 18.7% highest
improvement on 9Tumor. All the “+” signs appeared in the “Full”
lines show that using the AMSO selected features, KNN obtains
significantly better performance than using the original feature set
on all the datasets.

5.1.2 AMSO versus PSO:. Although PSO has reduced the feature
set size roughly by half, its feature subsets are still at least two orders
of magnitude larger than AMSO’s ones on all the datasets. When
using the feature subsets selected by AMSO, KNN also obtains
significantly higher accuracy than using PSO’s ones on all the
datasets with the highest improvement found on Brain1 with 12.6%
on average and 17.1% in the best case. For example, while PSO
selects 5535 features on Leukemia2, AMSO selects only 55 features,
which is a hundred times fewer, to obtain 5% higher test accuracy
on average. This shows that AMSO with the proposed mechanisms
is much more effective than standard PSO in FS.

5.1.3 AMSO versus CSO:. Compared with CSO, AMSO selects
fewer features on all datasets except for DLBCL, obtaining the
smallest feature set among the compared methods. On Prostate,
AMSO selects less than 50 features on average while CSO selects
more than 350 features. In terms of classification accuracy, AMSO
obtains significantly better performance on six datasets and similar
on one. For example, AMSO selects 19 fewer features on SRBCT than
CSO to obtain 6.5% higher accuracy than CSO. On the remaining
three datasets, namely 9Tumor, Brain1 and Brain2, CSO obtains
significantly higher accuracies than AMSO.

In general, over the 30 comparisons with the three baseline meth-
ods, AMSO wins 26, draws 1 and loses 3 in terms of classification
accuracy. In terms of the dimensionality reduction, AMSO wins 18
and loses 2 when compared with the two PSO-based FS methods.
The results show that AMSO is more effective than standard PSO
and CSO in selecting smaller and better feature subsets in almost
all cases.

5.1.4 Transformed Data. To further confirm the effect of AMSO
in selecting features that can distinguish instances from different
classes, we use t-Distributed Stochastic Neighbor Embedding (t-
SNE) [14] to visualise the data transformed by each method. t-
SNE has shown to be more effective than existing state-of-the-art
techniques for visualising high-dimensional data. To apply t-SNE,
each dataset was first transformed based on the best feature subset
(i.e. giving the highest test accuracy) among 30 different results
returned by each method from 30 runs. For datasets with more than
200 features, Principal Component Analysis (PCA) was applied and
the first 50 components were used as input of t-SNE [14]. t-SNE
was run using the available Python package with perplexity of 20

Figure 3: DLBCL (2 classes)

Figure 4: Prostate (2 classes)

Figure 5: Leukemia1 (3 classes)

and 5000 iterations to transform data in 2 dimensions. Due to the
page limit, only seven datasets with different number of classes
were presented in Figs. 3-9. Each figure has four sub-figures which
present the original data (Full), the data transformed by PSO, by

5. RESULTS AND ANALYSIS 7

Figure 6: SRBCT (4 classes)

Figure 7: Lung Cancer (5 classes)

Figure 8: 9Tumor (9 classes)

CSO and by AMSO. In order to show how well each method scales
to the complexity of the problem, the results are presented in the
ascending order of the number of classes.

Figure 9: 11Tumor (11 classes)

As seen from Fig. 3, while the two classes of DLBCL have an
extensive overlap in the original data and the data transformed by
PSO, they are well-separated when using the features selected by
CSO and AMSO. This pattern can be seen in all the other datasets.
Although KNN obtained the best test accuracy of 92.5% on DLBCL
when using features selected by PSO, which is 5% higher than using
the original full feature set, the PSO transformed data does not show
an obvious difference with the original data. This may be because
using the first 50 components transformed by PCA from the 2308
original features and 1119 features selected by PSO, respectively,
t-SNE does not have enough information to show the difference
between them.

Compared to CSO, the clouds generated by AMSO for differ-
ent classes usually have smaller size and larger margins between
classes, which is clearly shown in Figs.4-7. This may be due to the
integration of the distance measure in AMSO’s fitness function to
bias towards feature subsets that minimise the distance within class
and maximise the distance between classes. This strategy helps
AMSO attain good performance even on dataset with higher num-
ber of classes as in 9Tumor and 11Tumor. As shown in Figs 8 and
9, AMSO selected features provide a better-separated regions for
different classes than CSO.

5.2 AMSO Running Time
In terms of the efficiency, as can be seen from Column “Time” of
Table 5, AMSO required the shortest running time among the three
PSO-based FS methods, while CSO is the slowest with up to 105
times slower than AMSO on Leuk2. This may be due to the strategy
of recording the fitness of all the evaluated solutions including
feature subsets and its fitness value in a lookup table to avoid re-
evaluation. However, using extensive memory and additional time
for the lookup table, this strategy may not scale well to larger
datasets.

Compared with PSO, AMSO is roughly 2 to 6 times faster. Since
both methods use the same fitness function, population size and the
number of iterations, they have the same number of PSO evalua-
tions. Note that AMSO spends more evaluations when running local
search; therefore, its computation time could be higher. However,

8

Table 5: AMSO versus traditional methods.

Dataset Method Time (s) Size Best (Mean) Acc. S

SRBCT

LFS 25.0 7.1 91.67 +
CFS 243.3 112.3 99.17 +
FCBF 1.4 69.0 98.75 +
AMSO 121.2 63.7 100.0 (99.75)

DLBCL

LFS 56.3 5.9 83.33 +
CFS 778.4 86.3 93.00 =
FCBF 1.6 66.1 94.83 –
AMSO 527.6 50.6 99.17 (93.70)

9Tumor

LFS 52.9 9.7 26.67 +
CFS 341.2 44.0 56.67 –
FCBF 1.7 33.7 55.00 =
AMSO 370.6 52.2 60.00 (55.33)

Leuk1

LFS 51.9 5.4 85.14 +
CFS 778.4 79.4 92.08 +
FCBF 1.4 48.5 89.86 +
AMSO 454.7 51.5 97.64 (93.50)

Brain1

LFS 77.9 12.2 63.33 +
CFS 2973.0 151.9 76.67 =
FCBF 2.8 104.6 73.75 +
AMSO 766.5 93.5 85.00 (78.00)

Table 6: AMSO versus traditional methods.

Dataset Method Time (s) Size Best (Mean) Acc. S

Leuk2

LFS 143.4 4.7 89.44 +
CFS 5653.0 129.5 94.44 +
FCBF 4.1 77.5 95.56 –
AMSO 1048.6 57.2 96.67 (94.85)

Brain2

LFS 113.9 9.1 77.50 –
CFS 3182.2 101.1 77.50 –
FCBF 2.7 66.2 77.50 –
AMSO 734.9 62.1 84.17 (74.62)

Prostate

LFS 158.2 5.9 90.17 +
CFS 2537.4 80.4 92.17 =
FCBF 3.4 66.1 92.17 =
AMSO 1457.3 49.9 95.17 (92.61)

Lung

LFS 358.8 8.5 79.62 +
CFS 85179.1 517.0 93.76 –
FCBF 56.7 439.4 92.71 –
AMSO 14286.2 196.8 93.46 (89.71)

11Tumor

LFS 309.3 17.3 61.76 +
CFS 57340.7 361.6 80.04 +
FCBF 31.1 349.6 80.57 +
AMSO 5647.2 324.4 89.19 (83.86)

the results show an opposite trend. This means that the computa-
tion time saved from having shorter particles, i.e. smaller feature
subset sizes, is much more than the time increased by running local
search.

5.3 AMSO versus Traditional Methods
Table 6 shows the average running time (in seconds), feature subset
size, the best and average (in parenthesis) test accuracy of AMSO
compared with LFS, CFS and FCBF. The shortest running time, the
smallest feature subset size and the best accuracy are also high-
lighted in bold.

As can be seen from Column “Size” of Table 6, LFS’s subsets are
always the smallest among the compared methods on all datasets.
However, their classification accuracy is the lowest in almost all
cases. Although AMSO selects more features than LFS, it obtains
significantly better accuracy than LFS on all datasets except for
Brain2 with 3% lower accuracy on average. However, it still obtains
6.7% higher in the best case. On 9Tumor, AMSO selects 43 more
features to obtain 29% higher accuracy than LFS on average and
33% higher in the best case. The results show that LFS is trapped in
local optima in a very early stage, resulting in a minimal size but
low performance feature subsets.

Compared with CFS, AMSO selects a much smaller number
of features on almost all datasets to obtain a significantly better
performance on four datasets, worse on three and similar on the
remaining three datasets. Note that CFS is a filter-based method,
which is usually known to be faster than wrapper approaches.
However, due to the pair-wise correlation measures, it requires the
longest time on all datasets.

In contrast, FCBF has the shortest running time among the com-
pared methods. As can be seen, FCBF and AMSO select a similar
number of features in most cases. The average test accuracy of
AMSO is significantly better than FCBF on four datasets, worse on
four and similar on the remaining two. However, the best accuracy
obtained by AMSO on each dataset, meaning that AMSO is always
able to find a subset of features that can produce better results than
FCBF. For example, AMSO obtain 9% and 12% higher than FCBF on
11Tumor and Brain1, respectively. Note that both FCBF and AMSO
start by ranking features based on the same measure. The difference
in their performance shows that the heuristic search in the second
stage of FCBF is not as powerful as AMSO.

Overall, over the 30 comparisons with the three traditional meth-
ods, AMSOwins 17, draws 5, and loses 8. However, on almost all the
datasets, AMSO can always find a subset of features that achieve
much better accuracy than all these traditional FS methods (see
best accuracy in Table 6). The results also show that AMSO scales
well to high-dimensional data.

6 CONCLUSIONS
This paper aimed to integrate feature ranking into PSO to combine
the strengths of both methods for FS on high-dimensional data.
The goal has been achieved by proposing a dynamic PSO algorithm
where subswarms are initialised with different particle lengths and
automatically change during the evolutionary process based on
their performance. The results showed that the proposed method
can select a much smaller feature subset with better classification
performance in a much shorter time than standard PSO and CSO.
By using multiple subswarms to focus on different and smaller sub-
spaces, AMSO not only improved its performance significantly but
also reduced its running time, enabling it to scale well to problems
with high-dimensionality. AMSO also shows to be more effective
than LFS, CFS and FCBF using much shorter running time than
CFS in most cases.

Compared with other PSO-based methods, AMSO could be run
in parallel, which could further reduce its running time. Wrapper
approaches are known to be more effective than filter approaches
with the price of longer running time. The ability to run in parallel

6. CONCLUSIONS 9

could help AMSO scalable to big data where both the number of
instances and features are large.

Although the proposed dynamic subswarm strategy is proposed
for PSO, it can be adapted to other EC methods. In the proposed
method, the number of subswarms is fixed during the evolutionary
process which may not suitable for all problems. Our future work
includes further enhancing AMSO performance by enabling this
parameter to be adjusted automatically based on a certain measure
on the swarm performance.

REFERENCES
[1] Charu C Aggarwal, Alexander Hinneburg, and Daniel A Keim. 2001. On the

surprising behavior of distance metrics in high dimensional space. In International
Conference on Database Theory. Springer, 420–434.

[2] H. Al-Sahaf, A. Al-Sahaf, B. Xue, M. Johnston, and M. Zhang. 2017. Automatically
Evolving Rotation-invariant Texture Image Descriptors by Genetic Programming.
IEEE Transactions on Evolutionary Computation 21, 1 (2017), 83–101.

[3] Haider Banka and Suresh Dara. 2015. A Hamming distance based binary particle
swarm optimization (HDBPSO) algorithm for high dimensional feature selection,
classification and validation. Pattern Recognition Letters 52 (2015), 94–100.

[4] R. Cheng and Y. Jin. 2015. A Competitive Swarm Optimizer for Large Scale
Optimization. IEEE Transactions on Cybernetics 45, 2 (Feb 2015), 191–204.

[5] Li-Yeh Chuang, Sheng-Wei Tsai, and Cheng-Hong Yang. 2011. Improved binary
particle swarm optimization using catfish effect for feature selection. Expert
Systems with Applications 38, 10 (2011), 12699–12707.

[6] Chris Ding and Hanchuan Peng. 2005. Minimum redundancy feature selection
from microarray gene expression data. Journal of bioinformatics and computa-
tional biology 3, 02 (2005), 185–205.

[7] Artur J Ferreira and Mário AT Figueiredo. 2012. Efficient feature selection filters
for high-dimensional data. Pattern Recognition Letters 33, 13 (2012), 1794–1804.

[8] Shenkai Gu, Ran Cheng, and Yaochu Jin. 2018. Feature selection for high-
dimensional classification using a competitive swarm optimizer. Soft Computing
22, 3 (2018), 811–822.

[9] M. Gutlein, E. Frank,M. Hall, and A. Karwath. 2009. Large-scale attribute selection
using wrappers. In IEEE Symposium on Computational Intelligence and Data
Mining. 332–339.

[10] Mark A. Hall. 2000. Correlation-based Feature Selection for Discrete and Numeric
Class Machine Learning. In Proceedings of the 7th International Conference on
Machine Learning. 359–366.

[11] Indu Jain, Vinod Kumar Jain, and Renu Jain. 2018. Correlation feature selection
based improved-Binary Particle Swarm Optimization for gene selection and
cancer classification. Applied Soft Computing 62 (2018), 203–215.

[12] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In IEEE Interna-
tional Conference on Neural Networks, Vol. 4. 1942–1948.

[13] Jundong Li, Kewei Cheng, Suhang Wang, Fred Morstatter, Robert P Trevino,
Jiliang Tang, and Huan Liu. 2017. Feature selection: A data perspective. ACM
Computing Surveys (CSUR) 50, 6 (2017), 94.

[14] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[15] K. Mistry, L. Zhang, S. C. Neoh, C. P. Lim, and B. Fielding. 2017. A Micro-
GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion
Recognition. IEEE Transactions on Cybernetics 47, 6 (2017), 1496–1509.

[16] M.S. Mohamad, S. Omatu, S. Deris, and M. Yoshioka. 2011. A Modified Binary
Particle Swarm Optimization for Selecting the Small Subset of Informative Genes
From Gene Expression Data. Information Technology in Biomedicine 15, 6 (2011),
813–822.

[17] Parham Moradi and Mozhgan Gholampour. 2016. A hybrid particle swarm
optimization for feature subset selection by integrating a novel local search
strategy. Applied Soft Computing 43 (2016), 117–130.

[18] Alexander Statnikov, Constantin F Aliferis, Ioannis Tsamardinos, Douglas Hardin,
and Shawn Levy. 2005. A comprehensive evaluation of multicategory classifica-
tion methods for microarray gene expression cancer diagnosis. Bioinformatics 21
(2005), 631–643.

[19] Binh Tran, Bing Xue, and Mengjie Zhang. 2016. A PSO based hybrid feature
selection algorithm for high-dimensional classification. In Proceedings of IEEE
Congress on Evolutionary Computation. 3801–3808.

[20] B. Xue, M. Zhang, W. N. Browne, and X. Yao. 2016. A Survey on Evolutionary
Computation Approaches to Feature Selection. IEEE Transactions on Evolutionary
Computation 20, 4 (2016), 606–626.

[21] Cheng San Yang, Li Yeh Chuang, Chao Hsuan Ke, and Cheng Hong Yang. 2008.
Boolean binary particle swarm optimization for feature selection. In IEEE Congress
on Evolutionary Computation (CEC). 2093–2098.

[22] Lei Yu and Huan Liu. 2003. Feature selection for high-dimensional data: A
fast correlation-based filter solution. In Proceedings of the 20th on International
Conference on Machine Learning (ICML). 856–863.

	Abstract
	1 Introduction
	2 Background
	2.1 Particle Swarm Optimisation
	2.2 Related Work

	3 The Proposed Method - AMSO
	3.1 The proposed AMSO representation
	3.2 Subswarm Updating
	3.3 Particle Updating
	3.4 Fitness Function
	3.5 The Overall Algorithm

	4 Experiment Design
	5 Results and Analysis
	5.1 AMSO Results
	5.2 AMSO Running Time
	5.3 AMSO versus Traditional Methods

	6 Conclusions
	References

