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Abstract 

To improve biodegradation strategies for chlorinated pollutants, the roles of soil organic matter and microbial 

function need to be clarified. It was hypothesised that microbial degradation of specific organic fractions in 

soils enhance community metabolic capability to degrade chlorinated pollutants. This field study used historic 

records of dieldrin concentrations since 1988 and established relationships between dieldrin dissipation and 

soil carbon fractions together with bacterial and fungal diversity in surface soils of Kurosol and Chromosol. 

Sparse partial least squares analysis linked dieldrin dissipation to metabolic activities associated with the highly 

decomposed carbon fraction. Dieldrin dissipation, after three decades of natural attenuation, was associated 

with increased bacterial species fitness for the decomposition of recalcitrant carbon substrates including 

synthetic chlorinated pollutants. These metabolic capabilities were linked to the decomposed carbon fraction, 

an important driver for the microbial community and function. Common bacterial traits among taxonomic 

groups enriched in samples with high dieldrin dissipation included their slow growth, large genome and 

complex metabolism which supported the notion that metabolic strategies for dieldrin degradation evolved in 

an energy-low soil environment. The findings provide new perspectives for bioremediation strategies and 

suggest that soil management should aim at stimulating metabolism at the decomposed, fine carbon fraction. 
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1. Introduction 

A large variety of chemistries of chlorinated pesticides were marketed globally and used extensively for crop 

protection with peak production around 1955 [1]. International efforts were made to eliminate the use of the 

most hazardous persistent organic pollutants [2] but these organic pollutants persist in agricultural soils today 

and continue to limit land-use options while posing long-term health risks [3,4]. Persistent organic pollutants 

include highly-chlorinated synthetic pesticides, such as dieldrin, and are resistant to microbial degradation 

leading to extremely slow biodegradation rates in soils. Biodegradation is the most important process for 

minimising risks of these type of soil pollutants and fundamental for bioremediation technologies and natural 

attenuation strategies [5,6]. However, it has been recognised that microbial biodegradation of hydrophobic and 

chlorinated organics is governed by retention processes and linked to the molecular composition of soil organic 

matter [7–9]. More knowledge is needed to understand how management of soil organic matter composition is 

associated with the in-situ biodegradation processes of these recalcitrant compounds. 

A previous field study showed two agricultural pasture soils (0−10 cm) displayed significantly different 

abilities to dissipate dieldrin after three decades despite having similar soil characteristics with the exception 

of location and organic matter content [4]. These soils presented an opportunity to investigate factors for 

dieldrin dissipation revealing that low soil C/N and high microbial-C-to-total-C ratio [10] were associated with 

greater dissipation of aged dieldrin after three decades of natural attenuation [4]. This suggests that capabilities 

for the degradation of dieldrin, one of the most persistent organic pollutants, can be predicted by the presence 

of persistent soil organic matter and by greater microbial C assimilation efficiencies [11]. From laboratory-

scale studies, it has emerged that more refractory C sources such as alkali soil extracts provide substrate for a 

diverse microbial community with greater metabolic capabilities for the degradation of synthetic organic 

pollutants [12]. It is further evident that persistent or highly decomposed C fractions impose a stronger 

influence on the degradation of chlorinated pollutants compared to non-chlorinated pollutants, and that 

microbial community composition is intimately connected to soil C decomposability [8]. Thus, organic matter 

composition influences the effectiveness of microbial bioremediation strategies utilising organic matter 

amendments. Currently, it remains undetermined which factors may increase the effectiveness of microbial 

bioremediation strategies for chlorinated pollutants in surface soils aged over several decades.  

This study aimed to improve understanding how in-situ biodegradation of dieldrin was associated with soil 

organic matter fractions, microbial diversity and functional profiles. We assessed the relationship of three 

carbon fractions with bacterial and fungal diversities as well as the metabolic profiles estimated from bacterial 

marker genes using PICRUSt2 [13]. It was hypothesised that microbes in soils which comprised of more 

decomposed C materials had greater metabolic capabilities to degrade dieldrin.  

2. Materials and Methods 

2.1. Site, soil description and dieldrin and total carbon measurements 

Two agricultural surface soils (0−10 cm) of a Kurosol (n = 21) and a Chromosol (n = 15) [14] which comprised 

of twelve grazed pastures that were subject to the Australian National Organochlorine Residue Management 

Plan [15] were sampled in April/May 2017. Each sample was a composite of 8−10 soil cores representing a 

field replicate. Site location and details, sampling procedure and soil physicochemical characteristics were 

described previously [4]. The Kurosol and Chromosol consisted of seven and five fenced paddocks, 

respectively, for which detailed records of dieldrin concentrations since 1988 were obtained. The long-term 

dieldrin loss (%) per paddock was calculated using the difference of the average dieldrin concentrations from 

2015/2017 (D15-17). Climate data for the paddocks in the northeast (Kurosol) and southeast (Chromosol) of 

Victoria was obtained from the nearest weather stations of the Bureau of Meteorology 

(http://www.bom.gov.au/climate/data/, accessed 22 May 2020) and are available in Table S1. 

Dissipation of dieldrin since 1988 has shown to be significantly greater in the Kurosol compared to the 

Chromosol (Kurosol 73 ±1.5 %, Chromosol 42 ±3.4 %) [4]. It is important to note that residues of 

dichlorodiphenyltrichloroethane (p,p'-DDT) and its transformation product dichlorodiphenyldichloroethylene 

(p,p'-DDE) were also present in both soils but were not part of this study. Only dieldrin was applied to all 

paddocks until 1988, hence dissipation could be estimated more reliably for dieldrin. From the available data, 



it was found that p,p'-DDT dissipation since 1988 was also greater in the Kurosol (Kurosol 71 ±1.98%, 

Chromosol 43.7 ±5.84 %) [4]. Both soil types consisted of a similar texture (Clay, 12 ±0.4 and 10 ±0.4  %; 

Silt, 37 ±0.7 and 31 ±0.8 %; Sand, 51 ±0.9 and 59 ±1.1 % for Kurosol and Chromosol, respectively), had the 

similar pH (4.59 ±0.07 and 4.49 ±0.04 (Kruskal-Wallis p = 0.60), for Kurosol and Chromosol, respectively) 

and were both in the high-rainfall zone with similar annual maximum temperatures (20.9–21.9 ˚C) [4]. Total 

organic C significantly differed between the two soils (Kurosol 33.3 ±1.05 mg g-1, Chromosol 61.8 ±1.72 mg 

g-1), and both the C/N and the microbial-C-to-total-C ratios strongly correlated with dieldrin dissipation (R2 = 

0.89 and 0.93, respectively) [4]. For subsequent analyses, samples were grouped into four categories based on 

long-term dieldrin loss (%) where the loss was either below or above the median dieldrin loss for each soil type 

with uneven sample sizes per group.  

2.2. Soil organic carbon fractions 

Soil organic C fractions were predicted from diffuse reflectance spectra. Soil processing and spectra acquisition 

followed the method set out in Madhavan et al. (2016).  Briefly, air-dried soils were sieved (≤ 2 mm) and finely 

ground in a ball mill (Retsch MM400, Germany). Diffuse reflectance spectra in the mid and near-infrared 

(MNIRS) spectra (7800−450 cm-1 at 8 cm-1 resolution) were acquired for all samples using a PerkinElmer 

Frontier FT-NIR-MIR Spectrometer (PerkinElmer Inc., Waltham, MA, USA) equipped with a KBr beam-

splitter, a DTGS detector and AutoDiff automated diffuse reflectance accessory (Pike Technologies, Madison, 

WI, USA). 

Spectra were pre-processed as described in Madhavan et al. (2017) and concentrations of total organic C (total-

C), resistant organic C (resistant-C), humic organic C (humic-C) and particulate organic C (particulate-C) were 

predicted from MNIRS spectra of the Australian Soil Carbon Research Project (ScaRP) [18] using partial least 

squares (PLS) regression. From these spectra and methodology, resistant-C was defined as the proportion of 

char and lignin C (enriched in poly-aryl C) in both fine and coarse fractions, and considered to be biologically 

resistant. Particulate organic C was defined as the remaining coarse fraction (> 50 µm) and was considered to 

be relatively rich in carbohydrates (enriched in O-alkyl C) and the most biologically active and decomposable. 

Humic organic C was defined as the remaining fine fraction (< 50 µm) and considered to be low in 

carbohydrates and more decomposed (enriched with alkyl C) compared to particulate-C [18]. 

Estimated total-C concentrations from the PLS predictions were correlated with total-C measurements of the 

same samples using a dry combustion analyzer (Perkin Elmer 2400 Series Ⅱ, R2 = 0.98). Hydrogen (H) 

concentrations were also derived and the hydrogen-to-total-C ratio calculated as approximation for aliphatic C 

content in downstream analyses. Raw data are shown in Table S2. For all downstream analyses, resistant-C, 

humic-C and particulate-C were either transformed into percentages of total-C or into centered log ratios.  

2.3. Diversity measurements 

DNA samples were obtained from the extraction of 0.25 g fresh soil using Powersoil DNA isolation kit (MoBio, 

Calsbad, USA) and stored at -20 ˚C. Marker genes were sequenced with 15% phiX control on the Illumina 

MiSeq platform (2 × 300) to determine bacterial and fungal diversity. For bacteria the V4 hypervariable region 

of the 16S-rRNA gene was targeted with primers 515F (GTGYCAGCMGCCGCGGTAA) / 806R 

(GGACTACNVGGGTWTCTAAT) [19]. For fungi, the Internal Transcribed Spacer (ITS) region 2 [20] was 

amplified with primers FITS7 (GTGARTCATCGAATCTTTG)/ITS4 (TCCTCCGCTTATTGATATGC) [21]. 

The default settings of Qiime2 (v2020.2, https://qiime2.org) were used to assess the quality of paired end reads, 

trim primers, denoise and dereplicate sequences and filter chimeras (dada2) [22]. Sequences with number of 

expected errors >2 were discarded and 66% (bacteria) and 52% (fungi) of sequences were retained after 

filtering. A total of 19,918 and 4,712 unique amplicon sequence variants (ASVs) (bacteria and fungi, 

respectively) were identified. Qiime2 was then used to train primer-specific classifiers using Greengenes 

reference sequences (gg13.8 at 99% similarity) for bacteria (https://greengenes.secondgenome.com/) and 

UNITE reference sequences (v8 dynamic) for fungi (https://unite.ut.ee/) and the classifiers were then used to 

assign taxonomic classifications to ASVs with 'qiime feature-classifier classify-sklearn'. 

For bacterial ASVs, a phylogenetic tree was created using the default options of the Qiime2 plugin q2-

fragment-insertion that utilized SATé-enabled phylogenetic placements (SEPP) with the Greengenes 13.8 



SEPP reference tree. The tree was subsequently used to calculate the faith phylogenetic diversity index and 

unifrac metric and for phylogenetic analysis of associations to dieldrin loss as outlined below.  

Prior to subsequent community analyses three outliers were removed which belonged to a paddock that was 

not representative of the remaining paddocks in the Kurosol (final n = 33). To assess differences in diversity 

between samples with high and low dieldrin losses, alpha diversity indices were produced with phyloseq [23] 

on rarefied abundances (depth to minimum sample size; 32,417 reads) of bacteria, their predicted enzyme 

metagenome and fungi. The phyloseq package was used to make compositional comparisons of bacterial, 

enzyme and fungal abundances in principle component analysis (PCA) and redundancy analysis (RDA) after 

converting abundance tables into Aitchison distances [24]. ASVs were filtered to those ASVs and enzymes 

present in at least 25% of samples. This included 1465 and 1705 bacterial ASVs, and 398 and 403 fungal ASVs 

in the Kurosol and Chromosol, respectively, and further included 2093 enzymes in both soils. To assess the 

influence of C fractions on bacterial and fungal community composition, resistant-C, humic-C and particulate-

C were used as constraining variables in RDA and significance of RDA constraints assessed using 999 

permutation of a pseudoF statistic in the function `permutest` of the vegan package [25]. The functions 

'betadisper' (vegan package) and 'leveneTest' (car package) were used to test for significantly different 

compositional dispersion between soils and variation of phylogenetic diversity between samples [26].  

2.4. Enzyme metagenome and MetaCyc pathway associations to carbon fractions and dieldrin 

concentrations 

The PICRUSt2 (Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2) 

software [13] was used to predict the enzyme metagenome and metabolic pathways (MetaCyc, Karp, 2002) 

based on the bacterial ASVs. Briefly, the PICRUSt2 pipeline placed ASVs into an open-source reference tree 

based on prokaryotic genomes from the Integrated Microbial Genomes database [28], inferred gene abundances 

per ASV and then predicted sample pathway abundances using MinPath. The full pipeline 

(https://github.com/picrust/picrust2/wiki/Full-pipeline-script) was run with default settings, except that the 

maximum Nearest Sequence Taxon Index (NSTI) was set to 0.65 in favor of greater accuracy of predictions. 

Prior to running the PICRUSt2 pipeline, the ASV table was filtered to those ASVs that were present in at least 

two samples and with a minimum frequency of 10 reads. The final table output comprised of 432 pathway 

abundances that represented the metabolic potentials of bacteria in each sample. 

Sparse partial least squares analysis (sPLS), including sPLS discriminant analysis (sPLS-DA) of the mixOmics 

package [29] were chosen to explore associations between metabolic pathway potentials and soil variables  of 

resistant-C, humic-C, particulate-C, C/N and dieldrin loss (%). The sPLS is a dimension reduction technique 

that integrates two high-dimensional data sets acquired from the same samples (here predicted pathway 

potentials and soil variables) to highlight general patterns of associations. These methods perform well when 

the number of samples (n) is smaller than the measured variables (p) and when variables exhibit 

multicollinearity. For detailed description of approach, see the supplementary section.  

2.5. Analysis of phylogenetic associations to dieldrin losses 

To test whether the presence of some bacterial clades was more likely associated with dieldrin loss, the package 

Phylofactor [30] was used to perform generalized phylofactorization with the mixed algorithm and a binomial 

distribution as described in the package tutorial (https://github.com/reptalex/phylofactor). Phylofactorization 

was chosen as it has the ability to detect similar shifts in microbial clades among different data (or soils) when 

mapped to the same phylogeny, even with minimal ASV overlap [31]. The analysis was done across both soils 

(n = 33) and then separately on each soil type (Kurosol, n=18; Chromosol, n=15). Any unidentified phyla and 

phyla with low prevalence (mean prevalence of 1 or < 100 reads) were removed. Remaining ASVs filtered to 

a minimum of 25 reads per ASV and converted to presence/absence, which was modelled as the response 

variable with dieldrin losses (%) as numeric predictors. Phylofactor partitioned the phylogeny along edges with 

different log-odds of presence using generalized linear models (default mixed algorithm) with binomial 

distributions. The identified clades were then mapped onto the phylogenetic tree using ggtree. 

2.6. Network analysis of bacterial and fungal co-correlation 

To investigate differences in community interactions of unique bacteria and fungi in the Kurosol and the 

Chromosol, co-correlation networks were created using sparse inverse covariance estimation for ecological 

https://github.com/picrust/picrust2/wiki/Full-pipeline-script


association inference (Spiec-easi) [32] with glasso estimations. After filtering of ASVs to a minimum sample-

presence of 25%, bacterial and fungal abundances were co-correlated using a stability approach to 

regularization selection (StARS) [33] with a threshold of 0.05 and 25 repetitions (other settings: nlambda = 30, 

lambda minimum ratio = 0.02). Network edges were processed in gephi [34] and nodes of taxa that were unique 

in samples with above median dieldrin losses were visualised. Furthermore, the average path lengths were 

calculated and keystone taxa highlighted. Modularity was calculated [35] and strongly interacting bacteria and 

fungi (modules) identified. Module zero and four coincided with the presence of unique ASVs in samples with 

above or below median dieldrin loss (%). To investigate ecological preferences of these two groups of taxa, 

the standardised relative abundance (Z-score) of each module was computed and correlated to organic matter 

fractions (Spearman).  

3. Results 

3.1. Carbon decomposition continuum  

The two soils, Kurosol and Chromosol, differed in dieldrin dissipation, organic C composition and displayed 

different metabolic profiles. Samples with higher proportions of highly decomposed or lower quality C 

materials displayed greater capabilities for degradation of recalcitrant C materials including chlorinated 

hydrocarbons (Figs 1 and 2). The Kurosol contained significantly less total-C compared to the Chromosol (61.8 

±1.7 g kg-1 and 33.7 ±1.0 g kg-1, respectively) but consisted of less charcoal and lignin-like materials (poly-

aryl C) as indicated by the smaller resistant-C fraction (28  ±0.3 % and 24 ±0.6 %) (Fig. 1). The Kurosol had 

significantly greater hydrogen-to-total-C ratios but lower C/N than the Chromosol, indicating that overall the 

organic matter was enriched in aliphatic C sources and therefore more decomposed (Figs 1 and S1). This 

aliphatic C stemmed mostly from the humic-C fraction which constituted the biggest C fraction (45 ±0.5 % 

and 51 ±1.0 % for Chromosol and Kurosol, respectively). The Kurosol also consisted of more fresh, 

decomposable material than the Chromosol, indicated by the larger particulate-C fraction (4.8 ±0.4 % and 9.5 

±0.6 % for Chromosol and Kurosol, respectively). Altogether, the organic matter in the Kurosol exhibited a 

higher metabolic potency for the degradation of chlorinated and aromatic carbon sources compared to the 

Chromosol, which coincided with increased dieldrin dissipation (Fig. 2).  

3.2. Associations of MetaCyc pathway potentials with dieldrin dissipation  

Abundances of 260 metabolic pathway potentials, which contributed to variations in the first three latent 

components in sPLS-DA, were predictive of dieldrin dissipation. Of those metabolic potentials, 10 degradation 

pathways (four carbohydrate, one alcohol, one carboxylate and two polyamine degradation pathways) and a 

vitamin biosynthesis pathway contributed most to component loadings (Fig. 3). Correlations between 

metabolic pathways and C fractions from loadings of the first two components from sPLS further showed that 

the potentials for fucose, rhamnose, lactose, galactose and glycol degradation were most strongly associated 

with high dieldrin dissipation (Table 1, Fig. S2). In contrast, oxidative glucose degradation was associated with 

low dieldrin dissipation since 1988 (Fig. 3). 

3.3. Compositional associations to dieldrin loss and soil C fractions 

The microbial community composition differed between the Kurosol and Chromosol (Fig. S3) and greater 

dieldrin losses coincided with significantly higher bacterial and fungal richness, as well as enzyme-encoding 

genes (Fig. S4) and greater microbial diversity per unit of dieldrin (Fig. S5). While the phylogenetic 

composition of bacteria was similar in the Kurosol and in the Chromosol (Fig. S6‒S8), only in the Kurosol 

were soil C fractions associated with the composition of bacteria, enzymes and fungi (Fig. 4). Permutation tests 

for the joint effect of resistant-C, humic-C and particulate-C were significant for the Kurosol (p < 0.001) but 

not for the Chromosol (p > 0.05). The Kurosol community also contained a higher number of unique ASVs 

with greater phylogenetic dispersion, suggesting a greater phylogenetic versatility, which coincided with 

increased dieldrin losses (Figs S6 and S8).  

Of the three soil C fractions, humic-C was the biggest driver of community function in the Kurosol. Individual 

permutation tests for humic-C (p < 0.01), resistant-C (p = 0.07‒0.18) and particulate-C (p = 0.19‒0.45) in the 

model indicated that humic-C was most important for bacterial, fungal and the metabolic compositions while 



particulate-C was least important (Table 2). The highest dieldrin dissipation (%) occurred in Kurosol samples 

where the microbial community and metabolic composition was associated with humic-C (Fig. 4). An increase 

in humic-C was further associated with dieldrin loss and the metabolic potential for the degradation of lactose 

and galactose (Fig. S2).  

3.4. Associations of humic C with a group of bacteria and fungi and dieldrin dissipation 

The combined abundance of a co-correlated group of bacteria and fungi in the Kurosol, was associated with 

humic-C concentrations (R2 = 0.57***, Figs 5 and S9, Module zero). This cluster was also associated with 

dieldrin dissipation as it contained a group of bacteria and fungi which were only found in samples with above 

median dieldrin loss (Fig. 5). Bacterial interactions were generally dominant while fungal interactions 

increased in another cluster (Module four) which was associated with below median dieldrin loss (Fig. 5; Table 

S3), indicating that fungal interactions were less influential on high dieldrin degradation.  

A number of phylogenetic clades had a significantly higher presence in samples with high dieldrin loss as 

determined by generalised linear models with presence/absence as response variable (Table S4). These clades 

included Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Planctomycetes and Geobacter sp. (Table 

3, Fig. S7). Most of these were strongly representative of the humic-C-associated cluster (Module zero) of 

bacteria and fungi (Fig. 5). For example, Actinobacteria in the order Solirubrobacterales were 12 times more 

frequent, while Planctomycetes in the order Gemmatales were 6 times more frequent in Module zero compared 

to Module four. Furthermore, Chloroflexi in the order of WCHB1-50 and Bacteroidetes in the order 

Bacteroidales were unique in Module zero. Of the fungal taxa, one group belonging to the order Hypocreales 

was the strongest representative for Module zero as it was 13 time more frequent there. The genera Fusarium, 

Thelonectria, Trichoderma, Myxocephala and Monocillium dominated in this group.  

4. Discussion 

4.1. Dieldrin dissipation was linked to a resource-limited soil environment  

Two pasture surface soils were investigated, Kurosol and Chromosol, with differing potentials of dieldrin 

dissipation over the past three decades. An important finding was that metabolic capabilities of microorganisms 

for degradation of chlorinated pollutants were linked to adaptations to a resource-limited soil environment and 

driven by highly decomposed C materials. Samples which exhibited high dieldrin dissipation were enriched in 

aliphatic or lipid-rich C materials as indicated by the C/N and H-to-total-C ratios and humic-C proportions 

(Fig. 1) [36–38]. We refer to humic-C as the pool of lipid-rich materials (< 50 µm) which were decomposed to 

small molecules and were energy-poor or physically-protected from microbial degradation [39]. Also known 

as persistent or mineral-associated organic matter, it is usually the largest fraction of soil organic matter and 

composed of a complex mixture of microbially-derived detritus [40,41]. Laboratory-scale studies, using 

synthetic alkali extracts to emulate this C fraction, showed that they provided substrate for a microbial diversity 

with greater metabolic capabilities for xenobiotic degradation [12]. This is consistent with this field study 

which showed that highly decomposed soil C (humic-C) coincided with increased potentials for degradation 

of chlorinated xenobiotics and aromatic compounds (Fig. 2). It was concluded that dieldrin degradation 

processes were greater in a resource-limited soil environment containing low quality, energy-poor or more 

decomposed C materials.  

This was further associated with increased C assimilation efficiencies, expressed as an increase in the 

microbial-C-to-total-C ratios [11], as our previous study showed strong correlations of total dieldrin dissipation 

to high microbial-C-to-total-C ratios (R2 = 0.93) [4]. These increases in C-use efficiency were likely the result 

of more efficient maintenance processes of a microbial community that evolved in an energy-low soil 

environment. According to the model by Xu et al. [11], the efficiency with which microorganisms assimilate 

C into their biomass is determined by two factors: C assimilation efficiency and maintenance energy 

requirements over time. Carbon assimilation efficiencies increase with high C quality combined with low 

maintenance energy requirements. As the soil C quality was lower in samples with increased dieldrin losses, it 

was concluded that dieldrin degradation was associated with microbial strategies that increase maintenance 

efficiencies.   



More efficient microbial activity can evolve from resource-limitations or seasonal stresses such as high 

temperatures and drought [11,42,43]. Seasonal stresses in the Kurosol can also explain the lower C stocks (Fig. 

1) as the maximum soil C content in a given location is mainly determined by maximum and minimum rainfall 

and temperature [44–46]. This was consistent with local climate data. In the last three decades, the King Valley 

region, where the Kurosol samples were taken, had greater extremes and variability in temperatures, rainfall 

and solar exposure (Table S1). Additionally, decadal floods occurred in seasons with heavy rainfalls. Such 

environmental stress has shown to increase  phylogenetic dispersion of microbial communities [31], which 

agreed with our data showing an increase of phylogenetic variability with increased dieldrin dissipation (Fig. 

S8). This supported the suggestion that a stressed or resource-limited soil environment impacted on microbial 

degradation of dieldrin.  

A resource-limited soil environment selects for microbial traits that maximise growth yield, a concept known 

as rate-yield tradeoff [47]. In the present study, it was observed that the potential for the Entner-Doudoroff 

pathway was predictive for high dieldrin dissipation (Fig. 3). The Entner-Doudoroff glycolytic pathway is more 

common than originally thought [48] and it was found that it yielded less energy but required several-fold less 

enzymatic protein compared to the better known Embden–Meyerhof–Parnas pathway [49], potentially freeing 

up resources to invest in more complex degradation processes. It was therefore speculated that the limited 

access to energy and C materials selected for microbial traits which aided in accessing energy-low materials, 

for example through the production of exoenzyme or extracellular glycolipids and that this increased co-

metabolism of dieldrin.  

4.2. The highly decomposed carbon C fraction was driving dieldrin dissipation 

The persistent and highly decomposed C fraction played a significant role in the dissipation of dieldrin. Among 

the three C fractions, humic-C was the most significant driver for the microbial community and functional 

composition in the Kurosol (Fig. 4, Table 2). There were unique associations between bacteria and fungi which 

demonstrated a preference for this C pool as the combined abundance (Z-score) of a group of co-correlated 

bacteria and fungi (Gephi modularity, Module zero) increased with humic-C concentrations (R2 = 0.57***, 

Figs 5 and S9). By contrast, in the Chromosol there was no effect of the C composition on the microbial 

community, suggesting that C quality was less important for community dynamics in this soil, which coincided 

with lower dieldrin dissipation (Figs 4 and 5). Moreover, functional potentials of bacteria in the Kurosol were 

associated to dieldrin loss and simultaneously associated to humic-C (Table 1, Fig. S2) which further showed 

that decomposed C materials support soil functions that coincided with dieldrin degradation. Finally, the 

Kurosol, with greater dieldrin dissipation, contained less organic matter as well as lower proportions of 

charcoal or lignin materials (resistant-C), suggesting that irreversible sequestration of dieldrin was less 

pronounced compared to the Chromosol (Fig. 1) [50]. As a result, interactions between humic-C and dieldrin 

molecules were likely more prevalent in the Kurosol.  

Potentials of several metabolic pathways of the bacterial community gave further insights into microbial traits 

that were associated with highly decomposed C materials and dieldrin dissipation. The sPLS analysis showed 

that strongest predictors for high dieldrin losses included the metabolic potentials for degradation of microbial 

sugars such as fucose, rhamnose, lactose and galactose (Fig. 3, Table 1). The concentration of microbial sugars 

in soils such as those from extracellular rhamnolipids or lipopolysaccharides in the cell membrane is typically 

five times lower than glucose [51–53]. Microbial sugars have been shown to be enriched in the fine C fraction 

and protected against microbial degradation, potentially through organo-mineral associations [54,55]. This 

indicates that the higher microbial maintenance efficiencies in samples with high dieldrin dissipation were 

associated with metabolic adaptations to utilise microbially-derived C which itself was associated with 

protected and highly decomposed materials. Microbial biomass itself becomes an important reservoir and 

buffer of nutrients during stress or resource-limited periods [56], hence the findings supports the idea that these 

conditions promote degradation of recalcitrant carbon materials including dieldrin. Taken together, dieldrin 

dissipation was associated with decomposed C materials which mediated community assembly with traits that 

aided degradation of chlorinated organics. 

These data imply that the provision of labile and decomposable C may inhibit biodegradation of chlorinated 

organics. This was also evident in a long-term field experiment studying the degradation of a chlorinated model 

compound (2,4-dichlorophenol (DCP)) [8]. Degradation of DCP was associated with the clay fraction (< 2 µm) 

which comprised a distinct microbial community [57], and it was found that farmyard manure reduced 



degradation of DCP as it reduced mass transfer of DCP to relevant microbial cells [8]. Thus, in agreement with 

our findings, which showed that dieldrin dissipation was associated with the finer C fraction, soil management 

should aim at stimulating metabolism of the decomposed fine C fraction. These findings offer new perspectives 

for natural attenuation strategies especially for agricultural surface soils which are contamination with 

organochlorines for several decades. We speculate that disruption of the soil structure by frequent tillage is 

needed to stimulate biodegradation of dieldrin by indigenous microorganisms. The rational is that frequent 

tillage would give microorganisms access to non-labile C, including dieldrin and promote growth of relevant 

degraders. On the other hand, no-till practices and perennial pastures may delay dieldrin dissipation as labile 

C sources are constantly provided by rhizodeposites. These recommendations sit in contrast to common soil-

health practices which aim at increasing soil organic matter content. Controlled experiments are needed to 

verify if disturbance of soil structure and microbial communities promote the assembly of microorganisms 

with desired traits for degradation of chlorinated contaminants under these circumstances.  

4.3. Microbial traits in samples with high dieldrin dissipation 

Some taxonomic groups were more prevalent in samples with high dieldrin dissipation (Table 3, Fig. S7). An 

assessment of their traits gave further insights into the potential role of highly decomposed C for the 

degradation of chlorinated pollutants in surface soils. To measure which phylogenetic groups related to dieldrin 

dissipation, probabilities of the presence of aggregated ASVs were modelled along the gradient of total dieldrin 

dissipation (Table S4) [58]. It was found that taxonomic groups which were significantly associated with 

dieldrin dissipation (Phylofactor, p < 0.001) were also prevalent in the group of bacteria and fungi that were 

driven by humic-C concentrations (Fig. 5). They included aerobic and anaerobic bacteria in the order 

Acidobacteriales, Solirubrobacterales, Sphingobacteriales, Bacteroidales, Gemmatales and a group of 

Chloroflexi and Geobacter sp. A similar bacterial assemblage was observed in microcosms supplemented with 

synthetic humic acids and harbored stronger and more diverse capabilities for degradation of organic pollutants 

[19]. However, fungi were less abundant in the humic-C associated group in the Kurosol (Fig. 5). Instead, fungi 

were more abundant in another group which was associated with below median dieldrin loss, indicating that 

fungi were less important for biodegradation of dieldrin (Table S3). 

Common traits among these bacteria included their slow growth, large genome, complex metabolism, motility, 

radiation tolerance and desiccation resistance and these traits may have contributed to increased co-metabolism 

of dieldrin. Their complex metabolism enabled them to utilise a range of different C sources, including sugars 

such as fucose, rhamnose, lactose and galactose. For example, the metabolism of a clade in the order of 

Acidobacteriales, which comprised mostly of the genus Candidatus Koribacter (Table 3, Fig. S7), is adapted 

for nutrient-poor environments and able to utilise complex C substrates at low concentrations [59]. Moreover, 

the Kurosol contained significantly higher frequencies of bacteria in the order Actinomycetales. Some genera 

in this order, such as Pseudonocardia spp. and Rhodococcus spp., have shown to co-metabolise dieldrin and 

dichlorodiphenyltrichloroethane (DDT) [60,61]. Furthermore, a group of bacteria in the order 

Sphingobacteriales was more prevalent in the Kurosol, along with other Bacteroidetes. Some strains of 

Sphingobacterium thalpophilum are known for co-metabolic degradation of pentachlorophenol when grown 

on glucose [62] while other Sphingobacterium sp. were able to utilise DDT as a sole C source [63].  

Further groups of strictly anaerobic Chloroflexi, known for their ability to dechlorinate hydrocarbons were 

unique in the Kurosol and most prevalent in samples with high dieldrin dissipation (Table 3, Fig. S7). They 

belonged to the class Anaerolineae which comprise filamentous thermophiles with diverse metabolic strategies, 

including reductive dechlorination of chlorinated hydrocarbons [64]. Lastly, clades of anaerobic Proteobacteria 

and Firmicutes, which are known to couple their growth to the reduction of humic substances, were 

significantly more prevalent in samples with high dieldrin dissipation (Table 3, Fig. S7). Both the group of 

Proteobacteria in the order Desulfuromonadales which comprised exclusively of Geobacter spp. and a group 

of bacteria in the order Clostridiales have shown to degrade chlorinated hydrocarbons in enrichment-culture 

and microcosms [65,66]. Humic substances acted as catalytic 'electron shuttles' which was coupled to Fe(III) 

reduction to enhance degradation of these pollutants [67]. Dieldrin dissipation was therefore associated with a 

microbial community with metabolic capabilities for degradation of complex C substrates including synthetic 

chlorinated pollutants.  



4.4. Conclusions 

The results from this field study add to our understanding of potential ecological drivers which affect natural 

attenuation or bioremediation strategies [5,68]. Two pasture soils, Kurosol and Chromosol, displayed differing 

potentials of dieldrin dissipation over three decades (72 % and 43 % median dieldrin loss, respectively). The 

study suggested that dieldrin dissipation was associated with microbial traits that evolved in an energy-low soil 

environment in which highly decomposed and persistent carbon materials (< 50 µm) mediated microbial 

community assembly and function. This implies that the provision of labile C could slow down biodegradation 

of chlorinated organics and that soil management should aim at stimulating metabolism at the decomposed, 

fine carbon fraction. Field studies at scale are required to validate our findings and to evaluate the impacts of 

different soil management practices on biodegradation of chlorinated pollutants. 
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Figures 

 

Figure 1. Comparisons of carbon quality variables between samples of low and high dieldrin losses. Samples are grouped into four 

categories (≤43 %, n = 9; >43 %, n = 6; <72 %, n = 9; ≥72 %, n = 12) based on long-term dieldrin loss (%) where the loss is either 

below or above the median dieldrin loss in each soil type (Median loss was 43% and 72% in the Chromosol and Kurosol, 

respectively). Predictions of resistant organic carbon (Resistant-C), humic carbon (Humic-C) and particulate organic carbon 

(Particulate-C) are shown as percentages to total organic carbon. Significance levels of global Kruskal-Wallis tests for dieldrin loss 

categories (top-left of each panel) and Wilcoxon tests (above each group) for each soil type are shown (ns > 0.05; * ≤ 0.05; ** ≤ 0.01; 

*** ≤ 0.001; **** ≤ 0.0001). 



 

Figure 2. Comparison of degradation potentials of 1 chlorinated (a) and 39 aromatic compounds (b) predicted to be present in all 

samples (excluding outliers). Samples are grouped into four categories based on long-term dieldrin loss (≤43 %, n = 9; >43 %, n = 6; 

<72 %, n = 9; ≥72 %, n = 9) where the loss is either below or above the median dieldrin loss in each soil type (Median loss was 43% 

and 72% in the Chromosol and Kurosol, respectively). Significances of global Kruskal-Wallis tests for dieldrin loss categories  (top-

left of each panel) and Wilcoxon tests (above each group) for each soil type are shown (ns > 0.05; * ≤ 0.05; ** ≤ 0.01; *** ≤ 0.001; 

**** ≤ 0.0001). 

  



 

 

Figure 3. MetaCyc pathway potentials (Pathway abundances per g soil carbon) which were key predictors for dieldrin loss (%) in 

sparse-partial-least-squares analysis using the mixOmics package. Samples are grouped into four categories based on long-term 

dieldrin loss (≤43 %, n = 9; >43 %, n = 6; <72 %, n = 9; ≥72 %, n = 9) where the loss is either below or above the median dieldrin 

loss in each soil type (Median loss was 43% and 72% in the Chromosol and Kurosol, respectively). Significances of global Kruskal-

Wallis tests (top-left) and Wilcoxon tests (above each group) for each soil type are shown (ns > 0.05; * ≤ 0.05; ** ≤ 0.01; *** ≤ 

0.001; **** ≤ 0.0001). 

Carbohydrate Degradation

0 5 10 15

Entner-Doudoroff pathway III (semi-phosphorylative)

glucose degradation (oxidative)

superpathway of fucose and rhamnose degradation

lactose and galactose degradation I

Alcohol Degradation

0 1 2 3

superpathway of glycol metabolism and degradation

Inorganic Nutrient Metabolism

0 1 2

superpathway of taurine degradation

Metacyc pathway potentials (Abundance per unit soilC)

Carboxylate Degradation

0 5 10 15

L-glutamate degradation V (via hydroxyglutarate)

glutaryl-CoA degradation

Amine and Polyamine Degradation

0 50 100 150

superpathway of ornithine degradation

creatinine degradation II

Vitamin Biosynthesis

0 1 2

vitamin E biosynthesis (tocopherols)

Generation of Precursor Metabolite and Energy

0 2 4

succinate fermentation to butanoate

Metacyc pathway potentials (Abundance per unit soilC)

Dieldrin loss (%)

43%  Chromosol

>43%  Chromosol

<72%  Kurosol

72%  Kurosol

Carbohydrate Degradation

0 5 10 15

Entner-Doudoroff pathway III (semi-phosphorylative)

glucose degradation (oxidative)

superpathway of fucose and rhamnose degradation

lactose and galactose degradation I

Alcohol Degradation

0 1 2 3

superpathway of glycol metabolism and degradation

Inorganic Nutrient Metabolism

0 1 2

superpathway of taurine degradation

Metacyc pathway potentials (Abundance per unit soilC)

Carboxylate Degradation

0 5 10 15

L-glutamate degradation V (via hydroxyglutarate)

glutaryl-CoA degradation

Amine and Polyamine Degradation

0 50 100 150

superpathway of ornithine degradation

creatinine degradation II

Vitamin Biosynthesis

0 1 2

vitamin E biosynthesis (tocopherols)

Generation of Precursor Metabolite and Energy

0 2 4

succinate fermentation to butanoate

Metacyc pathway potentials (Abundance per unit soilC)

Dieldrin loss (%)

43%  Chromosol

>43%  Chromosol

<72%  Kurosol

72%  Kurosol

Lactose and 
galactose degradation I

****

**

**

*

****

****

***

***

***

*

***

ns

L-glutamate degradation Ⅴ
(via hydroxyglutarate)

Glutaryl-CoA degradation

Creatinine degradation II

Superpathway of ornithine 
degradation 

Vitamin E biosynthesis 
(tocopherols) 

Superpathway of fucose 
and rhamnose degradation 

Glucose degradation 
(oxidative) 

Entner-Doudoroff pathway III 
(semi-phosphorylative) 

Superpathway of glycol 
metabolism and 

degradation 

Superpathway of taurine 
degradation 



 

Figure 4. Redundancy analysis of bacterial and fungal abundances using the centered log-ratio transformed proportions of resistant 

organic carbon (Resistant-C), humic organic carbon (Humic-C) and particulate organic carbon (Particulate-C) as constraining 

variables. Symbols represent individual samples, and their proximity to each other indicates compositional similarity. The size and 

shape of symbols indicate the long-term dieldrin loss (%) of samples. Three samples from the Kurosol were removed as outliers 

(Kurosol, n = 18; Chromosol, n = 15). 



 

 

Figure 5. Co-occurrence network of fungi and bacteria in the Kurosol and the Chromosol using the SpiecEasi package (glasso) and 

modified in gephi. Edge lengths are proportional to distance between nodes (Force Atlas). Size of nodes indicate Betweenness 

Centrality. Left: Nodes highlight ASVs which were unique in sample groups with above or below median dieldrin loss (Median 

dieldrin loss was 43% and 72% in the Chromosol and Kurosol, respectively); Middle: Nodes are shown as either bacteria (dark grey) 

or fungi (Red); Right: Nodes are colored by modules that cluster together non-randomly (gephi modularity). The combined 

abundance of module zero in the Kurosol correlated with concentrations of humic carbon (R2 = 0.57, p<0.001). Three samples from 

the Kurosol were removed as outliers (Kurosol, n = 18; Chromosol, n = 15). 
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Table 1. Top correlation coefficients between dieldrin loss and soil resistant organic carbon (ROC), humic organic 

carbon (HOC) and particulate organic carbon (POC) and carbon-to-nitrogen ratio (C/N) obtained from component 

loadings of sparse-partial-least-squares analysis in regression mode.  

Metacyc Pathway Dieldrin lossa ROC HOC POC C/N 

Sparse partial least squares model for Chromosol and Kurosol samples (n = 33) 

3-phenylpropanoate degradation -0.89 0.77 -0.42 -0.78 0.90 

4-aminobutanoate degradation V -0.87 0.76 -0.47 -0.75 0.87 

Homolactic fermentation -0.85 0.77 -0.55 -0.72 0.86 

Protocatechuate degradation II (ortho-cleavage pathway) -0.85 0.71 -0.29 -0.76 0.86 

Aromatic biogenic amine degradation (bacteria) -0.85 0.73 -0.36 -0.75 0.86 

Superpathway of fucose and rhamnose degradation 0.88 -0.74 0.33 0.78 -0.89 

Superpathway of glycol metabolism and degradation 0.88 -0.74 0.34 0.78 -0.89 

Sparse partial least squares model for Kurosol samples (n = 18)b 

Ubiquinol-8 biosynthesis (prokaryotic) -0.86 0.47 -0.81 -0.21 0.73 

tRNA processing -0.86 0.50 -0.82 -0.23 0.73 

Superpathway of ubiquinol-8 biosynthesis (prokaryotic) -0.86 0.47 -0.81 -0.21 0.73 

Inosine 5'-phosphate degradation -0.85 0.56 -0.84 -0.28 0.72 

Superpathway of b heme biosynthesis from glycine -0.85 0.64 -0.86 -0.35 0.71 

Superpathway of L-phenylalanine biosynthesis -0.85 0.47 -0.81 -0.21 0.73 

Superpathway of L-tyrosine biosynthesis -0.85 0.47 -0.81 -0.21 0.73 

Superpathway of heme-b biosynthesis from uroporphyrinogen-III -0.85 0.63 -0.85 -0.34 0.71 

Lactose and galactose degradation I 0.80 -0.70 0.84 0.41 -0.66 

L-arginine degradation (Stickland reaction) 0.83 -0.62 0.83 0.33 -0.69 

a Only top variable coefficients to dieldrin loss are shown (R ≤ -0.85 or ≥ 0.80).  
b Coefficients for separate model of Chromosol samples (n = 15) were not significant and therefore not 

shown.   



Table 2. Results of 999 permutations of a pseudo-F statistic on constraining variables resistant organic 

carbon (Resistant-C), humic organic carbon (Humic-C) and particulate organic carbon (Particulate-C).  

 
Kurosol  

 
Chromosol  

Carbon Fraction df Variance pseudoF p 
 

df Variance pseudoF p 

Bacteria         
 

        

Humic-C 1 980 2.65 0.01 
 

1 528 1.34 0.11 

Particulate-C 1 470 1.27 0.17 
 

1 292 0.74 0.93 

Resistant-C 1 576 1.56 0.09 
 

1 310 0.79 0.85 

Residual 14 5183 
   

14 4345 
  

Fungi         
 

        

Humic-C 1 117 2.36 0.01 
 

1 93 1.49 0.06 

Particulate-C 1 60 1.21 0.19 
 

1 45 0.72 0.96 

Resistant-C 1 79 1.6 0.07 
 

1 50 0.80 0.83 

Residual 14 692 
   

14 687 
  

Enzyme-encoding genes   
 

        

Humic-C 1 124 2.99 <0.01 
 

1 70 1.03 0.35 

Particulate-C 1 40 0.96 0.44 
 

1 34 0.49 1.00 

Resistant-C 1 54 1.3 0.18 
 

1 46 0.69 0.92 

Residual 14 582     
 

14 745     

Carbon fractions were centered log-ratio transformed before analysis. Kurosol, n = 18; Chromosol, n = 15 

  



Table 3. Richness of taxonomic groups which had a significantly higher chance of presence in samples with 

high dieldrin dissipation.  

Phylum Class Order ≤43%c >43%c <72%c ≥72%c Total ASVs 

Acidobacteria Total (29-member Monophyletic clade)a 24 17 51 129 221 

Acidobacteria Acidobacteriia Acidobacterialesd 24 17 51 129 221 

Actinobacteria Total (18-member Monophyletic clade)a 7 7 51 68 133 

Actinobacteria Thermoleophilia Solirubrobacterales 7 7 51 68 133 

Bacteroidetes Total (17-member Monophyletic clade)a 3 2 7 42 54 

Bacteroidetes Unknown Unknown 0 0 3 0 3 

Bacteroidetes Cytophagia Cytophagales 1 0 2 3 6 

Bacteroidetes Sphingobacteriia Sphingobacteriales 2 2 2 4 10 

Bacteroidetes Bacteroidia Bacteroidales 0 0 0 35 35 

Chloroflexi Total (6-member Monophyletic clade)a 0 0 2 31 33 

Chloroflexi Ktedonobacteria TK10 0 0 0 5 5 

Chloroflexi Anaerolineae WCHB1-50 0 0 2 26 28 

Planctomycetes Total (17-member Monophyletic clade)a 4 2 20 67 93 

Planctomycetes Planctomycetia Gemmatales 4 2 20 67 93 

Actinobacteria Total (589-member Monophyletic clade)b 977 683 1171 1831 4662 

Actinobacteria Actinobacteria 
 

0 0 0 1 1 

Actinobacteria MB-A2-108 0319-7L14 0 8 9 7 24 

Actinobacteria Thermoleophilia Gaiellales 221 168 311 385 1085 

Actinobacteria Thermoleophilia Solirubrobacterales 213 141 255 406 1015 

Actinobacteria Actinobacteria Actinomycetales 543 366 596 1032 2537 

Bacteroidetes Total (55-member Monophyletic clade)b 7 8 12 153 180 

Bacteroidetes Unknown Unknown 0 0 3 0 3 

Bacteroidetes Cytophagia Cytophagales 1 0 2 3 6 

Bacteroidetes Sphingobacteriia Sphingobacteriales 3 3 5 9 20 

Bacteroidetes Bacteroidia Bacteroidales 3 5 2 141 151 

Chloroflexi Total (27-member Monophyletic clade)b 10 14 23 94 141 

Chloroflexi C0119 Unknown 3 2 
 

3 8 

Chloroflexi Anaerolineae H39 7 8 10 10 35 

Chloroflexi Ktedonobacteria TK10 0 4 9 19 32 

Chloroflexi Anaerolineae WCHB1-50 0 0 2 26 28 

Chloroflexi Anaerolineae Anaerolineales 0 0 2 36 38 

Firmicutes Total (44-member Monophyletic clade)b 30 19 20 129 198 

Firmicutes Clostridia Thermoanaerobacterales 0 0 0 3 3 

Firmicutes Erysipelotrichi Erysipelotrichales 0 0 0 6 6 

Firmicutes Clostridia Clostridiales 30 19 20 120 189 

Proteobacteria Total (24-member Monophyletic clade)b 10 14 24 97 145 

Proteobacteria Deltaproteobacteria Desulfuromonadalese 10 14 24 97 145 

a  Phylofactors for Chromosol and Kurosol samples (n = 33) representing taxonomic clades which had a significantly higher 

probability to be present in samples with above-median dieldrin loss. Aggregated presence of clades was significant (Table S4). 

b Phylofactors model included Kurosol samples only (n = 18). Aggregated presence of all clades was significant (Table S4). 

c ASV frequencies are grouped into four categories based on long-term dieldrin loss (%) where the loss is either below or above the 

median dieldrin loss in each soil type (Median loss was 43% and 72% in the Chromosol and Kurosol, respectively). 

d The phylofactor clade of order Acidobacteriales comprised almost exclusively of the genus Candidatus Koribacter 

e The phylofactor clade of order Desulfuromonadales comprised exclusively of the genus Geobacter sp. 

  



Supplementary Materials 

Decomposed organic carbon mediates the assembly of soil communities with 

traits for the biodegradation of chlorinated pollutants  

By Christian Krohn et al. 

Detailed description of modelling approach for sparse partial least squares analysis (sPLS) 

and sPLS discriminant analysis (sPLS-DA) 

For sPLS, the predictor matrix (X) was composed of predicted pathway potentials which were filtered to those 

present in at least 50% of samples resulting in a total of 410 pathways. This was followed by centered log-ratio 

transformations to account for compositionality of the data (Pawlowsky-Glahn et al., 2015). Matrix Y, the 

response matrix, was composed of resistant-C, humic-C, particulate-C, C:N and dieldrin loss (%) where the 

carbon fractions were also centered log-ratio transformed. The analysis was done in regression mode and the 

first two components were selected for analysis as they had sufficient predictive power based on the Q2 cutoff 

of 0.0975 (Lê Cao et al., 2008; Tenehaus, 1998). A heatmap with Ward clustering from the mixOmics package 

was used to display pair-wise associations between pathways and soil variables from the two components 

(Rohart et al., 2017). 

Additionally, we performed the supervised sPLS discriminant analysis (sPLS-DA) to select pathways that most 

predicted long-term dieldrin losses (Lê Cao et al., 2011). Samples were grouped into factors that were below 

and above the median dieldrin loss (%) of each soil, with a total of four factors representing “low” and “high” 

dieldrin loss in the Chromosol and Kurosol. After cross-validation based on the Balanced Error Rate (Rohart 

et al., 2017), the first three components were selected with 70, 100 and 90 pathways, respectively. Kruskal-

Wallis tests were done to test significant differences of mean abundances of metabolic pathways that 

contributed most to the three sPLS-DA components.  
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Supplementary Figures 

 

Figure S1. Comparisons of carbon fractions between Chromosol and Kurosol. Proportions of carbon 

(Particulate-C), humic organic carbon (Humic-C) and resistant organic carbon (Resistant-C) are shown by soil 

(a) and as the percent-difference of the Kurosol to the Chromosol (b). The residuals of prediction are denoted 

as ‘Unclassified-C’. 

  



 

 

Figure S2. Ward clustered heatmap of similarity scores obtained from sparse partial least squares analysis in 

regression mode (R package mixOmics) for pathway potentials (rows) and soil variables (columns) for Kurosol 

samples. Soil variables included the long-term dieldrin loss (%), carbon-to-nitrogen ratios (C:N) and 

concentrations of resistant organic carbon (Resistant-C), humic carbon (Humic-C) and particulate organic 

carbon (Particulate-C). The pathway potentials and resistant-C, humic-C and particulate-C were centered log-

ratio transformed before analysis. 



 

Figure S3. Ordinations of Aitchison distances were compared for compositions of bacteria, its enzyme 

metagenome as predicted by Picrust2 and fungi (n = 33). ASVs were filtered to those present in at least 25% 

of samples and included 1407 and 322 bacterial and fungal taxa, respectively, and 2091 enzyme encoding 

genes. Permanova results based on Bray-Curtis dissimilarities are shown. Symbols represent individual 

samples, and their proximity to each other indicates compositional similarity. The colour and size of symbols 

indicate the long-term dieldrin loss (%) and dieldrin concentrations, respectively. The shape of symbols 

indicates sample grouping into four factors where the loss is either below or above the median dieldrin loss in 

each soil type (Median loss was 43% and 72% in the Chromosol and Kurosol, respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Figure S4. Alpha diversity of bacteria, fungi and the enzyme metagenome as predicted with Picrust2. Diversity 

indices were calculated from rarefied abundance of filtered amplicon sequence variants (ASVs) or enzyme 

abundances. Samples are grouped into four categories by long-term dielrin loss (%) where the loss is either 

below or above the median dieldrin loss in each soil type (Median loss was 43% and 72% in the Chromosol 

and Kurosol, respectively). Significance of global Kruskal-Wallis tests for dieldrin loss categories and 

Wilcoxon tests for each soil type are shown (ns, *, **, *** and **** represent p values of > 0.05, ≤0.05, ≤ 

0.01, ≤ 0.001 and ≤ 0.0001, respectively). 

  



 

Figure S5. Shannon:dieldrin ratio of bacteria (a), fungi (b) and the enzyme metagenome as predicted from 

Picrust2 (c) per unit dieldrin (µg g-1). Samples are grouped into four categories by long-term dieldrin loss (%) 

where the loss is either below or above the median dieldrin loss in each soil type (Median loss was 43% and 

72% in the Chromosol and Kurosol, respectively). Significance of global Kruskal-Wallis tests for dieldrin loss 

categories and Wilcoxon tests for each soil type are shown (ns, p > 0.05; **** p ≤ 0.0001). 

  



 

 

Figure S6. Soil comparison of phylogeny of all amplicon sequence variants (ASVs) present. Tips represent 

individual ASVs, and different colours indicate their phylum membership. Unique ASVs are shown in the 

outer ring where red indicates if ASVs were unique to a soil environment with above median dieldrin loss (%). 

On average 48 (Kurosol) or 21 (Chromosol) ASVs were unique in samples with above median dieldrin loss. 

Three outlier samples were removed prior to analysis (Kurosol, n = 18; Chromosol, n = 15). Polygons highlight 

phylogenetic clades with a higher chance of presence in 'high-dieldrin-loss' samples than could be explained 

by chance. 
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Figure S7. Phylogenetic clades with a higher chance of occurrence in 'high-dieldrin-loss' samples than could 

be explained by chance (Phylofactor generalised linear model with presence/absence as response variable). 

Samples are grouped into four categories based on long-term dieldrin loss (%) where the loss is either below 

or above the median dieldrin loss in each soil type (Median loss was 43% and 72% in the Chromosol and 

Kurosol, respectively). Prior to analysis, ASVs were filtered to those with a minimum of 10 reads. The 

phylofactor clade of order Desulfuromonadales comprised exclusively of the genus Geobacter sp. 
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Figure S8. Faith phylogenetic diversity (Faith PD) index (a) and principle coordinate analysis (PCoA) with 

unweighted unifrac distances (b). Samples are grouped by long-term dieldrin loss (%) where the loss is either 

below or above the median loss in each soil type. 

 

 

 

 

Figure S9. Scatter-plot of humic organic carbon concentration (Humic-C) and normalised abundances of the 

combined taxa in module zero and four from the network analysis of the Kurosol. 
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Supplementary Tables 

Table S1. Climate data accessed from the Bureau of Meteorology on 22 May 2020. 

Temperature (C˚) 
 

Northeast Victoria, King Valley, Edi upper, 1985 - 2020 (7 km to Kurosol paddocks) 
Mean  

Min Max Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mean 30.4 29.8 26.6 21.4 16.5 13.3 12 13.3 16.3 20.3 24 27.6 21 
 

Lowest 26.4 24.3 22.8 17.3 15 11.3 9.4 10.7 12.9 17.3 19.6 23 19 
 

Median 30.3 30.4 26.7 21.1 16.5 13.2 12.1 13.4 16.4 20.1 23.8 28.1 21 
 

Highest 35.3 33.9 30.3 25.7 18.9 15.2 14.6 15.7 18.6 25.1 29.9 32.4 22.4 
 

Min Max range 8.9 9.6 7.5 8.4 3.9 3.9 5.2 5 5.7 7.8 10.3 9.4 3.4 7.1 

Southeast Victoria, Ferny Creek, 2011 - 2020 (15 km to Chromosol paddocks) 

Mean 24.5 24 21.1 17 13 10.4 9.8 10.8 13.9 17.2 19.2 22.3 17 

Lowest 22.4 21.5 17.6 15 11.1 9.7 8.5 9.2 12.7 15 17.5 20.6 16.3 
 

Median 24 24.4 22 16.8 13.2 10.3 9.7 10.5 13.7 17.2 19.5 21.9 17.2 
 

Highest 27.8 26.2 24 19.2 14.5 10.9 11.2 12.6 15.4 21.1 22.3 25.6 17.4 
 

Min Max range 5.4 4.7 6.4 4.2 3.4 1.2 2.7 3.4 2.7 6.1 4.8 5 1.1 4.2 

Southeast Victoria, Scoresby Research institute, 1948 - 2020 (23 km to Chromosol paddocks)   

Mean 26.4 26.5 24.2 20.1 16.4 13.6 13.1 14.2 16.6 19.2 21.6 24.2 19.7 
 

Lowest 21.7 22.9 20.5 16.2 13.9 11.2 11.4 11.8 13.3 16.3 19.3 20.5 17.7 
 

Median 26.5 26.5 24.1 20.1 16.4 13.6 13 14.2 16.6 19 21.4 24.1 19.6 
 

Highest 31.6 31.2 27.8 23.6 18.8 15.7 15 16.8 19.1 24.7 26.5 29.3 21.2 
 

Min Max range 9.9 8.3 7.3 7.4 4.9 4.5 3.6 5 5.8 8.4 7.2 8.8 3.5 6.8 

Rainfall (mm) 
 

Northeast Victoria, King Valley, Edi upper, 1985 - 2020 (7 km to Kurosol paddocks) 

Mean  

Min Max 

Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual  

Mean 61 57 59 57 93 114 128 119 97 77 81 79 1029 
 

Lowest 3 3 1 6 11 15 39 14 24 4 23 2 364 
 

Median 45 34 47 37 76 109 125 116 84 57 72 76 982 
 

Highest 204 244 224 161 208 206 247 206 201 341 173 205 1606 
 

Min Max range 202 241 223 155 197 190 208 192 176 337 151 203 1242 206 

Southeast Victoria, Beaconsfield upper, 1968 - 2020 (8.4 km to Chromosol paddocks) 

Mean 66 62 70 81 89 88 89 96 98 99 92 81 1016 
 

Lowest 3 0 14 20 16 17 27 35 44 33 0 0 589 
 

Median 66 44 64 70 91 84 81 96 85 97 94 80 1030 
 

Highest 152 237 234 192 191 180 200 162 209 214 201 206 1324 
 

Min Max range 149 237 221 172 175 162 173 127 165 181 201 206 735 181 

Solar exposure (MJ m-2) 
 

Northeast Victoria, King Valley, Edi Upper (Schmidts Farm Repeater), 1990 - 2020 (3.5 km to Kurosol paddocks) 
Mean  

Min Max Statistic Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Annual 

Mean 26.8 23.2 19 13.1 8.8 6.6 7.1 10.2 14.6 20.3 23.8 26.6 16.7 
 

Lowest 21.9 20.4 16.3 9.2 7.3 4.5 5.2 7 12.1 18.3 19.5 22.1 15.5 
 



Highest 31 26.6 21.8 15.8 10.5 8.8 8.7 14.1 17.8 25.9 27.4 30 18.2 
 

Min max dif 9.1 6.2 5.5 6.6 3.2 4.3 3.5 7.1 5.7 7.6 7.9 7.9 2.7 6.2 

Southeast Victoria, Mount Burnett, 1990 - 2020 (3 km to Chromosol paddocks) 
 

Mean 23.6 20.5 15.8 10.7 7.3 5.9 6.6 9.3 12.6 16.9 20.5 22.8 14.4 
 

Lowest 20.3 17.2 11.8 8.8 6.2 4.7 5.2 7.8 9.8 14.3 17.6 19.6 13.3 
 

Highest 28.7 24 18.9 13.1 8.5 7 7.7 13.1 14.7 21.8 24.3 26.4 15.7 
 

Min max dif 8.4 6.8 7.1 4.3 2.3 2.3 2.5 5.3 4.9 7.5 6.7 6.8 2.4 5.4 

 

  



Table S2. Raw sample data of dieldrin loss (%) and concentration (µg g-1), resistant organic carbon (ROC), 

humus (HUM), particulate organic carbon (POC), carbon-to-nitrogen ratio (C:N), hydrogen-to-carbon ratio 

(H:C) and amplicon sequence variants (ASV). Units for carbon fractions are mg g-1 soil. 

           
Bacteria Fungi 

ID Soil Paddock Farm Dloss Dieldrin ROC HUM POC C:N H:C Reads ASVs Reads ASVs 

1 Kurosol 1 A 81 0.10 10.0 24.5 2.7 10.9 0.33 50,248 1,669 9,621 369 

2 Kurosol 1 A 81 0.22 9.9 22.7 3.9 10.5 0.44 40,833 1,373 7,188 322 

3 Kurosol 1 A 81 0.18 8.7 22.2 4.5 10.7 0.34 69,360 1,990 12,496 408 

4 Kurosol 2 A 72 0.24 9.9 24.4 4.2 10.6 0.34 57,598 1,457 11,028 392 

5 Kurosol 2 A 72 0.26 10.2 25.1 7.1 10.5 0.34 62,574 1,631 11,100 383 

6 Kurosol 2 A 72 0.24 9.9 24.9 3.7 10.5 0.34 59,044 1,453 15,536 444 

7 Kurosol 3 A 74 0.12 9.3 23.8 3.6 11.3 0.31 80,603 1,775 17,174 386 

8 Kurosol 3 A 74 0.13 10.7 25.2 4.9 11.1 0.36 97,800 2,107 17,127 423 

9 Kurosol 3 A 74 0.17 11.1 26.1 4.5 11.1 0.32 123,304 2,373 19,237 495 

10 Kurosol 4 A 67 0.16 7.6 19.4 3.7 11.4 0.29 58,555 1,732 8,922 309 

11 Kurosol 4 A 67 0.18 8.0 18.8 3.1 12.1 0.29 53,432 1,558 12,912 314 

12 Kurosol 4 A 67 0.18 8.3 20.5 3.6 12.3 0.27 111,989 2,296 12,134 390 

13 Kurosol 5 B 66 0.22 10.6 18.1 2.8 11.8 0.30 32,146 1,289 16,639 398 

14 Kurosol 5 B 66 0.26 11.4 19.3 1.8 11.7 0.32 33,654 1,214 16,468 340 

15 Kurosol 5 B 66 0.17 11.5 17.3 3.1 11.3 0.32 35,760 1,306 13,905 302 

16 Kurosol 6 B 67 0.12 12.2 20.7 3.3 11.9 0.29 31,428 1,239 11,354 362 

17 Kurosol 6 B 67 0.14 10.0 16.3 3.2 12.2 0.28 29,974 1,119 13,597 345 

18 Kurosol 6 B 67 0.12 11.7 17.8 4.4 11.0 0.28 42,253 1,366 15,512 381 

19 Kurosol 7 C 85 0.04 6.2 12.3 4.0 9.9 0.37 38,564 1,651 10,392 340 

20 Kurosol 7 C 85 0.04 8.9 16.7 3.3 10.5 0.30 NA NA 10,916 371 

21 Kurosol 7 C 85 0.03 7.5 13.9 3.1 10.3 0.30 37,725 1,714 14,854 397 

22 Chromosol 8 D 28 0.65 22.4 33.4 3.1 15.1 0.29 39,619 1,273 13,920 258 

23 Chromosol 8 D 28 0.66 25.2 36.4 4.2 14.6 0.29 43,285 1,237 13,768 333 

24 Chromosol 8 D 28 0.72 23.5 35.9 3.4 14.1 0.26 72,192 1,645 11,411 318 

25 Chromosol 9 D 61 0.87 23.6 43.1 6.5 12.5 0.31 52,669 1,427 15,508 395 

26 Chromosol 9 D 61 0.76 21.8 33.7 4.8 14.6 0.30 34,178 1,247 11,031 340 

27 Chromosol 9 D 61 0.88 26.8 39.8 7.2 13.7 0.30 47,347 1,421 12,505 330 

28 Chromosol 10 D 28 0.67 22.0 35.8 3.1 15.0 0.29 38,451 1,314 10,984 326 

29 Chromosol 10 D 28 0.64 20.2 34.2 4.4 14.4 0.30 33,370 1,123 11,171 276 

30 Chromosol 10 D 28 0.63 20.6 33.2 2.9 16.0 0.30 42,503 1,285 18,016 343 

31 Chromosol 11 E 50 1.30 19.2 31.6 3.9 13.2 0.29 49,227 1,437 16,062 435 

32 Chromosol 11 E 50 1.07 19.3 31.4 2.8 14.3 0.29 45,076 1,332 12,728 373 

33 Chromosol 11 E 50 1.10 18.2 27.1 1.7 14.2 0.32 37,828 1,225 14,228 405 

34 Chromosol 12 E 43 1.90 18.1 30.6 2.2 14.7 0.30 39,199 1,290 13,409 352 

35 Chromosol 12 E 43 1.85 17.6 31.7 3.3 14.4 0.28 49,475 1,390 14,090 338 

36 Chromosol 12 E 43 1.85 20.9 33.6 2.7 14.4 0.27 47,692 1,402 13,752 406 



 

  



Table S3. Comparison of relative abundances and relative frequencies of bacteria and fungi in module zero 

and four of the network analysis. 

 
Abundances (%) ASV frequencies (%) 

Samples Bacteria Fungi Archaea Bacteria Fungi Archaea 

All samples 79.5 19.8 0.7 82.2 17.4 0.4 

Kurosol 81.6 17.7 0.7 83.0 16.6 0.4 

    Kurosol, Module 0 77.7 18.9 3.4 82.8 15.7 1.5 

    Kurosol, Module 4 69.5 30.5 0.0 78.6 21.4 0.0 

Chromosol 76.5 22.9 0.6 81.3 18.5 0.3 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Table S4. Phylofactor model coefficient and F statistic with dieldrin loss as numeric predictor for the aggregated 

presence of taxonomic groups. The resulting clades had a higher probability to be present in high dieldrin-loss 

environments (phylofactor mixed algorithm) 

Phylum n Coefficient df F value p Phylofactor Group 

Chromosol & Kurosol               

Chloroflexi 33 0.34 1 394.62 < 0.001 1 6-member Monophyletic clade 

Planctomycetes 33 0.1 1 386.81 < 0.001 2 17-member Monophyletic clade 

Actinobacteria 33 0.07 1 371.41 < 0.001 3 18-member Monophyletic clade 

Acidobacteria 33 0.05 1 353.25 < 0.001 4 29-member Monophyletic clade 

Bacteroidetes 33 0.13 1 329.44 < 0.001 5 17-member Monophyletic clade 

Kurosol               

Bacteroidetes 18 0.33 1 186.88 < 0.001 1 55-member Monophyletic clade 

Firmicutes 18 0.19 1 142.1 < 0.001 2 44-member Monophyletic clade 

Actinobacteria 18 0.05 1 116.13 < 0.001 3 589-member Monophyletic clade 

Proteobacteria 18 0.16 1 40.73 < 0.001 4 24-member Monophyletic clade 

Chloroflexi 18 0.14 1 32.66 < 0.001 5 27-member Monophyletic clade 

Chromosol                 

Acidobacteria 15 -0.21 1 0.01 0.93 1 2-member Monophyletic clade 

Acidobacteria 15 0.04 1 0.00 0.97 2 19-member Monophyletic clade 

Actinobacteria 15 0.06 1 0.11 0.74 3 8-member Monophyletic clade 

Acidobacteria 15 0.05 1 0.31 0.58 4 15-member Monophyletic clade 

Actinobacteria 15 0.18 1 0.70 0.4 5 2-member Monophyletic clade 

 


