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• Refined plate theory and von Kármán nonlinearity for large-deformation microplates.

• Newton-Raphson algorithm is employed to solve the nonlinear problems.

• Benchmarking effects of the material length scale on the nonlinear behaviours.



Geometrically Nonlinear Isogeometric Analysis of Functionally

Graded Microplates with the Modified Couple Stress Theory

Hoang X. Nguyena, Elena Atroshchenkob, H. Nguyen-Xuanc,d,∗, Thuc P. Voa,e,∗

aFaculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST,
United Kingdom

bDepartment of Mechanical Engineering, University of Chile, Santiago 8370448, Chile
cCenter for Interdisciplinary Research, Ho Chi Minh City University of Technology (HUTECH), Ho Chi

Minh City 700000, Vietnam
dDepartment of Architectural Engineering, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul

05006, Republic of Korea
eInstitute of Research and Development, Duy Tan University, 03 Quang Trung, Da Nang, Vietnam

Abstract

In this study, a new and efficient computational approach based on isogeometric analysis
(IGA) and refined plate theory (RPT) is proposed for the geometrically nonlinear analysis of
functionally graded (FG) microplates. While the microplates’ size-dependent effects are effi-
ciently captured by a simple modified couple stress theory (MCST) with only one length scale
parameter, the four-unknown RPT is employed to establish the displacement fields which
are eventually used to derive the nonlinear von Kámán strains. The NURBS-based isogeo-
metric analysis is used to construct high-continuity elements, which is essentially required in
the modified couple stress and refined plate theories, before the iterative Newton-Raphson
algorithm is employed to solve the nonlinear problems. The successful convergence and
comparison studies as well as benchmark results of the nonlinear analysis of FG microplates
ascertain the validity and reliability of the proposed approach. In addition, a number of
studies have been carried out to investigate the effects of material length scale, material and
geometrical parameters on the nonlinear bending behaviours of microplates.

Keywords: Isogeometric analysis, Modified couple stress theory, Refined plate theory,
Nonlinear analysis, Functionally graded microplates.

1. Introduction

Classical elasticity has been well established and played a crucial role in the development
of the material models and structural responses in various engineering fields ranging from
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mechanical to bio-engineering. It fundamentally follows the Hooke’s law assuming the linear
relation between the force and the change in displacement via the stiffness of the body on
which the force is applied. However, the classical elasticity fails to capture the size-dependent
effects which occur in the small-scale structures. These effects, indeed, have been pointed
out by Lam et al. [1] after conducting the experimental bending test of epoxy polymeric
microbeams witnessing the bending rigidity was 2.4 times higher as the beam thickness
declined from 115µm to 20µm. Those small-scale structures have created new challenges
in modelling, for instance, when one attempts to investigate the structural behaviours of
elements in micro- and nano-electro-mechanical systems [2, 3], carbon nanotube actuators
[4], space and bio-engineering [5]. In order to model the materials and structures, the small
length scales and its interaction with other particles should be carefully considered. These
challenges encourage researchers to focus on a new research topic of modelling of small
structures and predicting their behaviours. The theories for more general descriptions of
materials’ response have been initially developed dating back to the 1960s with the early
works of Mindlin [6–8] and Mindlin and Tiersten [9] who developed higher-order theories
of elasticity. There has also been a surge of interest in the generalised continuum since
then including the development of non-local theory, strain gradient theory and couple stress
theory.

The non-local elasticity was initially proposed by Erigen [10] and Erigen and Edelen [11]
who assumed that the stress of a point in an elastic body not only depends on the strain at
that point but also, theoretically, at all other points in the continuum. While this theory
considers the interactions between atoms, it also includes the internal length scale in the
constitutive equations as a material parameter [12]. However, as pointed out by Reddy [13],
the Eringen’s theory appears to be not applicable for the structural mechanic problems in
which the von Kármán and kinetic energy are involved. Concerning the strain gradient
theory, this theory which was pioneered by Fleck et al. [14, 15] assumes that the strain
energy density depends on the first and second order displacement gradients. In addition,
this theory contains the rotation gradient tensor, dilatation tensor, and deviatoric stretch
gradient tensor. These assumptions require three material length scale parameters to be used
in the strain gradient theory. Mindlin and Toupin are among those who first introduced
the ideas of couple stress theory [9, 16]. According to their studies, the strength of the
continuum body is governed by both strain and curvature. Since it is experimentally difficult
to determine all two material length scale parameters as proposed in the classical couple
stress theory, models with less number of those parameters were in need to develop. Yang et
al. [17] proposed the modified couple stress theory (MCST) which requires only one material
length scale parameter in deriving the constitutive equation. In addition, this modification
includes a symmetric couple stress tensor. Owing to these striking features, the MCST is
continuously developed and has its own extensive literature. Chen and Li [18] developed
quadrilateral spline element for couple stress elasticity. The MCST has been also applied to
investigate the behaviours of beams with different types of theories including Bernoulli-Euler
[19, 20], Timoshenko [21] and higher-orders [22, 23]. Employing the MCST, a large number
of works predicting plates’ behaviours has been done for both linear and nonlinear analyses.
Tsiatas [24] presented the static analysis of isotropic microplates based on the MCST. While
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Yin et al. [25] considered the vibrational responses of microplates, an investigation on
the behaviours of Mindlin microplates for both stretching effects and bending has been
conducted by Ma et al. [26]. Thai and Vo [27] paid their attention to the bending and
vibration responses of size-dependent microplates. Reddy and his colleagues worked on the
nonlinear finite element analysis (FEA) of FG microplates with different geometries and
plate theories [28, 29]. It is worth commenting that functionally graded material (FGM)
is a class of composite material which often consists of two different constituents varying
their properties smoothly from one surface to another. Furthermore, the FG body can be
deliberately tailored to inherit advantageous mechanical and thermal properties from the
constituents of which it is made. A ceramic-metal FGM, for instance, benefits from the
higher thermal resistance and better ductility from ceramic and metal phases, respectively.
In addition, FGMs avoid stress concentration and delamination phenomena which are severe
drawbacks of lightweight laminated composites. These striking features enable this material
to be widely applied in various engineering fields such as aerospace, nuclear power plant,
and bio-engineering in which the high-performance beam [30, 31], plate [32, 33] and shell
[34] elements are involved.

When attention is turned to plate structures, there is a well established body of work on
the development of mathematical models. The most basic plate theory is the classical plate
theory (CPT), also known as Kirchhoff-Love plate theory. This theory basically assumes
that the cross section perpendicular to the mid-plane before deformation remains normal
to the mid-plane after deformation. As CPT neglects shear deformations, it is applicable
only for thin plates in which the ratios of length to thickness are large. The first-order shear
deformation theory (FSDT), also known as Reissner-Mindlin plate theory, was developed
taking into account the shear deformations. This advantageous feature enables FSDT to
yield reliable results for both thin and thick plates. However, the shear locking phenomenon
which creates higher stiffness is often cited as a drawback of this theory when the problems
are solved numerically by means of traditional FEA. In addition, FSDT fails to predict the
distribution of shear strains and stresses through the thickness for structures with traction
free surfaces. In order to address this issue, one may need to include shear correction factor
while using FSDT. However, this is not a straightforward approach as the shear correction
factor does not stay the same for different problems. In order to bypass those shortcom-
ings, Reddy pioneered the third-order shear deformation theory (TSDT) [35] before Soldatos
proposed the higher-order shear deformation theory (HSDT) [36]. By making further as-
sumptions to the TSDT, Senthilnathan [37] developed refined plate theory (RPT) which
requires only four variables compared to Reddy’s original five-unknown theory. In the last
few years, the studies of the behaviours of microplates employing MCST and different plate
theories have been enriched with a wealth of numerical solutions and analytical approaches.
Reddy and his colleagues have successfully developed finite element models to analyse the
behaviours of microplates with and without nonlinearity [28, 38, 39]. Similarly, Zhang et al.
[40] presented the bending, free vibration, and buckling analyses with MCST by means of
C0 finite element method. Concerning the analytical approaches, Thai and his colleagues
[27, 41] investigated the bending and vibration responses of the FG microplates based on the
TSDT and sinusoidal plate models with MCST. A size-dependent refined plate model for FG
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microplates based on MCST have been employed to solve for the closed-form solutions by
He et al. [42]. It should be noted that although the RPT which requires only four unknowns
owns positive properties compared to other models, it requires C1-continuity elements which
may cause difficulty when the conventional FEA is involved to solve the problem.

Recently, a newly developed numerical method which is able to deal with higher-order
elements was pioneered and initially coined Isogeometric Analysis by Hughes et al. [43].
This method also bridges the crucial gaps between the computer-aided design (CAD) field
and the analysis field as it employs the same basis functions for representing geometries and
conducting analysis. With well established works on CAD technology, the basis functions
which commonly are B-splines or Non-Uniform Rational B-splines (NURBS) are able to
exactly represents geometries. Furthermore, by its nature, those functions are highly smooth
and can serve as the approximation basis of the unknowns. Also, when combined with
appropriate plate theory, IGA is able to avoid locking phenomena as well as other techniques
such as strain smoothing [44]. These positive properties make the IGA outweighs traditional
FEA in many cases, especially for numerical problems where the high-continuity elements
are involved such as C1 plate analysis using HSDT or RPT. The basics and review of IGA as
well as its computer implementation could be found in the established literature including
the excellent works of Cottrell et al. [45], Vuong et al. [46], de Falco et al. [47], and Nguyen
et al. [48]. IGA are also widely applied to solve for mechanical and thermal behaviours of
complex structures such as plates [49–52] and shells [53–56]. Although IGA-based nonlinear
analysis for plates has been touched following the works of the researchers in the community
including [57–59], there is no reports on the nonlinear analysis of small-scale plates for
size-dependent effects using this robust numerical method.

In this study, in order to fill the existing gap in the literature, the nonlinear analysis of FG
microplates by means of the IGA will be proposed. The MCST with only one material length
scale parameter is employed to account for the size-dependent effects of the small-scale FG
plates. Meanwhile, the four-unknown RPT is used to describe the generalised displacement
field of the microplates. The bending responses with nonlinearity are then numerically solved
by the proposed NURBS-based IGA in which the iterative Newton-Raphson algorithm is
involved. It is worth commenting that although there is still room for the performance of the
NURBS functions regarding geometry representation as the domains of the plates considered
in this study are not of high complexity, NURBS-based IGA is significantly advantageous
compared to the tradition FEA in dealing with high-continuity elements which is essentially
required in the proposed studies with C1 RPT and MCST involved.

The outline of this study is as follows. The next section presents a brief review on the
derivation of the MCST accounting for the size-dependent effects. The kinematics of the
FG microplates and proposed RPT with nonlinearity are included in Section 3. Section 4
details the IGA basis functions and NURBS-based formulation for microplates as well as
the interative Newton-Raphson which is employed to solve the nonlinear problems. Sec-
tion 5 presents numerical examples containing convergence and verification studies as well
as nonlinear bending analyses of square and circle microplates. The study is closed with
concluding remarks which are given in Section 6.
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2. Review of the modified couple stress theory

As an expansion to the classical elasticity, the MCST includes both the classical terms
and the couple stress terms in the structural strain energy which can be expressed as

U =

∫
V

(σ : ε+ m : χ) dV , (1)

where the first two components correspond to the classical terms with the Cauchy stress
tensor σ and the strain tensor ε, while the last two components represent couple stress terms
which include the deviatoric part of the couple stress tensor m and symmetric curvature
tensor χ. The strain tensor ε and the symmetric curvature tensor χ are defined via the
relation with the displacement vector u and the rotation vector θ as follows

ε =
1

2

[
∇u + (∇u)T

]
, (2a)

χ =
1

2

[
∇θ + (∇θ)T

]
, (2b)

in which the rotation vector θ is also geometrically derived from the displacement vector u
as

θ =
1

2
curl (u) . (3)

Having those classical and couple stress terms defined, the constitutive equations are
assumed to be of the form

σ = λtr (ε) I + 2µε, (4a)

m = 2µ`2χ, (4b)

where ` is the material length scale parameter measuring the effect of couple stress, I denotes
the identity matrix, and tr (ε) is the trace of the strain tensor (εkk). Meanwhile, λ and
µ (which is also widely known as shear modulus G) are the classical elasticity’s Lamé’s
constants calculated by

λ =
νE

(1 + ν) (1− 2ν)
, (5a)

µ =
E

2 (1 + ν)
, (5b)

where E and ν are the Young’s modulus and Poisson’s ratio, respectively.
It is worth commenting that the material length scale parameter ` explicitly depends on

the material and its specific value can be experimentally determined from either bending
tests of thin beams [1] or torsional experiments of slender cylinders [60]. According to
Mindlin [6], the material length scale can be also estimated theoretically by taking the
square root of the ratio of curvature modulus to shear modulus.
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3. Kinematics of FG microplates

3.1. Functionally graded materials

The FGMs which are typically made of ceramic and metal can be homogeneously mod-
elled following either the rule of mixtures (Voigt scheme) [61] or the Mori-Tanaka scheme
[62]. Those models assume FGMs to be homogeneous materials with the equivalent effective
properties which are calculated from the properties of both, ceramic and metal constituents,
depending on their proportions. For the material models, the volume fractions of ceramic
phase Vc and metal phase Vm through the structure’s thickness h are described by

Vc (z) =

(
1

2
+
z

h

)n
, Vm = 1− Vc, −h

2
≤ z ≤ h

2
, (6)

where n is the material index which indicates the profile of material variation through the
thickness. It is worth commenting that n = 0 implies a fully homogeneous ceramic material,
and the material properties tend to the fully homogeneous metal as n increases towards +∞.
The above equation of volume fractions also implies a smooth variation of the material from
the bottom surface with metal to the top surface with ceramic.

The effective properties of FGM, according to the rule of mixtures, are calculated as
follows

Ee = EmVm + EcVc, (7a)

νe = νmVm + νcVc, (7b)

where E and ν represent the elastic Young’s modulus and Poisson’s ratio of metal phase
(subscript m) and ceramic phase (subscript c), respectively. In spite of the simplicity and
ease of implementation, the rule of mixtures model fails to describe the interactions between
the constituents. Therefore the Mori-Tanaka scheme was developed taking those interactions
into account. This model introduces the effective bulk modulus Ke and the shear modulus
Ge which are expressed as

Ke −Km

Kc −Km

=
Vc

1 + Vm
Kc−Km

Km+ 4
3
Gm

,
Ge −Gm

Gc −Gm

=
Vc

1 + Vm
Gc−Gm

Gm+f1

, (8)

where

f1 =
Gm (9Km + 8Gm)

6 (Km + 2Gm)
. (9)

The effective Young’s modulus and Poisson’s ratio are then calculated as

Ee =
9KeGe

3Ke +Ge

, νe =
3Ke − 2Ge

2 (3Ke +Ge)
. (10)

The variations of the former according the two material models are illustrated in Figure 1.
It can be seen that although there are differences between the rule of mixtures and Mori-
Tanaka scheme, the effective properties including Young’s modulus vary smoothly from the
bottom surface to the top surface reflecting what expected previously.
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3.2. Nonlinear refined plate theory

According to the RPT which is initially proposed by Senthilnathan et al. [37] after
making further assumptions to the third-order shear deformation model of Reddy [35], the
plates’ displacement field, for z ∈

[
−h

2
, h

2

]
, with only four unknowns can be expressed as

u (x, y, z) = u0 (x, y)− zwb,x (x, y) + g (z)ws,x (x, y) , (11a)

v (x, y, z) = v0 (x, y)− zwb,y (x, y) + g (z)ws,y (x, y) , (11b)

w (x, y, z) = wb (x, y) + ws (x, y) , (11c)

where u0 and v0 are displacement components of a material point at (x, y, 0) in x and
y coordinate directions, respectively. While wb and ws represent the bending and shear
components of transverse displacement, respectively, the function g is introduced to describe
the distribution of transverse strains and stresses through the thickness, g : z 7→ g(z) =
f(z) − z. It should be noted that, in order to have the traction-free conditions satisfied at
the top and bottom surfaces, the first derivative of f should be zero at z = ±h/2. In this
study, the polynomial function f which is proposed by Nguyen et al. [63] will be used.

The general nonlinear strains can be derived from the displacement fields as

εij =
1

2
(ui,j + uj,i) +

1

2
uk,iuk,j. (12)

If the small strain assumptions are applied, the components of the displacement gradients are
neglected. Meanwhile, assuming that the rotations of the transverse normals are moderate,
the terms of derivatives of transverse displacement, (w,x)

2 , (w,y)
2 , w,xw,y, are small but not

negligible [64]. In such case, small strains and moderate rotations, the displacement-strain
relations associated with the RPT with the von Kármán strains can be expressed as follows

ε = ε0 + zκb + g (z)κs, (13a)

γ = [1 + g′ (z)] εs = f ′ (z) εs, (13b)

where

ε =
[
εx εy γxy

]T
, (14a)

γ =
[
γxz γyz

]T
, (14b)

and the in-plane, bending and shear strains are expressed as

ε0 = εL0 + εNL0 , κb = −

 wb,xx
wb,yy
2wb,xy

 , κs =

 ws,xx
ws,yy
2ws,xy

 , εs =

[
ws,x
ws,y

]
(15)

with the linear and nonlinear components of the in-plane strains are defined as

εL0 =

 u0,x

v0,y

u0,y + v0,x

 , εNL0 =
1

2
Aϑϑ, (16)
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where

Aϑ =

 wb,x + ws,x 0
0 wb,y + ws,y

wb,y + ws,y wb,x + ws,x

 , ϑ =

[
wb,x + ws,x
wb,y + ws,y

]
. (17)

By using Eqs. (2b) , (3) and (11), the couple stress terms of rotation vector and curvature
tensor can be obtained as follows

θ =

 θ1

θ2

θ3

 =
1

2

 2wb,y − (g′ − 1)ws,y
−2wb,x + (g′ − 1)ws,x
v0,x − u0,y

 , (18a)

χ =

[
χb
χs

]
=

[
χb0
χs0

]
+

[
g′χb1
g′′χs2

]
, (18b)

where

χb =

 χ11

χ22

χ12

 , χs =

[
χ13

χ23

]
, (19a)

χb0 =
1

4

 4wb,xy + 2ws,xy
−4wb,xy − 2ws,xy
2 (−wb,xx + wb,yy) + (−ws,xx + ws,yy)

 , χb1 =
1

4

 −2ws,xy
2ws,xy
ws,xx − ws,yy

 , (19b)

χs0 =
1

4

[
−u0,xy + v0,xx

−u0,yy + v0,xy

]
, χs2 =

1

4

[
−ws,y
ws,x

]
. (19c)

It is worth commenting that in this particular case using the displacement field in Eq.
(11), the curvature component of χ33 is identically zero. Having the strain terms and the
curvature tensor derived, the classical and modified couple stress constitutive relations of
FG microplates can be obtained as follows

σx
σy
σxy
τxz
τyz

 =


Q11 Q12 0 0 0
Q21 Q22 0 0 0
0 0 Q66 0 0
0 0 0 Q55 0
0 0 0 0 Q44




εx
εy
εxy
γxz
γyz

 , (20a)



m11

m22

m33

m12

m13

m23


=


2Ge`

2 0 0 0 0 0
0 2Ge`

2 0 0 0 0
0 0 2Ge`

2 0 0 0
0 0 0 2Ge`

2 0 0
0 0 0 0 2Ge`

2 0
0 0 0 0 0 2Ge`

2





χ11

χ22

χ33

χ12

χ13

χ23


, (20b)
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where

Q11 = Q22 =
Ee (z)

1− (νe (z))2 , Q12 = Q21 =
Ee (z) νe (z)

1− (νe (z))2 , Q44 = Q55 = Q66 =
Ee (z)

2 (1 + νe (z))
,

(21a)

Ge =
Ee (z)

2 (1 + νe (z))
. (21b)

Meanwhile, the classical stress resultants are calculated as N
Mb

Ms

 = Dbεb, (22a)

Q = Dsεs, (22b)

where

N =

 Nx

Ny

Nxy

 , Mb =

 M b
x

M b
y

M b
xy

 , Ms =

 M s
x

M s
y

M s
xy

 , Q =

[
Qxz

Qyz

]
, (23a)

εb =

 ε0

κb
κs

 , Db =

 A B E
B D F
E F H

 , Ds =

[
Ds

44 0
0 Ds

55

]
, (23b)

and the components of the material matrices are defined as follows

(Aij, Bij, Dij, Eij, Fij, Hij) =

h/2∫
−h/2

[
1, z, z2, g (z) , zg (z) , g2 (z)

]
Q̄ijdz, (24a)

Ds
ij =

h/2∫
−h/2

[1 + g′ (z)]
2
Q̂ijdz, (24b)

Q̄ =

 Q11 Q12 0
Q21 Q22 0
0 0 Q66

 , (24c)

Q̂ =

[
Q44 0
0 Q55

]
. (24d)

Similarly, the couple stress components are defined by{
Nc

Rc

}
= Db

cχ
c
b, (25a){

Pc

Tc

}
= Ds

cχ
c
s, (25b)
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where

χcb =

[
χb0
χb1

]
, χcs =

[
χs0
χs2

]
, Db

c =

[
Ac Bc

Bc Dc

]
, Ds

c =

[
Xc Yc

Yc Zc

]
, (26)

and the components of the material matrices are calculated as

(
Acij, B

c
ij, D

c
ij

)
=

h/2∫
−h/2

(
1, g′ (z) , [g′ (z)]

2
)
Ḡijdz, (27a)

(
Xc
ij, Y

c
ij, Z

c
ij

)
=

h/2∫
−h/2

(
1, g′′ (z) , [g′′ (z)]

2
)
Ĝijdz, (27b)

Ḡ = 2Ge`
2

 1 0 0
0 1 0
0 0 1

 , (27c)

Ĝ = 2Ge`
2

[
1 0
0 1

]
. (27d)

After applying the derivation of the Hamilton’s principal and weak formulation, the weak
form of the nonlinear bending problem of FG microplates subjected to transverse load q0

can be briefly expressed as [63]∫
Ω

δεTb DbεbdΩ+

∫
Ω

δεTs DsεsdΩ+

∫
Ω

(δχcb)
T Db

cχ
c
bdΩ+

∫
Ω

(δχcs)
T Ds

cχ
c
sdΩ =

∫
Ω

δwq0dΩ. (28)

4. NURBS-based approach for nonlinear analysis of FG microplates

This section details the basis functions including B-splines and Non-Uniform Rational
B-splines (NURBS) which are used for the isogeometric analysis. In addition, the NURBS-
based formulation of microplates with MCST will also be addressed. This formulation is
derived in the accordance with the kinematics of FG microplates which has been presented
in Section 3. Furthermore, this section also includes the description of the Newton-Raphson
iterative procedure which is employed to solve the proposed nonlinear problems of FG mi-
croplates by means of isogeometric analysis.

4.1. B-splines and NURBS basis functions

The primary point of the B-splines is a knot vector which is a set of non-decreased
coordinates in the parameter space, Ξ = {ξ1, ξ2, ..., ξn+p+1}, where i is the knot index of the
ith knot ξi ∈ R, n is the number of basis functions and p represents the polynomial order of
the basis function. A knot vector is called uniform if its knots are equally spaced while it is
open if the first knot and the last knot are simultaneously repeated p+ 1 times. It is worth
noting that even though 1-D basis functions with open knot vectors are interpolatory at the
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two ends of the space interval, ξ1 and ξn+p+1, they are generally not interpolatory at the
remaining knots, i.e. interior knots. This property distinguishes the features of the knots
from the nodes in the FEA.

According to the Cox-de Boor recursion algorithm, the B-spline basis functions of order
p are defined recursively, starting with the piecewise constant (p = 0), as follow

Ni,0 (ξ) =

{
1 if ξi ≤ ξ < ξi+1,
0 otherwise.

(29)

Subsequently, the basis functions for higher order (p ≥ 1) are constructed as

Ni,p (ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) . (30)

The B-splines basis functions, by their nature, are piecewise non-negative. In addition,
while the functions are C∞ continuous inside knot spans, they are Cp−k continuous across
the knots, where k is the multiplicity of the knot. This property enables the continuity of
the basis function to be tailored with flexibility by adjusting either polynomial order p or
the knot multiplicity k.

Considering an additional knot vectorH = {η1, η2, ..., ηm+q+1} in the parametric direction
of η, where m and q are the number of basis functions and the polynomial order, respectively,
a 2-D B-splines basis is formed by taking tensor product of the B-splines in ξ and η directions
as follow

NA (ξ, η) = Ni,p (ξ)Mj,q (η) (31)

where Mj,q (η) is the jth B-splines basis function of order q in η direction. The illustrations
of 1-D and 2-D B-splines basis functions are presented in Figure 2.

By introducing a projective weight ζA associated with each control point A, the non-
uniform ration B-splines (NURBS) basis functions for one and two dimensions can be con-
structed from the B-splines as follow

RA (ξ) =
NA (ξ) ζA
n∑̂
A

NÂ (ξ) ζÂ

(32a)

RA (ξ, η) =
NA (ξ)MA (η) ζA

n∑̂
A

m∑̂
A

NÂ (ξ)MÂ (η) ζÂ

(32b)

As can be seen, the B-splines basis function is a special case of NURBS if all the weights
are assigned with an equal constant.

4.2. NURBS-based formulation of microplates with modified couple stress theory

The approximation of the displacement field of a plate in the parametric space can be
described as follow

uh (ξ, η) =
n×m∑
A

RA (ξ, η) qA, (33)
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where n and m are the number of control points in the ξ and η directions, respectively,
RA (ξ, η) denotes 2-D NURBS basis function. Meanwhile, the vector of nodal degrees of
freedom associated with the control point A is given as

qA =
{
u0A v0A wbA wsA

}T
(34)

By substituting the approximation in Eq. (33) into the strains derived in Eqs. (13)-(17),
the strain components can be expressed in terms of NURBS as

εb = εLb + εNLb =
n×m∑
A

(
BL
A +

1

2
BNL
A

)
qA, (35a)

εs =
n×m∑
A

Bs
AqA, (35b)

in which

εLb =

 εL0κb
κs

 =
n×m∑
A

BL
AqA, εNLb =

 εNL0

0
0

 =
1

2

n×m∑
A

BNL
A qA, (36)

where the linear component and the nonlinear component, which contains the solution q,
are respectively defined as

BL
A =

 Bm
A

Bb1
A

Bb2
A

 , BNL
A (q) =

 Aϑ

0
0

Bg
A, (37)

and the linear gradient matrices are expressed as follows

Bm
A =

 RA,x 0 0 0
0 RA,y 0 0

RA,y RA,x 0 0

 , Bb1
A = −

 0 0 RA,xx 0
0 0 RA,yy 0
0 0 2RA,xy 0

 , Bb2
A =

 0 0 0 RA,xx

0 0 0 RA,yy

0 0 0 2RA,xy

 ,
(38a)

Bg
A =

[
0 0 RA,x RA,x

0 0 RA,y RA,y

]
, Bs

A =

[
0 0 0 RA,x

0 0 0 RA,y

]
. (38b)

Meanwhile, the variation of the strain vectors are derived as

δεb = δεLb + δεNLb =
n×m∑
A

(
BL
A + BNL

A

)
δqA (39)

Similarly, by substituting the approximation in Eq. (33) into the curvature tensor derived
in Eqs. (18) and (19), the curvature tensor components can be obtained as

χcb =
n×m∑
A

Bcb
AqA, (40a)

χcs =
n×m∑
A

Bcs
AqA, (40b)
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where

Bcb
A =

[
B̃b0
A

B̃b1
A

]
, Bcs

A =

[
B̃s0
A

B̃s2
A

]
, (41)

in which

B̃b0
A =

1

4

 0 0 4RA,xy 2RA,xy

0 0 −4RA,xy −2RA,xy

0 0 2 (−RA,xx +RA,yy) −RA,xx +RA,yy

 , B̃b1
A =

1

4

 0 0 0 −2RA,xy

0 0 0 2RA,xy

0 0 0 RA,xx −RA,yy

 ,
(42a)

B̃s0
A =

1

4

[
−RA,xy RA,xx 0 0
−RA,yy RA,xy 0 0

]
, B̃s2

A =
1

4

[
0 0 0 −RA,y

0 0 0 RA,x

]
. (42b)

The discretised system of equations for the static analysis is

K (q) q = F, (43)

where the global stiffness matrix is

K (q) = KL + KNL (q) , (44)

in which the global matrices KL (linear) and KNL (nonlinear) are respectively assembled
from the element matrices Ke

L and Ke
NL of the element Ωe. Those matrices can be expressed

as follows

Ke
L =

∫
Ωe

(
BL
A

)T
DbBL

AdΩe +
∫
Ωe

(Bs
A)T DsBs

AdΩe +
∫
Ωe

(
Bcb
A

)T
Db
cB

cb
AdΩe +

∫
Ωe

(Bcs
A )T Ds

cB
cs
AdΩe ,

(45a)

Ke
NL (q) =

∫
Ωe

(
1

2

(
BL
A

)T
DbBNL

A +
(
BNL
A

)T
DbBL

A +
1

2

(
BNL
A

)T
DbBNL

A

)
dΩe.

(45b)

In addition, the load vector is described as

F =

∫
Ω

q0RdΩ (46)

where
R =

[
0 0 RA RA

]T
(47)

It can be inferred from Eqs. (38) and (42) that the second derivatives of the approxima-
tion functions are essentially required for the RPT and MCST. These features may cause
some difficulties in the traditional FEA, but can be conveniently handled by means of the
proposed isogeometric analysis as, by its nature, the derivatives of the basis functions could
be derived easily and naturally. In addition, the system of equations includes the nonlinear
term q on the left-hand side of the Eq. (43), which contains unknown control variables. As
a result, an iterative approach should be considered to solve such a problem.
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4.3. Newton-Raphson iterative procedure

In the Newton-Raphson procedure, the nonlinear equation in Eq. (43) is solved iteratively
in which the solutions of the unknowns in the previous step are used to solve for the solution
in the current step. These iterations are performed until the solution converges. Following
these ideas, the residual force vector is defined as

R̃ (q) = K (q) q− F = (KL + KNL (q)) q− F. (48)

Then the improved solution at the end of the (i+ 1)th iteration is calculated as

i+1q = iq + ∆q, (49)

where the incremental displacement ∆q is given by

∆q =
−R̃ (iq)

KT

, (50)

in which the tangent stiffness matrix KT can be obtained by [65]

KT =
∂R̃ (iq)

∂q
= KL + K̃NL + Kg, (51)

where the nonlinear matrix

K̃NL (q) =

∫
Ω

((
BL
A

)T
DbBNL

A +
(
BNL
A

)T
DbBL

A +
(
BNL
A

)T
DbBNL

A

)
dΩ, (52)

and the geometric stiffness matrix

Kg =

∫
Ω

(Bg)T
[
Nx Nxy

Nxy Ny

]
BgdΩ, (53)

where Bg is assembled from Bg
A in Eq. (38). The iterations are executed until the difference

between the solutions from two consecutive iterations is no greater than the predefined
tolerance ε as described below

‖i+1q− iq‖
‖i+1q‖

≤ ε. (54)

5. Numerical examples

In this section, the numerical results of the nonlinear bending analysis of square, circular
and annular plates will be shown. The convergence and verification are first presented to
demonstrate the validity and efficiency of the proposed IGA approach for nonlinear problems
of plate structures without and with size effects. For the analysis of microplates with small-
scale effects, the material length scale parameter `, unless otherwise specified, is assigned
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the value of 17.6× 10−6 m as suggested by Lam et al. [1]. It should be noted that `/h = 0
implies no size effect is taken into account. In these investigations, the plates which are
made of isotropic material and FGMs with mixtures of ceramic and metal shown in Table
1 are used. The geometries of square, circular and annular plates employed in this study
are printed in Figure 3. It should be noted that, for verification and comparison purposes,
the material properties could be different units or without specific unit. For the efficient
presentation of the results, the following normalised formula, unless otherwise specified, are
used:

P =
q0a

4

Emh4
; w̄ =

w

h
; σ̄x =

σxa
2

Emh2
(55)

5.1. Convergence and verification studies

In order to illustrate the validity and the convergence of the proposed IGA approach and
refined plate formulation for nonlinear plate problems with MCST in Section 4, a number
of numerical tests have been conducted to deal with the nonlinear bending of isotropic
and FG plates. Figure 4 presents the convergence rate of the numerical results toward the
analytical solution of Levy [66] whose work is widely considered as a standard reference
for nonlinear problems. The analytical reference result is calculated for clamped isotropic
square plates with aspect ratio a/h = 100 subjected to uniform loading. This figure includes
convergences of normalised nonlinear central deflection of clamped isotropic plates (Material
I) with different element meshes, ranging from 3 to 17 elements per edge, and element
polynomial orders, p = 2, 3 and 4. As expected, while the quadratic elements (p = 2)
show slower convergence rate and less accuracy, the higher-order elements (p = 3 or p = 4)
yield better performance in terms of convergences and differences compared to the analytical
solution [66]. Having pointed out in the work of Nguyen et al. [63], the meshes of 11 × 11
cubic (p = 3) elements with total of 784 degrees of freedom which are sufficient in between
accuracy and computational cost will be used. Table 2 shows the complete comparison of
the presented numerical linear and nonlinear results of square isotropic plates with those of
other researchers including Levy’s analytical solution [66], Pica et al.’s FEM with Mindlin
formulation [67], Kant and Kommineni’s C0 FEM with high-order formulation [68], Urthaler
and Reddy’s mixed FEM [69], and Kapoor and Kapania’s IGA with first-order formulation
[57]. It can be observed that, for all cases of load parameter P , the present solutions are in
good agreement with the analytical solutions and other published results for both normalised
deflection and normal stress. For better illustration of the accuracy of the proposed method
and differences of linear and nonlinear solutions, all results are plotted in the Figure 5.

The validity and accuracy of the proposed IGA with RPT is further investigated for
FG square plates. Figure 6 depicts the comparison of the nonlinear central deflection of
simply-supported (SSSS) square plates subjected to uniformly distributed load. The plates
are made of Al/ZnO2 in which the material properties are assumed to follow the rule of
mixtures. The proposed results with different values of material index n are compared to
those of Praveen and Reddy [70] using FEM based on 5-DOF FSDT and Phung-Van et al.
[58] employing cell-based smoothed three-node plate elements based on 7-DOF HSDT. As
can be seen, the presented results are quite close to the others’, especially the former one.
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This confirms the accuracy and validity of the proposed approach which is applicable not
only for isotropic plates but also for the FG plates.

Figures 7 and 8 depict the bending behaviours including central deflection and normal
stress of simply-supported and fully clamped FG microplates with size effects, respectively.
The presented results, that are generated from different values of material length scale
ratio `/h and material index n, are compared with those reported by Kim and Reddy [29]
who employed general third-order theory for element formulation of FG microplates. It
is observed that the solutions of the two approaches are in excellent agreement although
there are small discrepancy in central displacements of clamped microplates with relatively
high material length scale ratio (`/h = 0.5 and 1). It is worth commenting that Kim and
Reddy [29] employed the general third-order shear deformation plate theory (GTPT) with
11 unknowns and 16×16 meshes of conforming cubic elements to analyse the microplates.
Meanwhile, the RPT with only 4 variables and meshes of 11×11 cubic elements are used in
this study. The comparison of the computational efforts in terms of total number of DOFs
between the reference and present approaches is provided in Table 3. As can be seen, for a
single analysis, the reference approach requires over 16 times as many DOFs as the present
approach does. For the nonlinear analysis in which iterative procedures are involved, the
difference between the two approaches in terms of computational cost becomes much more
significant. As a result, IGA approach performs far better than that of FEM doing in these
specific nonlinear problems.

The accuracy of the proposed approach is further demonstrated for circular plates in
Figure 9 where the proposed solutions are almost coincident with the results published by
Reddy et al. [28] for various boundary conditions and material parameters. It should be
noted that for the analysis of circular plates, unless otherwise specified, the constrained
DOFs of simply-supported boundary conditions are indicated similar to those presented
in the work of Reddy et al. [28]. Generally, the positive outcomes confirm the accuracy
and validity of the proposed method regardless of material properties, structure scales and
geometries.

5.2. Nonlinear analysis of square microplates

In this part, a number of numerical studies of the nonlinear behaviour of square FG
microplates is conducted to demonstrate the effects of aspect ratio a/h, material length scale
ratio `/h, material index n and load parameter P . Table 4 and 5 present the normalised
central deflection and normal stress of simply-supported and fully clamped square Al/Al2O3

microplates in which the rule of mixtures is employed to model the material distribution
through the thickness. The plates are subjected to either uniformly distributed load, q0,
or sinusoidally distributed load, q0sin

(
πx
a

)
sin
(
πy
a

)
. The results are generated for different

values of a/h, `/h and P , while keeping material index n = 1. Similarly, the numerical
results for SSSS microplates, which employ the Mori-Tanaka scheme for material modelling,
are provided in Table 6. These results which have not been reported before could serve
as the benchmark examples for the future references. For illustration purposes, Figure
10 depicts the deformed shapes of square microplates under uniform load with different
boundary conditions. As can be seen, being placed together in the same plots, the nonlinear
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displacements are always smaller than those of linear counterparts. The reason for this
phenomenon is that the nonlinear analysis takes into account the low and higher order
terms of the strains while the linear analysis only considers the first order ones. This
additional consideration contributes to the increase of the strain energy and the stiffness of
the structure correspondingly, which results in smaller displacements for nonlinear cases as
presented.

The effects of material index n and material length scale ratio `/h on the nonlinear
central deflection and normal stress of fully clamped Al/Al2O3 square microplates with
different material distribution models are plotted in Figure 11. The results are generated
for the plates with aspect ratio a/h = 5 and load parameter P = 100 and with different
values of `/h of 0.0, 0.4, 1.0. It can be observed that the increase of material index n is
followed by the increase of central displacement. However, the growth of material length
scale ratio `/h leads to a completely different scenario in which the displacement is declined.
It is worth commenting that these phenomena are due to the increase of structure stiffness
as the material length scale ratio `/h becomes smaller causing the displacement to reduce as
expected. In other words, for a specific material length scale `, the thinner the microplate is,
the higher the stiffness becomes. For further illustration, Figure 12 presents the variation of
nonlinear deflection and normal stress of simply-supported Al/Al2O3 square microplates in
which the plate’s aspect ratio a/h and material length scale ratio `/h are taken into account.
As can be seen, the influence of the aspect ratio a/h on the bending responses is remarkable
for thin square plates (a/h ≤ 10). However, it becomes less pronounced as the square plates
get thicker.

5.3. Nonlinear analysis of circular microplates

A number of investigations on the nonlinear bending behaviours of circular FG mi-
croplates will be presented in this part of the section. Table 7 shows the normalised de-
flection and normal stress of circular Al/ZnO2 microplates subjected to uniform loading in
which the material distribution follows the rule of mixtures. The results are generated for
both simply-supported and fully clamped boundary conditions with various values of aspect
ratio a/h, material length scale ratio `/h and load parameter P . Since there is no published
report for this problem of nonlinear analysis of FG circular microplates, these numerical
results can serve as a benchmark example for future references. Figure 13 provides a visual
illustration of the deformed shapes of circular Al/ZnO2 microplates in which the solutions
for linear and nonlinear problems are placed together. The solutions are generated for the
specific material and geometry inputs with different boundary conditions.

Figure 14 illustrates the effect of the material index n and material length scale ratio
`/h on the nonlinear deflection and normal stress of fully clamped Al/ZnO2 circular mi-
croplates with different material distribution schemes. Similarly to the square microplates,
the decline of material index n and the increase of material length scale ratio `/h lead to
the strengthening of the plates’ stiffness. Consequently, the displacement and normal stress
of the plates are both decreased accordingly. However, while the influence of the square
plates’ aspect ratio a/h on its bending behaviours are different for thin and thick plates,
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those impacts of the circular plates’ aspect ratio h/R on the displacement and normal stress
responses remain less pronounced regardless of plates’ geometry as shown in Figure 15.

5.4. Nonlinear analysis of annular microplates

In this part of the section, a number of analyses are conducted to assess the nonlinear
bending behaviours of the annular microplates. The full geometry configuration and element
meshes along with control point net of the annular are presented in Figure 3c and Figure
16, respectively. Due to its symmetry, for the sake of computational effort, only a quarter
of this cut-out geometry is used for the analysis. The nonlinear bending responses of the
annular microplates without considering size effects are compared with the results reported
by Golmakani and Kadkhodayan [71]. As can be observed from Figure 17, the results
generated from this proposed approach agree well with those published which are based
on TSDT theory and the finite difference technique for both fully clamped and simply-
supported boundary conditions which are applied at inner and outer circles of the annular
microplates.

In order to show the effects of the material length scale to nonlinear bending behaviours of
annular microplates, the variations of the vertical displacement through the radius are shown
in Figure 18. As expected, when the size-dependent effects are considered, the displacement
of the microplate becomes smaller reaching its lowest as the material length scale ratio
`/h = 1. Figure 19 illustrates the deformed shapes of annular microplates for both linear
and nonlinear bending cases with same geometry, material and loading inputs. Similarly to
other geometries, the linear analysis predicts larger deflections than that of nonlinear case
in which von Kármán strains are involved.
6. Conclusions

The isogeometric analysis associated with the four-unknown refined plate theory is pro-
posed to investigate the geometrically nonlinear bending responses of small-scale FG plates.
The refined plate theory which requires C1 elements is used to constructed the displacement
fields before the nonlinear von Kármán strains are derived. Meanwhile, the size-dependent
effects are efficiently captured by the MCST in which only length scale parameter is in-
volved. While the NURBS-based isogeometric analysis is successfully implemented to con-
struct higher-order elements which are essentially required in refined plate and modified
couple stress theories, the solutions of nonlinear problems are reliably obtained by means
of Newton-Raphson iterative procedure. A number of convergence and verification studies
confirm the validity and reliability of the proposed RPT-based IGA approach which is highly
robust compared to other HSDT-based FEA approaches in terms of computational efforts
including the number of unknowns and element meshes. Besides, some benchmark results
for nonlinear bending analysis have been presented which can be used for future references.
Parametric studies are also presented, which show that the inclusion of material length scale
causes the stiffness of the continuum to increase, especially when the material length scale
ratio `/h get larger. Consequently, the nonlinear displacements and stresses of microplates
decline. Meanwhile, the increase of material index n leads to a completely different scenario
in which the displacements are also risen. In addition, although the influence of the aspect
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ratio a/h on the bending responses is remarkable for thin plates, it turns less pronounced
when the thick plates are considered.
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Table 1: Material properties

Material Type Ec (ceramic) Em (metal) ν1 ν2

Material I [66] Isotropic 3× 107 psi 3× 107 psi 0.316 0.316
Material II[29] FGM 14.4 GPa 1.44 GPa 0.3 0.3
Material III [28] FGM 1.0× 106 1.0× 105 0.25 0.25
Al/Al2O3 FGM 380 GPa 70 GPa 0.3 0.3
Al/ZnO2 FGM 151 GPa 70 GPa 0.3 0.3
Al/SiC FGM 427 GPa 70 GPa 0.17 0.3
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Table 2: Comparison of normalised nonlinear deflection w̄(a
2 ,

a
2 , 0) and normal stress σ̄x(a

2 ,
a
2 ,

h
2 ) of clamped isotropic

square plates under uniform loading (Material I), a/h = 100

P Response Nonlinear Linear
Present Analytical [66] FEM [67] C0-FEM [68] MXFEM [69] IGA FSDT [57] Present MXFEM [69]

17.79 w̄ 0.2365 0.237 0.2368 0.2385 0.2392 0.2328 0.2435 0.2465
σ̄x 2.5602 2.6 2.6319 2.6733 2.414 - 2.4643 2.387

38.3 w̄ 0.4692 0.471 0.4699 0.4725 0.4738 0.4635 0.5243 0.5307
σ̄x 5.3256 5.2 5.4816 5.5733 5.022 - 5.3054 5.138

63.4 w̄ 0.6908 0.695 0.6915 0.6948 0.6965 0.6854 0.8678 0.8785
σ̄x 8.0973 8.0 8.3258 8.4867 7.649 - 8.7822 8.510

95.0 w̄ 0.9024 0.912 0.9029 0.9065 0.9087 0.8985 1.3004 1.3163
σ̄x 10.8248 11.1 11.103 11.3500 10.254 - 13.1595 12.745

134.9 w̄ 1.1060 1.121 1.1063 1.1100 1.1130 1.1045 1.8466 1.8692
σ̄x 13.5187 13.3 13.827 14.1700 12.850 - 18.6865 18.099

184.0 w̄ 1.3008 1.323 1.3009 1.3046 1.3080 1.3020 2.5187 2.5495
σ̄x 16.1771 15.9 16.497 16.9367 15.420 - 25.4879 24.686

245.0 w̄ 1.4926 1.521 1.4928 1.4963 1.5010 1.4969 3.3536 3.3947
σ̄x 18.9019 19.2 19.225 19.7633 18.060 - 33.9377 32.869

318.0 w̄ 1.6784 1.714 1.6786 1.6820 1.6880 1.6856 4.3529 4.4062
σ̄x 21.6744 21.9 21.994 22.6367 20.741 - 44.0498 42.664

402.0 w̄ 1.8552 1.902 1.8555 1.8590 1.8660 1.8652 5.5027 5.5702
σ̄x 24.4624 25.1 24.780 25.5367 23.423 - 55.6855 53.933
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Table 3: Degrees of freedom required in FEM and IGA approaches

Approach # Unknowns Element type Mesh Total DOFs
FEM and GTPT [29] 11 Cubic 16×16 12716
IGA and RPT (present) 4 Cubic 11×11 784
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Table 4: Normalised deflection w̄(a
2 ,

a
2 , 0) and normal stress σ̄x(a

2 ,
a
2 ,

h
2 ) of SSSS square Al/Al2O3 microplates (rule

of mixtures scheme, n = 1)

a/h `/h P = 1 P = 50 P = 100 P = 200 P = 300 P = 400
w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x

Uniformly distributed load
5 0.0 0.0192 0.4585 0.7281 20.2345 1.1161 32.2415 1.6088 48.0796 1.9627 59.8543 2.2512 69.7203

0.2 0.0158 0.3740 0.6508 17.9251 1.0342 29.9180 1.5183 45.8654 1.8577 57.5988 2.1297 67.3703
0.4 0.0103 0.2401 0.4792 12.7399 0.8359 23.8318 1.3151 40.0759 1.6491 52.1288 1.9128 62.0664
0.6 0.0066 0.1497 0.3208 8.1036 0.6069 16.5265 1.0555 31.4986 1.3888 43.7129 1.6541 53.9939
0.8 0.0043 0.0977 0.2159 5.2192 0.4235 10.9089 0.7952 22.5595 1.1054 33.5254 1.3657 43.4703
1.0 0.0030 0.0674 0.1514 3.5450 0.3006 7.3965 0.5859 15.6914 0.8470 24.2801 1.0820 32.7521

20 0.0 0.0166 0.4463 0.6703 20.6394 1.0521 33.5078 1.5222 49.6254 1.8445 60.9439 2.0996 70.1634
0.2 0.0138 0.3690 0.5960 18.1802 0.9745 31.0510 1.4496 47.6881 1.7747 59.3446 2.0306 68.7622
0.4 0.0092 0.2424 0.4338 12.8277 0.7774 24.4374 1.2547 41.7285 1.5882 54.2994 1.8494 64.3973
0.6 0.0059 0.1539 0.2890 8.2205 0.5547 16.7933 0.9899 32.4265 1.3230 45.3514 1.5904 56.1730
0.8 0.0039 0.1018 0.1945 5.3662 0.3837 11.1400 0.7317 23.0212 1.0323 34.3907 1.2901 44.8158
1.0 0.0027 0.0709 0.1365 3.6877 0.2716 7.6322 0.5331 16.0466 0.7778 24.7742 1.0029 33.4585

Sinusoidally distributed load
5 0.0 0.0123 0.3175 0.5241 15.4148 0.8496 26.3160 1.2629 41.0497 1.5527 51.8826 1.7860 60.8716

0.2 0.0101 0.2600 0.4566 13.2402 0.7729 23.7744 1.1849 38.5672 1.4716 49.4606 1.6993 58.4438
0.4 0.0066 0.1678 0.3201 8.9248 0.5911 17.6100 0.9908 31.8508 1.2783 42.9290 1.5055 52.1164
0.6 0.0042 0.1050 0.2087 5.5657 0.4064 11.4858 0.7488 23.0488 1.0246 33.3911 1.2513 42.4880
0.8 0.0028 0.0686 0.1393 3.5870 0.2763 7.4350 0.5358 15.5522 0.7699 23.7339 0.9778 31.6242
1.0 0.0020 0.0473 0.0975 2.4465 0.1944 5.0419 0.3843 10.5897 0.5663 16.4566 0.7381 22.4713

20 0.0 0.0105 0.3057 0.4691 15.2657 0.7885 26.9596 1.1979 42.7978 1.4782 54.0753 1.6978 63.1780
0.2 0.0087 0.2544 0.4065 13.0940 0.7125 24.2191 1.1233 40.2018 1.4071 51.7558 1.6293 61.0745
0.4 0.0058 0.1692 0.2839 8.9138 0.5357 17.7788 0.9266 32.8919 1.2147 44.8087 1.4430 54.6267
0.6 0.0037 0.1086 0.1856 5.6830 0.3644 11.6787 0.6853 23.5693 0.9539 34.4618 1.1796 44.1625
0.8 0.0025 0.0723 0.1243 3.7396 0.2472 7.6921 0.4836 15.9740 0.7025 24.3722 0.9017 32.5663
1.0 0.0017 0.0506 0.0871 2.5916 0.1739 5.3030 0.3450 11.0199 0.5110 17.0156 0.6701 23.1607
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Table 5: Normalised deflection w̄(a
2 ,

a
2 , 0) and normal stress σ̄x(a

2 ,
a
2 ,

h
2 ) of CCCC square Al/Al2O3 microplates

(rule of mixtures scheme, n = 1)

a/h `/h P = 1 P = 50 P = 100 P = 200 P = 300 P = 400
w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x

Uniformly distributed load
5 0.0 0.0078 0.2252 0.3489 11.8613 0.5859 21.5995 0.8826 35.6241 1.0793 46.2644 1.2298 55.2499

0.2 0.0066 0.1894 0.3057 10.2216 0.5342 19.4510 0.8349 33.4494 1.0371 44.1720 1.1920 53.2018
0.4 0.0045 0.1282 0.2192 7.0161 0.4116 14.3554 0.7046 27.4052 0.9158 38.1482 1.0800 47.3132
0.6 0.0030 0.0830 0.1468 4.4753 0.2873 9.4148 0.5357 19.6087 0.7392 29.2617 0.9073 38.0758
0.8 0.0020 0.0554 0.0999 2.9290 0.1984 6.1454 0.3864 13.1633 0.5580 20.5329 0.7118 27.8896
1.0 0.0014 0.0387 0.0708 2.0159 0.1412 4.1914 0.2795 8.9524 0.4127 14.1324 0.5392 19.5814

20 0.0 0.0053 0.2125 0.2533 11.2046 0.4632 21.7147 0.7635 38.0455 0.9728 50.1717 1.1344 59.9860
0.2 0.0046 0.1827 0.2234 9.6892 0.4181 19.2517 0.7128 35.1496 0.9245 47.4254 1.0892 57.4629
0.4 0.0033 0.1286 0.1637 6.8102 0.3180 13.9886 0.5819 27.6968 0.7907 39.6071 0.9597 49.8587
0.6 0.0023 0.0861 0.1126 4.5041 0.2230 9.3278 0.4301 19.3860 0.6139 29.3063 0.7747 38.6670
0.8 0.0016 0.0588 0.0782 3.0404 0.1559 6.2681 0.3076 13.1496 0.4521 20.3719 0.5875 27.6997
1.0 0.0011 0.0417 0.0561 2.1404 0.1121 4.3846 0.2230 9.1498 0.3318 14.2196 0.4376 19.5153

Sinusoidally distributed load
5 0.0 0.0056 0.1796 0.2618 9.5222 0.4645 18.1651 0.7390 31.3879 0.9266 41.4695 1.0713 49.8862

0.2 0.0047 0.1509 0.2263 8.0842 0.4150 15.9619 0.6869 28.8698 0.8776 38.9915 1.0255 47.4812
0.4 0.0032 0.1018 0.1591 5.4485 0.3071 11.2496 0.5537 22.3444 0.7445 32.0464 0.8975 40.5132
0.6 0.0021 0.0657 0.1056 3.4617 0.2089 7.2147 0.4013 15.1395 0.5704 23.0496 0.7171 30.5926
0.8 0.0014 0.0436 0.0717 2.2683 0.1429 4.6983 0.2817 9.9415 0.4137 15.5190 0.5370 21.2433
1.0 0.0010 0.0304 0.0507 1.5635 0.1013 3.2135 0.2016 6.7492 0.3000 10.5531 0.3955 14.5666

20 0.0 0.0038 0.1676 0.1861 8.7837 0.3524 17.5107 0.6129 32.4539 0.8047 44.2657 0.9556 53.9954
0.2 0.0033 0.1445 0.1631 7.5738 0.3138 15.3170 0.5626 29.3711 0.7534 41.0311 0.9059 50.8418
0.4 0.0024 0.1021 0.1185 5.3225 0.2332 10.9298 0.4420 22.1578 0.6195 32.6175 0.7697 42.0541
0.6 0.0016 0.0685 0.0811 3.5377 0.1614 7.2664 0.3165 15.0797 0.4610 23.0398 0.5932 30.8616
0.8 0.0011 0.0469 0.0562 2.4011 0.1123 4.9063 0.2230 10.1790 0.3308 15.7124 0.4346 21.4038
1.0 0.0008 0.0334 0.0403 1.6974 0.0806 3.4511 0.1607 7.1144 0.2400 10.9624 0.3182 14.9652
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Table 6: Normalised deflection w̄(a
2 ,

a
2 , 0) and normal stress σ̄x(a

2 ,
a
2 ,

h
2 ) of SSSS square Al/Al2O3 microplates

(Mori-Tanaka scheme, n = 1)

a/h `/h P = 1 P = 50 P = 100 P = 200 P = 300 P = 400
w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x

Uniformly distributed load
5 0.0 0.0246 0.5482 0.8626 23.2446 1.2927 36.4602 1.8441 54.2800 2.2443 67.7888 2.5677 79.1820

0.2 0.0204 0.4508 0.7837 21.0080 1.2086 34.2580 1.7432 52.0767 2.1203 65.4499 2.4228 76.7142
0.4 0.0134 0.2935 0.5992 15.6113 1.0078 28.4047 1.5359 46.6052 1.9021 60.1880 2.1913 71.4979
0.6 0.0086 0.1851 0.4126 10.2260 0.7610 20.6531 1.2738 38.2544 1.6418 52.1977 1.9318 63.8747
0.8 0.0057 0.1218 0.2807 6.6450 0.5445 13.9813 0.9944 28.6153 1.3510 41.8296 1.6419 53.5045
1.0 0.0040 0.0845 0.1975 4.5215 0.3904 9.5413 0.7501 20.3799 1.0665 31.3703 1.3416 41.9226

20 0.0 0.0208 0.5316 0.7946 23.9070 1.2144 37.9967 1.7284 55.8226 2.0829 68.6366 2.3647 79.2409
0.2 0.0175 0.4439 0.7194 21.4738 1.1397 35.7215 1.6590 54.0610 2.0150 67.1516 2.2964 77.9038
0.4 0.0118 0.2965 0.5445 15.7734 0.9433 29.2949 1.4715 48.5974 1.8353 62.5643 2.1207 73.9078
0.6 0.0077 0.1905 0.3733 10.3586 0.7017 21.0283 1.2070 39.5113 1.5774 54.2015 1.8705 66.3687
0.8 0.0051 0.1268 0.2546 6.8097 0.4978 14.2377 0.9269 29.2198 1.2789 42.9825 1.5713 55.2276
1.0 0.0036 0.0887 0.1797 4.6844 0.3564 9.7958 0.6916 20.7632 0.9944 31.9642 1.2638 42.8335

Sinusoidally distributed load
5 0.0 0.0158 0.3798 0.6338 18.0329 0.9958 30.0539 1.4525 46.3570 1.7760 58.5463 2.0391 68.7806

0.2 0.0131 0.3132 0.5622 15.8052 0.9188 27.6207 1.3724 43.9945 1.6886 56.1842 1.9412 66.3525
0.4 0.0086 0.2049 0.4073 11.0309 0.7295 21.3850 1.1784 37.5949 1.4940 50.0152 1.7428 60.3452
0.6 0.0055 0.1296 0.2703 6.9968 0.5188 14.4617 0.9260 28.5355 1.2384 40.6386 1.4894 51.0792
0.8 0.0036 0.0854 0.1815 4.5347 0.3581 9.4848 0.6830 19.8922 0.9637 30.1217 1.2048 39.7251
1.0 0.0025 0.0593 0.1272 3.1011 0.2531 6.4508 0.4970 13.6998 0.7252 21.3563 0.9351 29.1046

20 0.0 0.0132 0.3639 0.5673 17.9897 0.9251 31.0288 1.3732 48.4600 1.6795 60.9978 1.9206 71.2435
0.2 0.0111 0.3058 0.5007 15.7108 0.8501 28.3741 1.3019 46.0509 1.6118 58.8559 1.8545 69.2807
0.4 0.0075 0.2067 0.3612 11.0156 0.6651 21.7013 1.1097 39.0466 1.4270 52.3712 1.6761 63.3102
0.6 0.0049 0.1342 0.2410 7.1278 0.4680 14.6903 0.8566 29.2710 1.1658 42.0916 1.4182 53.2269
0.8 0.0033 0.0900 0.1630 4.7134 0.3228 9.7725 0.6234 20.3784 0.8915 30.9239 1.1272 40.9518
1.0 0.0023 0.0632 0.1148 3.2715 0.2288 6.7474 0.4515 14.1668 0.6635 21.9643 0.8622 29.8852
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Table 7: Normalised deflection w̄(0, 0, 0) and normal stress σ̄x(0, 0, h2 ) of circular Al/ZnO2 microplates subjected
to uniformly distributed load (rule of mixtures scheme, n = 5)

h/R `/h P = 1 P = 50 P = 100 P = 200 P = 300 P = 400
w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x w̄ σ̄x

Simply-supported (SSSS, as defined in Reddy et al. [28])
0.1 0.0 0.3784 1.6354 2.2122 16.6821 2.8106 24.6444 3.5582 36.8432 4.0809 46.8473 4.4966 55.6639

0.2 0.3722 1.5920 2.2111 16.6896 2.8104 24.6581 3.5585 36.8576 4.0813 46.8609 4.4971 55.6771
0.4 0.3593 1.4988 2.2083 16.7038 2.8102 24.6960 3.5597 36.9028 4.0829 46.9057 4.4989 55.7212
0.6 0.3469 1.4084 2.2044 16.7095 2.8098 24.7454 3.5616 36.9742 4.0856 46.9810 4.5020 55.7970
0.8 0.3372 1.3397 2.2000 16.7014 2.8095 24.7941 3.5641 37.0604 4.0893 47.0794 4.5061 55.8996
1.0 0.3302 1.2912 2.1957 16.6838 2.8087 24.8329 3.5668 37.1499 4.0934 47.1900 4.5110 56.0201

0.5 0.0 0.4267 1.5608 2.2035 15.8369 2.8018 23.6692 3.5523 35.6463 4.0776 45.4525 4.4954 54.0875
0.2 0.4194 1.5340 2.2025 15.8886 2.8010 23.7431 3.5515 35.7505 4.0768 45.5786 4.4945 54.2319
0.4 0.4040 1.4780 2.1999 16.0138 2.7992 23.9233 3.5499 36.0026 4.0750 45.8845 4.4925 54.5829
0.6 0.3878 1.4219 2.1967 16.1518 2.7974 24.1289 3.5483 36.2909 4.0734 46.2341 4.4908 54.9839
0.8 0.3737 1.3744 2.1935 16.2643 2.7962 24.3087 3.5479 36.5466 4.0729 46.5443 4.4902 55.3388
1.0 0.3621 1.3354 2.1905 16.3435 2.7954 24.4455 3.5485 36.7516 4.0739 46.7943 4.4913 55.6260

Fully clamped
0.1 0.0 0.1383 0.7522 2.0564 15.8791 2.6894 23.3494 3.4603 34.8581 3.9910 44.3909 4.4102 52.8501

0.2 0.1237 0.6708 2.0281 15.7718 2.6675 23.2474 3.4428 34.7002 3.9760 44.1830 4.3975 52.6031
0.4 0.0937 0.5053 1.9436 15.3597 2.6037 22.9318 3.3945 34.3111 3.9344 43.6818 4.3595 51.9965
0.6 0.0667 0.3573 1.8018 14.4121 2.4955 22.2610 3.3141 33.7041 3.8664 42.9934 4.2989 51.2052
0.8 0.0475 0.2532 1.6082 12.8063 2.3398 21.0101 3.1965 32.7197 3.7685 42.0473 4.2124 50.2166
1.0 0.0346 0.1842 1.3810 10.7284 2.1391 19.0814 3.0398 31.1718 3.6368 40.6652 4.0962 48.8840

0.5 0.0 0.2722 0.8742 2.1483 14.4573 2.7480 22.0957 3.4935 33.8540 4.0127 43.5197 4.4249 52.0503
0.2 0.2318 0.7562 2.1289 14.2221 2.7341 21.8094 3.4837 33.5119 4.0050 43.1440 4.4187 51.6510
0.4 0.1604 0.5263 2.0690 13.7115 2.6901 21.2063 3.4516 32.7902 3.9784 42.3508 4.3953 50.8085
0.6 0.1051 0.3422 1.9669 12.9403 2.6141 20.4143 3.3948 31.8821 3.9314 41.3505 4.3532 49.7263
0.8 0.0707 0.2283 1.8198 11.7611 2.5022 19.3106 3.3116 30.7626 3.8612 40.1648 4.2914 48.4734
1.0 0.0497 0.1597 1.6318 10.1762 2.3529 17.7840 3.1994 29.3084 3.7670 38.7067 4.2082 46.9825
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Figure 1: The effective modulus of Al/Al2O3 plates according to the rule of mixtures (in solid lines) and
Mori-Tanaka scheme (in dash lines).
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a/h = 20, rule of mixtures scheme (Material II).
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Figure 11: Effects of material index n and the material length scale ratio `/h on the nonlinear central
deflection and normal stress of CCCC Al/Al2O3 square microplates, a/h = 5, P = 100, with the rules of
mixtures scheme (dashed line) and Mori-Tanaka scheme (solid line).
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Figure 12: Variation of nonlinear responses of SSSS Al/Al2O3 square microplates with respect to a/h and
`/h (rule of mixtures scheme), P = 100.
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to uniformly distributed load, h/R = 0.5, `/h = 1, n = 5, P = 50 (rules of mixtures scheme).

43



1 10

1.58

1.78

2

2.24

2.51

2.82

0.06

0.07
0.06

0.09
0.08

Material index, n

N
on

li
n
ea

r
ce

n
tr

al
d
efl

ec
ti

on
,
w̄

`/h = 0.0
`/h = 0.0
`/h = 0.4
`/h = 0.4
`/h = 1.0
`/h = 1.0

(a) Nonlinear central deflection w̄(a2 ,
a
2 , 0)

1 10
14.1

15.9

17.8

20

22.4

25.1

28.2

0.1

0.1
0.1

0.13

0.13

Material index, n

N
on

li
n
ea

r
m

ax
im

u
m

n
or

m
al

st
re

ss
,
σ̄
x

`/h = 0.0
`/h = 0.0
`/h = 0.4
`/h = 0.4
`/h = 1.0
`/h = 1.0

(b) Normal stress σ̄x(a2 ,
a
2 ,

h
2 )

Figure 14: Effects of the material index n and the material length scale ratio `/h on the nonlinear central
deflection and normal stress of fully clamped Al/ZnO2 circular microplates, h/R = 0.2, P = 100, with the
rules of mixtures scheme (dashed line) and Mori-Tanaka scheme (solid line).
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Figure 15: Variation of nonlinear responses of fully clamped Al/ZnO2 circular microplates with respect to
h/R and `/h (Mori-Tanaka scheme), P = 100.
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(a) A full annular plate

(b) A quarter of an annular plate

Figure 16: Element mesh (solid line), control point (grey dot) and control point net (dotted line).
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Figure 17: Comparison of nonlinear deflection through radius of Al/SiC annular plates, h/R = 0.15.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

r/R

N
or

m
al

is
ed

n
on

li
n
ea

r
d
efl

ec
ti

on
,
w̄

`/h = 0
`/h = 0.2
`/h = 0.4
`/h = 0.6
`/h = 0.8
`/h = 1

Figure 18: Normalised deflection of CC Al/SiC annular microplates, h/R = 0.3, n = 0, P = 600.
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Figure 19: Linear (outer) and nonlinear (inner) deformed shapes of Al/SiC annular microplates subjected
to uniformly distributed load, h/R = 0.15, `/h = 0.2, n = 0, P = 600.
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