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Abstract 
Metabolic disorders in the periparturient period have significant negative impacts on 

the health, welfare and profitability of dairy cows. Most genetic evaluations of metabolic health 

traits have used health data phenotypes, which although widely available, are limited by 

under/inconsistent reporting, misdiagnoses and binary clinical disease definitions. The aim of 

the work described in this thesis was therefore to investigate metabolic phenotypes for use in 

genetic selection for improved metabolic health in early-lactation dairy cows. Firstly, genetic 

parameters and genomic prediction accuracies were estimated for nine serum metabolic profile 

biomarker traits associated with energy balance (β-hydroxybutyrate (BHBA) and non-esterified 

fatty acids (NEFA)), macro-mineral status (calcium and magnesium), protein nutritional status 

(urea and albumin) and immune status (globulins, albumin:globulin ratio and haptoglobin), 

using data collected from a genotyped female reference population (N = 1393). All traits except 

haptoglobin were heritable (0.07 ≤ h2 0.46), and favorable genetic correlations between traits 

suggested that selection for overall metabolic resilience may be possible. Genomic prediction 

accuracies were consistent with heritability estimates and the small reference population size. 

Secondly, the use of mind-infrared (MIR) spectral data derived from routine milk recording to 

predict concentrations of the aforementioned serum biomarkers was investigated. Prediction 

accuracies were promising for BHBA, NEFA and urea (R2 0.48, 0.61 and 0.91, respectively), 

but poor for the remaining biomarkers. Results suggested that MIR-predicted phenotypes could 

offer a high throughput and cost-effective way to increase the size of reference populations for 

genomic selection for metabolic resilience. Lastly, an untargeted proton nuclear magnetic 

resonance (1H NMR) metabolomics approach was used to identify intermediate phenotypes 

associated with BHBA and NEFA. Sixteen metabolites were identified, including intermediates 

of energy, phospholipid, and/or methyl donor metabolism. Overall, the findings of this thesis 

provide further evidence that metabolic phenotypes are likely to be of great value in the 

development of more accurate breeding values for improved metabolic health. 
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Preface 

This thesis consists of six chapters. Chapter 1 is a general introduction which provides 

an overview of the research topic and outlines the main objectives of the project. Chapters 2 to 

5 present the findings of original research undertaken as part of this project. All four research 

chapters have been published in peer-reviewed scientific journals and appear in this thesis in 

the format of the journal of publication. Chapter 6 is a general discussion which places the main 

findings of this research in a broader context and offers suggestions for future research. 
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Chapter 1: 
General Introduction 
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Chapter 1: General Introduction 

The modern dairy cow is one of the success stories of 20th century animal breeding. 

Between 1919 and 2019, average per cow production in Australia increased from 1264 L/year 

(Commonwealth Bureau of Census and Statistics, 1925), to 6169 L/year (Dairy Australia, 

2019); a staggering 488% increase. Much of this increase has occurred since the mid-1970s, 

and approximately 30% can be attributed to genetic improvement (Pryce et al., 2018) (Figure 

1).  

 

Figure1. Relative contributions of genetic improvement and management to increases in annual per cow 

milk production in Australia between 1970 and 2018. Adapted from Cole et al. (2020) using Australian 

data (Source: DataGene, Bundoora, Australia). 

However, single trait selection for improved milk yield has also given rise to several 

significant challenges. Perhaps the most well-recognised example has been the marked 

reduction in dairy cow reproductive performance (Lucy, 2001), due in large part to antagonistic 

genetic correlations between fertility and production traits (Berry et al., 2014). In order to 

prevent continuation of this problem in the future, breeding objectives have been broadened to 

include functional traits such as udder health, longevity and fertility (Egger-Danner et al., 2015, 

Miglior et al., 2017). Moreover, improving animal health and resilience through genetic 

selection is seen as vital if the dairy industry is to maintain its social licence to operate (Boichard 

and Brochard, 2012).  
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The overwhelming majority of adverse health events affecting dairy cows occur during 

the periparturient or transition period (Drackley, 1999), which is defined as the three to four 

weeks before and after calving (Grummer, 1995, Drackley, 1999, Lean and Degaris, 2010). 

Many of these adverse events are associated with metabolic perturbations (Curtis et al., 1985, 

Ospina et al., 2010b, McArt et al., 2013, Rodríguez et al., 2017), and there is therefore 

increasing interest in improving metabolic health through genetic selection (Pryce et al., 2016). 

However, transition cow metabolism is incredibly complex (Drackley, 1999), and while 

modern breeding tools such as genomic selection are enabling genetic improvement in such 

traits (Boichard and Brochard, 2012, Egger-Danner et al., 2015), progress is limited by a dearth 

of phenotypes which accurately capture and describe this complexity (Coffey, 2020).  

The aim of the work described in this thesis is therefore to explore novel, high-

resolution metabolic phenotypes for use in genomic selection for improved dairy cow health. 

After all, “in the age of the genotype, phenotype is king” (Coffey, 2020). 

1.1 The cost of success… 

High levels of milk production come at an enormous metabolic cost. The metabolizable 

energy (ME) requirements of a 650 kg Holstein cow producing 40 litres/Day of milk (4.0% fat, 

3.4% protein) are approximately 272 MJ ME/Day; more than four times her maintenance 

energy requirements of 65.5 MJ ME/Day (Chamberlain and Wilkinson, 1996). This is 

equivalent to the maximum energy expenditure of a cyclist competing in the hill stages of the 

Tour de France (Saris et al., 1989).  

When compared to those of lactation, the metabolic demands of pregnancy are 

relatively small. Figure 2 shows the estimated requirements for metabolizable energy, 

metabolizable protein, calcium and magnesium,  for maintenance, pregnancy and lactation; for 

a 650kg cow at drying off (32 weeks pregnant), at the point of calving (40 weeks pregnant), 

and at various levels of milk production (Chamberlain and Wilkinson, 1996). These figures 

clearly demonstrate the enormous metabolic demands of lactation. More specifically, Bell 

(1995) has shown that the requirements of the udder for glucose, amino acids, and fatty acids, 

at day four after calving, are approximately 2.7, 2.0, and 4.5 times those of the uterus/foetus at 

day 250 of pregnancy, respectively. 
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Figure 2. Estimated (a) metabolizable energy (MJ/day); (b) metabolizable protein (g/day); calcium 

(g/day); and magnesium (g/day) requirements for a 650 kg Holstein Friesian dairy cow (1) at drying off 

(32 weeks pregnant), (2) at the point of calving (40 weeks pregnant); (3) at different milk production 

levels. Figures based on 4.0 % milk fat, 3.4% milk protein, and ration quality 0.6. Source Chamberlain 

and Wilkinson (1996). 

The meeting of metabolic demands for lactation is made more challenging by the rapid 

onset of milk production at, or immediately before calving (Tucker, 1981), and a concurrent 

decrease in feed intake (Grant and Albright, 1995). The result is a period of negative energy 

balance in the immediate post-calving period, during which body energy stores are mobilized 

to meet demand (Figure 3); which is associated with increased risk of health disorders 

(Cameron et al., 1998, Drackley, 1999, Ospina et al., 2010b). Cows also experience immune 

suppression around calving, which increases the risk of infectious diseases such as mastitis and 

metritis (Goff and Horst, 1997, Drackley, 1999).  
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Figure 3. Generalized milk energy to feed energy relationship demonstrating the period of negative 

energy balance (energy deficit) immediately post-calving. Adapted from Hoffman et al. (2000). 

1.2 Meeting the challenge…metabolic adaptations during the transition period 

Overcoming the challenges of the transition period requires a series of complex and 

coordinated changes in metabolism and nutrient partitioning known as homeorhesis (Bauman 

and Currie, 1980). Unlike homeostasis, maintenance of physiological equilibrium, homeorhesis 

describes the orchestrated changes required to facilitate and support a change in physiological 

state (Bauman and Currie, 1980), change such as that from pregnancy to lactation.  

Some of the most important metabolic pathways under homeorhetic control during the 

transition period are summarised in Figure 4. Changes in energy and protein metabolism 

include (1) increased lipolysis and decreased lipogenesis, (2) increased glucose production 

through gluconeogenesis and glycogenolysis, (3) increased use of lipids, and decreased use of 

glucose, for energy, and (4) increased mobilisation of protein reserves (Bauman and Currie, 

1980). Changes to calcium metabolism are mediated by increased release of parathyroid 

hormone (PTH) and subsequent activation of vitamin D3 to 1,25-dihydroxyvitamin D3 in the 

kidney, which in turn leads to (1) increased intestinal absorption of calcium, (2) increased 

resorption of calcium from bone, and (3) decreased excretion of calcium by the kidney (Degaris 

and Lean, 2008). 
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Figure 4. Summary of important metabolic processes under homeorhetic control during the transition 

period. Adapted from Parkinson et al. (2019). A.A. = amino acids; BHBA = β-hydroxybutyrate; Ca = 

calcium; GIT = gastrointestinal tract; Inc. Ox = incomplete oxidation; NEFA = non-esterified fatty acids; 

PTH = parathyroid hormone; TAG = triglycerides; Vit D3 = vitamin D3; VLDL = very-low-density 

lipoprotein. 

Of these processes, mobilisation of stored energy from adipose tissue as non-esterified 

fatty acids (NEFA) is particularly important. Mobilised NEFA are transported via the blood 

stream to the mammary gland for milk fat synthesis, or to the liver where they undergo (1) 

complete oxidation via the TCA cycle to produce energy in the form of adenosine triphosphate 

(ATP), (2) partial oxidation to ketone bodies (β-hydroxybutyrate (BHBA), acetone and 

acetoacetate) which can be used as an energy source by peripheral tissues (heart, kidney, 

skeletal muscle, mammary gland and gastrointestinal tract) (Heitmann et al., 1987), or (3) re-

esterification to form triglycerides, which can either be stored in the liver or exported as very- 

low-density lipoprotein (VLDL). 

1.3 When things go wrong…metabolic disorders 

Metabolic disorders occur when one or more homeorhetic controls fail. The most 

commonly described metabolic disorders in dairy cows are the result of perturbed energy and/or 

lipid metabolism (ketosis/acetonaemia/hyperketonaemia) and mineral metabolism 

(hypocalcaemia and hypomagnesaemia). The pathophysiology of these disorders is complex, 

and is the focus of several excellent reviews (Herdt, 2000, Degaris and Lean, 2008). It is well 

accepted that many metabolic processes are intricately linked, and that many metabolic 

disorders are inter-related and often occur simultaneously (Curtis et al., 1985, Lean and Degaris, 

2010). There is also increasing evidence that the pathophysiologies of metabolic and infectious 
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diseases are closely linked (Degaris and Lean, 2008, Sordillo and Raphael, 2013, Sordillo, 

2016). 

Metabolic disorders can be either clinical (associated with observable signs of illness) 

or subclinical (effectively “invisible”). Returning to the analogy of the Tour de France (Figure 

5), a cow that develops a clinical metabolic disorder is like a cyclist that falls off their bike (the 

red cow), while a cow that develops a subclinical metabolic disorder is like a cyclist who has 

an imperceptible wobble at the beginning of the race, and goes on to finish a shorter race over 

a lower mountain. 

 

 

Figure 5. Differences in the health and performance of healthy cows (blue), cows that develop a 

subclinical metabolic disorder (orange), and cows that develop a clinical metabolic disorder (red) during 

the transition period. The analogy is based on the fact that during the early lactation period, dairy cows 

have energy requirements comparable to those of cyclists competing in the hill stages of the Tour de 

France.  

1.3.1 Clinical metabolic disorders 

Clinical metabolic disorders are relatively rare, and incidence rates vary significantly 

between farms (Pryce et al., 2016). The clinical signs and median incidences of ketosis, 

hypocalcaemia and hypomagnesaemia are summarised in Table 1. Many of the clinical signs 

associated with metabolic disorders (such as decreased appetite and milk production) are non-

specific, making accurate diagnosis difficult, even for experienced veterinary practitioners. 

Definitive diagnosis is made more complicated by the fact that multiple metabolic disorders 

can occur simultaneously.  
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Table 1. Clinical signs and average incidences of the most common clinical metabolic disorders 

affecting dairy cows in early lactation. Clinical signs compiled from Scott et al. (2011), 

Parkinson et al. (2019) and the author’s clinical experience. 

Disorder Alternative 
Name 

Clinical Signs Median 
incidence* 

Ketosis Acetonaemia 
Hyperketonaemia 

↓ milk production, ↓ appetite, weight loss, 
acetone smell on breath, neurological signs 
(excitement, licking, chewing, aggression, 
incoordination)  

3.30% 

    

Hypocalcaemia Milk fever 

Stage 1: ↓ milk production, ↓ appetite, ↓ rumen 
motility, neurological signs (hyperexcitability, 
fine muscle tremors, ataxia/gait abnormalities), 
dry faeces and constipation 
Stage 2: sternal recumbency, depression, ‘S’-
bend in neck, dry muzzle and cold extremities, 
↓ temperature, ↑ heart rate (weak), rumen stasis 
and bloat 
Stage 3: lateral recumbency, coma progressing 
to death 

2.82% 

    

Hypomagnesamia 
Tetany 
Grass tetany 
Grass staggers 

↑ heart rate (strong), ↑ temperature, 
neurological signs (hyperexcitability, 
aggression, teeth grinding, hypersalivation, 
muscle and ear twitching) progressing to 
ataxia, incoordination, recumbency, tetanic 
muscle spasm, seizures and death 

0.15% 

* Incidence reported as percent per cow per year. Source: Pryce et al. (2016). 

1.3.2 Sub-clinical metabolic disorders 

While not associated with obvious clinical signs, subclinical metabolic disorders still 

have significant negative effects on animal health, welfare and performance. Diagnosis of 

subclinical disorders is based on clinical pathology testing of biofluids such as blood, milk 

and/or urine. The prevalence of subclinical disorders is significantly higher than that of clinical 

disorders. For example, the herd-level prevalence of subclinical ketosis in western Europe has 

been reported to be 41.0%, compared with just 1.6% for clinical ketosis (Berge and Vertenten, 

2014). Similarly, Roberts and McDougall (2019) recently estimated the mean herd-level 

prevalence of subclinical hypocalcaemia in New Zealand to be 52%, much higher than the 2% 

prevalence of clinical hypocalcaemia previously reported by the same research group 

(McDougall, 2001). For this reason, clinical metabolic diseases are often seen as being “the tip 

of the iceberg”. 

Arguably the most important aspect of subclinical disorders is their associations with 

other adverse health, fertility and production outcomes. Compared to normocalcaemic animals, 
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cows with subclinical hypocalcaemia have been shown to, (1) have reduced immune function 

(Martinez et al., 2012), (2) be at greater risk of developing clinical diseases such as ketosis, 

metritis, endometritis, retained foetal membranes and abomasal displacement  (Martinez et al., 

2012, Ribeiro et al., 2013, Rodríguez et al., 2017), (3) have reduced feed intake (Hansen et al., 

2003) and rumen contractility (Jørgensen et al., 1998, Hansen et al., 2003), and (4) suffer an 

exaggerated  degree of negative energy balance (Martinez et al., 2012, Ribeiro et al., 2013). 

Similarly, subclinical ketosis is associated with (1) reduced reproductive performance (Ospina 

et al., 2010a, Compton et al., 2014), (2) increased risk of clinical diseases such as abomasal 

displacement and metritis (LeBlanc et al., 2005, Ospina et al., 2010b, Compton et al., 2014), 

(3) decreased milk production (Duffield et al., 2009, Ospina et al., 2010a, McArt et al., 2012), 

and (4) an increased risk of culling (Ospina et al., 2010b, Seifi et al., 2011, McArt et al., 2012). 

Oetzel (2012) estimated that each case of subclinical hypocalcaemia costs producers 

approximately $125 USD, while the cost of a single case of subclinical hyperketonaemia has 

been estimated to be $289 USD (McArt et al., 2015). 

1.4 Genetic Selection for improved metabolic health 

Metabolic health traits are complex and are influenced by both genetic and 

environmental effects. For the purposes of animal breeding, we are mostly interested in the 

proportion of genetic effects that can be passed on from one generation to the next (known as 

the additive genetic effect). This is summarised by the equation 

𝑃𝑃 = 𝐴𝐴 + 𝐸𝐸 

where P = phenotype, A = additive genetic effect and E = environmental effects. 

Quantitative geneticists use mathematical models to estimate the additive genetic and 

environmental effects. The additive genetic effect is also known as the estimated breeding value 

(EBV) of an animal. The relative importance of genetic and environmental effects varies 

depending on both the trait and the population being studied. The proportion of phenotypic 

variation (σ2𝑃𝑃) that can be explained by the additive genetic variance (σ2𝐴𝐴) is termed the 

heritability (h2).  

ℎ2 =
σ2𝐴𝐴
σ2𝑃𝑃

 

The mathematical model most commonly used to estimate breeding values is best linear 

unbiased prediction (BLUP); a linear mixed model which can be summarised by the equation 

𝑦𝑦 = 𝑋𝑋𝑋𝑋 + 𝑍𝑍𝑍𝑍 + 𝑒𝑒 
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where y is a vector of phenotypic observations, b is a vector of fixed effects (e.g. herd-year-

season, age, parity, stage of lactation etc.), u is a vector of random genetic effects, e is a vector 

of the random residual effects, and X and Z are design matrices allocating phenotypes to b and 

u, respectively. The solutions to u are the EBVs of individuals. 

Breeding values for metabolic health traits are commercially available in many 

countries, including the USA (Council on Dairy Cattle Breeding, 2018), Germany and Austria 

(VIT, 2020), and the Scandinavian countries (Nordic Cattle genetic Evaluation, 2019). The 

phenotypes used in these genetic evaluations are predominantly producer and/or veterinarian 

recorded health data (Johansson et al., 2008, Egger-Danner et al., 2012, Parker Gaddis et al., 

2014). Although widely available, the usefulness of these phenotypes is limited by (1) 

underreporting and inconsistent recording (Østerås et al., 2007), (2) the potential for 

misdiagnoses, and (3) the fact that trait definitions are often restricted to binary clinical disease 

events which inherently do not capture important information on subclinical disorders. 

Consequently, heritability estimates for metabolic health traits are generally low (Pryce et al., 

2016) (Figure 6).  

 

Figure 6. Heritability estimates for clinical metabolic diseases in dairy cows, reported in the literature 

between 1995 and 2015. Median figure labelled and shown as horizontal line, interquartile range as box, 

and range as whiskers. Source: Pryce et al. (2016). 

There is therefore, much interest in identifying accurate and objective phenotypes for 

use in genetic evaluations of metabolic health. Such phenotypes are relatively expensive and 

difficult to measure, making them unsuitable for use in traditional genetic evaluations. They 

are, however, good candidates for genomic selection. 

19



1.4.1 Genomic selection 

Traditional quantitative genetic models rely on pedigree information to estimate the 

genetic variances of traits. This approach has been extremely successful, however large 

amounts of phenotypic and pedigree information from many thousands of individuals are 

required to accurately estimate genetic parameters. The reliability of a bull’s breeding value 

(how close the estimated breeding value is to the animal’s true breeding value) is a function of 

both the heritability of the trait and the number of progeny with phenotypic records (Gonzalez-

Recio, 2014). Current Australian breeding value reliabilities for milk production (highly 

heritable) and fertility (lowly heritable) traits are shown in Table 2. 

Table 2. Average reliabilities of Australian breeding values for milk production and fertility 

traits for first proof bulls (between 70 and 100 progeny with phenotypic data) and proven bulls 

(> 200 progeny with phenotypic data). (Source: Datagene, Bundoora, Australia) 

Trait 

First Proof: 

Small progeny group 

(70 – 100 daughters) 

Proven: 

Large progeny group 

(> 200 daughters) 

Milk production 92% 97% 

Fertility 86% 93% 

 

Genomic selection (GS) replaces or augments pedigree information with DNA markers 

spread across the genome to predict the genetic merit of an individual (Meuwissen et al., 2001). 

Firstly, a prediction equation is created using a reference population for which both genotypic 

and phenotypic information are known. This prediction equation can then be used to estimate 

genomic breeding values for selection candidates, for which only genomic information is 

known (Figure 7). One of the most exciting benefits of GS over traditional pedigree-based 

genetic evaluations is that significant genetic improvement can be achieved in lowly-heritable 

traits, even with a relatively small reference population (Calus et al., 2013). This makes it an 

ideal breeding tool for expensive and difficult-to-measure traits, such as residual feed intake 

(Pryce et al., 2012), heat tolerance (Nguyen et al., 2016) and potentially, metabolic health 

(Chesnais et al., 2016). 

The accuracy of GS is affected by several factors, including (1) the effective population 

size, (2) the size of the reference population, (3) the heritability of the trait, and (4) the genetic 

architecture of the trait (Daetwyler et al., 2008, Meuwissen Theo, 2009, Hayes et al., 2010, 

Gonzalez-Recio et al., 2014). 
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Figure 7. In genomic selection, a prediction equation is constructed using data from a genotyped 

reference population with high quality phenotypic information. This prediction equation can then be used 

to estimate genomic breeding values for selection candidates for which only genomic information is 

available.    

1.5 Metabolic phenotypes of metabolic health 

1.5.1 Traditional serum metabolic profiles 

Serum metabolic profiles were first proposed in the early 1970s as an early warning 

system for metabolic perturbations in dairy cows (Payne et al., 1970). Metabolic profiling 

involves measuring the concentrations of a suite of biomarkers in serum which provide 

objective information on the nutritional status and metabolic health of an animal (Macrae et al., 

2006). A biomarker is an objective and measurable indicator and/or predictor of any biological 

state or process, including normal biological processes, pathological processes, responses to 

environmental exposure, and/or pharmacologic responses to a therapeutic intervention 

(National Institutes of Health, 2001). Biomarkers can include amongst other things, DNA, 

RNA, proteins (including enzymes), and/or small metabolites.  

Commonly used biomarkers in metabolic profiling include those associated with 

energy balance (BHBA and NEFA), macro-mineral status (Ca and Mg), protein nutritional 

status (urea and albumin) and immune status (globulins and albumin to globulin ratio (A:G)) 

21



(Whitaker, 2004, Anderson, 2009). Quantification of these biomarkers is most commonly done 

using colourimetric assays, based on reagents that undergo a measurable and proportional 

colour change in the presence of the analyte.  

Biomarker concentration thresholds (i.e. biomarker concentrations, above or below 

which adverse health, reproductive and/or production outcomes are more likely to be seen) are 

determined using epidemiological studies. In clinically healthy animals, subclinical ketosis has 

been defined as a blood BHBA concentration > 1.2 mmol/L (Ospina et al., 2010b, Compton et 

al., 2014); subclinical hypocalcaemia as blood calcium concentration < 2.00 mmol/L (Degaris 

and Lean, 2008); and subclinical hypomagnesaemia as blood magnesium concentration < 0.62 

mmol/L (Anderson, 2009). Optimal concentration ranges for some of the most common serum 

metabolic profile biomarkers are shown in Table 3. 

Table 3. Upper and lower concentration thresholds for serum biomarkers commonly used for 

metabolic profile analyses. 

  Optimum Concentration of Serum Metabolites 

Metabolite Reference Lower Threshold Upper Threshold 

BHBA 
(McArt et al., 2012, 

Compton et al., 2014) - 1.2 mmol/L 

NEFA (Ospina et al., 2010a) - 0.7 mmol/L 

Ca (Degaris and Lean, 2008) 2.0 mmol/L - 

Mg (Anderson, 2009) 0.62 mmol/L - 

Urea (Butler et al., 1996, Macrae 
et al., 2006) 

1.7 mmol/L 6.78 mmol/L 

Albumin (Whitaker, 2004) 30 g/L - 

Globulin (Whitaker, 2004) - 50 g/L 

 

Heritability estimates for biomarker traits tend to be higher than those for traditional disease 

record traits. For example, heritability estimates for BHBA range from 0.07 (Tsiamadis et al., 

2016) to 0.40 (Oikonomou et al., 2008), compared to 0.01 (Kadarmideen et al., 2000) to 0.16 

(Heringstad et al., 2005) for clinical ketosis records. Promisingly, Rius-Vilarrasa et al. (2018) 

have reported favourable genetic correlations between BHBA and acetone measurements, and 

clinical ketosis records. Furthermore, inclusion of BHBA and acetone measurements as 

indicator traits for metabolic disorders, in the Nordic Cattle Genetic Evaluation, has led to 

breeding values with increased reliability (Rius-Vilarrasa et al., 2018). 
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1.5.2 Fourier transform mid-infrared spectroscopy of milk 

Fourier transform mid-infrared (MIR) spectroscopy is a rapid, non-destructive 

analytical technique which exploits inherent differences in the way electromagnetic waves 

interact with matter. Briefly, when a beam of radiation in the mid-infrared region (2,500-25,00 

nm) is shone through a substance, different functional groups within the molecules in that 

substance absorb different wavelengths of radiation. Therefore, depending on the molecules 

present in a sample, some frequencies of MIR radiation are absorbed, others are partially 

absorbed, and others are not absorbed at all. The intensity of absorption (y-axis) versus 

wavelength (x-axis) makes up the absorption spectra of the substance (Pasquini, 2003), which 

can be considered its “molecular fingerprint”. 

MIR spectroscopy is the worldwide method of choice for determining the quality and 

composition (i.e. fat, protein and lactose percentage) of liquid milk, performed as part of routine 

milk recording (Grelet et al., 2015). A representative MIR absorbance spectrum from liquid 

milk is shown in Figure 8.  

 

Figure 8. Representative Fourier transform mid-infrared (MIR) absorbance spectrum of liquid milk. 

Regions associated with water absorption have been removed. Annotations show molecular bonds which 

absorb MIR radiation at given wavelengths. Adapted from Grelet et al. (2015). 

In addition to information about major milk components, milk MIR spectral data has 

been shown to contain valuable latent biochemical information about fine milk composition 

(Gengler et al., 2016). This information has shown promise as the basis for novel, milk-based 

phenotypes for use in genetic evaluations for improved product quality, animal health, and 

reduced environmental impact (De Marchi et al., 2014, Gengler et al., 2016). In the context of 

this thesis, of particular interest are MIR spectral predictions of measured energy balance 
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(McParland et al., 2011, McParland et al., 2012), and the concentration of ketone bodies in milk 

(de Roos et al., 2007, van Knegsel et al., 2010, Grelet et al., 2016) and serum (Gelé et al., 2015, 

Belay et al., 2017, Pralle et al., 2018). 

The approach for MIR-based phenotyping is similar to that described previously for 

genomic selection. Firstly, a prediction equation is created using detailed phenotypic and MIR 

spectral data collected from a reference population. This equation is then used to predict 

phenotypes for other animals using spectra obtained from milk recording. In Australia, 

approximately 46% of cows participate in routine milk recording (Pryce et al., 2018), however, 

since 2001 there has been a decreasing trend in herd participation (Gonzalez-Recio et al., 2014). 

As more milk-recording laboratories upgrade to MIR technology, MIR spectral data could 

become a cost-effective way to “scale-up” high-value phenotypes for complex traits such as 

metabolic health. Furthermore, if sufficiently accurate, MIR-predicted phenotypes could also 

be a valuable source of animal health data for producers, nutritionists and veterinarians, offering 

a potential paradigm shift for milk-recording into the future.  

1.5.3 Metabolomics: next generation metabolic profiling 

 Metabolomics involves the high-throughput, synchronous characterisation of the small 

metabolites in a biological matrix (Wishart, 2008). These metabolites are known collectively 

as the metabolome, and provide a snapshot of the metabolic state of an organism at a given 

point in time. In dairy cows, the metabolome is the end-product of complex interactions 

between host genetics, the rumen microbiome, and the environment. 

The most commonly used analytical techniques in metabolomics are proton nuclear 

magnetic resonance spectroscopy (1H NMR), and mass spectroscopy coupled with either gas 

or liquid chromatography (GC-MS and LC-MS, respectively). While mass spectrometry-based 

techniques are more sensitive and specific, NMR methods have the advantage of being (1) non-

destructive, (2) reproducible, (3) higher-throughput and (4) inherently quantitative.  

The principles of 1H NMR spectroscopy are summarised in Figures 9 and 10. Briefly, 

all atomic nuclei possess both charge and spin, and subsequently each has their own magnetic 

moment (i.e. each atomic nucleus acts as a tiny magnet). Under normal conditions, the 

orientations of these nuclear magnetic fields are randomly distributed (Figure 9a). However, 

when placed in an external magnetic field (designated B0), these individual nuclear magnetic 

fields become aligned in either the same or opposite direction as B0 (Figure 9b).  
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Figure 9. Representation of the spin (red arrow) and direction of magnetic field (blue arrow) of atomic 

nuclei in the absence (a) and presence (b) and an external magnetic field (B0). Adapted from diagrams 

produced by Dr A. Maher (2016).   

The aligned nuclei can exist in 2 distinct energy states; a low-energy state (α) and a 

high-energy state (β). Applying an external energy source (in NMR spectroscopy this is a 

radiofrequency (RF) pulse) causes nuclei to jump from their low energy state to their high-

energy state; a phenomenon known as resonance (Figures 10a and 10b). The amount of energy 

required to achieve resonance depends on the electromagnetic environment around the nucleus. 

For example, nuclei that are surrounded by electrons are said to be “shielded” and require more 

energy to reach resonance than so-called “de-shielded” nuclei that are not surrounded by 

electrons. When the external energy source is removed, nuclei relax and return to their low-

energy state via a spinning motion (Figure 10d). This, in turn, generates a detectable 

electromagnetic signal known as free induction decay (FID), the magnitude of which is directly 

proportional to the energy required to reach resonance.  
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Figure 10. Representation of nuclear magnetic resonance; (a) an atomic nucleus aligned with an external 

magnetic field and in a low energy state (α), (b) application of an external radiofrequency (RF) pulse at 

90° leading to excitation to (c) an excited or high-energy (β) state, and (d) relaxation back to the low-

energy state leading to generation of free induction decay (FID) signal. Adapted from diagrams produced 

by Dr A. Maher (2016). 

In 1H NMR, each proton in a sample produces a signal and the overall FID from a 

sample is a summation of all of the signals emitted by all protons present. The FID can then be 

Fourier-transformed to produce a spectrum (Figure 11). The number, shape and location of 

peaks on an 1H NMR spectrum depends on both the number of protons present in the sample, 

and the molecular environments around these protons (e.g. the number of protons attached to 

adjacent carbon atoms). A 1H NMR spectrum therefore contains detailed information about the 

molecular structure of hydrogen-containing compounds in the sample being analysed. This 

makes it an ideal analytical technique for the study of organic compounds. The intensity of 

peaks is directly proportional to abundance, meaning NMR spectroscopy is inherently 

quantitative. Examples of FIDs and corresponding NMR spectra derived from both simple and 

complex samples are shown in Figure 11. 
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Figure 11. Examples of free induction decay (FID) signals, and corresponding spectra following Fourier-

transformation, derived from nuclear magnetic resonance spectroscopy of (a) simple and (b) complex 

samples. Figure (c) shows the 1H NMR spectrum of β-hydroxybutyrate (BHBA), including peak 

assignments for different protons, and figure (d) shows the location of BHBA peaks relative to an internal 

standard (sodium trimethylsilylpropanesulfonate (DSS)) in a representative 1H NMR spectrum derived 

from bovine serum. Adapted from diagrams produced by Dr A. Maher (2016), raw BHBA spectral file 

obtained from HMDB (Wishart et al. 2009), and peak annotations obtained from the Chenomx NMR 

suite software v.8.4 (Chenomx Inc., Edmonton, AB, Canada). 

While a traditional metabolic profile consists of approximately 10 biomarkers, modern 

metabolomic techniques provide quantitative or semi-quantitative characterisation of tens 

(NMR) to thousands (LC-MS) of metabolites. Such high-resolution data offers exciting 

opportunities to better understand and characterise the complex physiological and biochemical 

processes taking place during the transition period (Kenéz et al., 2016, Ceciliani et al., 2018). 

This, in turn, can facilitate identification of novel metabolic phenotypes (metabotypes) 

associated with existing health phenotypes. For example, Sun et al. (2014) used 1H NMR 

metabolomics to identify 25 metabolites in serum that were differentially expressed in cows 

with and without clinical and sub-clinical ketosis. Furthermore, given the limitations of existing 

phenotypes, metabolomic studies could be used to define completely novel metabolic 

phenotypes which better characterize a successful and/or failed transition from pregnancy to 

lactation. For example, Hailemariam et al. (2014) identified a three-metabolite biomarker panel 

(carnitine, propionyl carnitine, and lysophosphatidylcholine acyl C14:0) that could predict the 

occurrence of one or more periparturient disorders (including metritis, mastitis, laminitis, or 

retained placenta) with 87% sensitivity and 85% specificity. 

1.6 This thesis 

This thesis contains four research chapters which have been published in peer-reviewed 

scientific journals. Chapter two presents a study of the genetic parameters and genomic 

prediction accuracies of “traditional” serum metabolic profile biomarkers. Chapter three 

contains description of the use of MIR spectroscopy of milk as a high-throughput phenotyping 

tool to predict biomarkers of metabolic health; and chapters four and five present studies on 

the use of 1H NMR metabolomics to (1) better characterize existing metabolic health 

biomarkers, and (2) identify novel metabolic health biomarkers. Finally, chapter six presents 

a general discussion of the findings of this research, and how they might be integrated in order 

to develop a breeding value for metabolic resilience which is sufficiently accurate to be used 

by the Australian dairy industry. 
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Figure 12. Outline of this thesis, including chapters published in peer-reviewed journals (chapters 2 to 5, 

inclusive) and the general discussion (chapter 6).    
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ABSTRACT

In this study, we estimated genetic parameters and 
genomic prediction accuracies of serum biomarkers of 
health in early-lactation dairy cows. A single serum 
sample was taken from 1,393 cows, located on 14 farms 
in southeastern Australia, within 30 d after calving. 
Sera were analyzed for biomarkers of energy balance 
(β-hydroxybutyrate and fatty acids), macromineral 
status (Ca and Mg), protein nutritional status (urea 
and albumin), and immune status (globulins, albumin-
to-globulin ratio, and haptoglobin). After editing, 
47,162 SNP marker genotypes were used to estimate 
genomic heritabilities and breeding values (GEBV) 
for these traits in ASReml. Heritabilities were low 
for β-hydroxybutyrate, fatty acids, Ca, Mg, and urea 
(0.09 ± 0.04, 0.18 ± 0.05, 0.07 ± 0.04, 0.19 ± 0.06, 
and 0.18 ± 0.05, respectively), and moderate for albu-
min, globulins, and albumin-to-globulin ratio (0.27 ± 
0.06, 0.46 ± 0.06, and 0.41 ± 0.06, respectively). The 
heritability of haptoglobin concentration was close to 
0. The magnitude of genetic correlations between traits 
(estimated using bivariate models) varied considerably 
(0.01 to 0.96), and standard errors of these correlations 
were high (0.02 to 0.44). Interestingly, the direction 
of most genetic correlations was favorable, suggesting 
that selecting for more optimal concentrations of one 
biomarker may result in more optimal concentrations 
of other biomarkers. Correlations between biomarker 
GEBV and existing breeding values for survival, so-
matic cell count, and daughter fertility were small to 
moderate (0.07 to 0.45) and favorable, whereas correla-
tions with breeding values for milk production traits 
were small (≤0.15). Accuracies of GEBV were evalu-
ated by using 5-fold cross validation, and by calculating 
accuracies from prediction error variances associated 

with the GEBV. Accuracies of GEBV predicted using 
5-fold cross validation were low (0.05 to 0.27), whereas 
the means of individual accuracies were greater, rang-
ing from 0.31 to 0.51. Although increasing the size of 
the reference population should theoretically improve 
accuracies, our results suggest that genomic prediction 
of health biomarkers may allow identification of cows 
that are less susceptible to diseases in early lactation.
Key words: biomarker, health, metabolic stability, 
immune response, energy balance

INTRODUCTION

Improved animal health and resilience are increas-
ingly important breeding objectives for the dairy 
industry (Boichard and Brochard, 2012). Most dis-
ease events affecting dairy cows occur in the first 30 
d after calving (LeBlanc et al., 2006). Many of these 
diseases are associated with metabolic disorders such 
as ketosis and hypocalcemia (DeGaris and Lean, 2008; 
Ospina et al., 2010; McArt et al., 2013), which can 
have deleterious effects on animal health and welfare 
and farm profitability (Suthar et al., 2013; McArt et 
al., 2015). Although heritability estimates of metabolic 
disorders are generally low (Uribe et al., 1995; Pryce et 
al., 2016), sufficient genetic variation exists to indicate 
that improvement in metabolic health can be achieved 
through genetic selection. Furthermore, several authors 
have reported favorable genetic correlations between 
different metabolic disorders (Heringstad et al., 2005; 
Jamrozik et al., 2016) and between metabolic disorders 
and diseases such as mastitis and reproductive disorders 
(Lyons et al., 1991; Oikonomou et al., 2008a). These 
relationships suggest that selecting for improvements in 
metabolic health may lead to improvements in overall 
animal health.

Phenotypes used to investigate the genetic param-
eters of health traits include producer- or veterinarian-
recorded health data (Neuenschwander et al., 2012; 
Parker Gaddis et al., 2014; Egger-Danner et al., 2015) 
and biomarkers of health measured in blood or milk 
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(Koeck et al., 2014; Tsiamadis et al., 2016a; Cecchinato 
et al., 2018). Health data have the advantage of being 
widely available, but their usefulness is often limited by 
underreporting or inconsistent recording, and by the 
fact that trait definitions are often restricted to binary 
clinical disease events (Østerås et al., 2007). In contrast, 
biomarker concentrations provide more accurate and 
objective phenotypes and have continuous distributions 
that enable the identification of both clinical and sub-
clinical health disorders. Subclinical health disorders 
are important because of their relatively high preva-
lence and significant negative effects on animal welfare 
and performance (Macrae et al., 2006; McArt et al., 
2012; Suthar et al., 2013). Commonly used biomarkers 
include those associated with energy balance (BHB and 
fatty acids), macromineral status (Ca and Mg), protein 
nutritional status (urea and albumin), and immune 
status (globulins and albumin-to-globulin ratio, A:G) 
(Whitaker, 2004; Anderson, 2009). Although extremely 
valuable, collecting such phenotypes is time consum-
ing and costly, and the collection process is invasive to 
the animal, making their use impractical in traditional 
large-scale genetic evaluations, yet good candidates for 
genomic prediction.

Genomic selection offers exciting potential applica-
tion for achieving genetic improvement in economically 
important but difficult-to-measure and lowly heritable 
health traits, by using data obtained from relatively 
small genotyped reference populations with high-
quality phenotypic data (Boichard and Brochard, 2012; 
Egger-Danner et al., 2015; Abdelsayed et al., 2017). 
Examples include genomic selection for residual feed 
intake (Pryce et al., 2012), tolerance to heat (Nguyen et 
al., 2016), resistance to bovine tuberculosis (Tsairidou 
et al., 2014), and enhanced immune response (Thomp-
son-Crispi et al., 2012a).

The aims of this study were to estimate (1) the 
genetic parameters of serum biomarkers of health in 
early-lactation dairy cows using data collected from 
a genotyped female reference population, and (2) the 
accuracy of genomic predictions of serum biomarker 
concentrations. If sufficiently accurate, genomic selec-
tion for improved metabolic health offers the potential 
to provide permanent and cumulative improvements 
in dairy cow health and resilience, thereby increasing 
animal welfare and farm profitability.

MATERIALS AND METHODS

All procedures undertaken in this study were con-
ducted in accordance with the Australian Code of 
Practice for the Care and Use of Animals for Scientific 
Purposes (NHMRC, 2013). Approval to proceed was 
granted by the Agricultural Research and Extension 

Animal Ethics Committee of the Department of Jobs, 
Precincts and Resources Animal Ethics Committee 
(Attwood, Victoria, Australia), and the Tasmanian 
Department of Primary Industries, Parks, Water and 
Environment (Animal Biosecurity and Welfare Branch, 
New Town, Tasmania, Australia).

Phenotypes: Serum Biomarkers

A single serum sample (approximately 4 mL) was 
taken from 1,393 early-lactation Holstein-Friesian cows 
from 14 farms in southeastern Australia between Au-
gust 2017 and October 2018, according to the protocol 
described in Luke et al. (2019). All cows were between 
0 and 30 DIM at the time of sampling. This DIM range 
was chosen because (1) it is the period in which 75% 
of disease events affecting dairy cattle occur (LeBlanc 
et al., 2006), and (2) all farms involved in this study 
operated a seasonal calving pattern, with large num-
bers of animals calving in a short period. This made 
making multiple visits impractical, and the aim of our 
experimental design was to maximize both the number 
of animals in the immediate postcalving period and the 
total number of animals that could be sampled in a 
single visit.

Sera were analyzed for biomarkers of energy balance 
(BHB and fatty acids), mineral status (Ca and Mg), 
protein nutritional status (urea and albumin), and im-
mune status (globulins, A:G, and haptoglobin) by Re-
gional Laboratory Services (Benalla, Victoria, Austra-
lia). The concentrations of biomarkers were determined 
using the following assays: enzymatic kinetic assays 
for BHB (McMurray et al., 1984) and urea (Wilcox 
et al., 1966); enzymatic end-point assay for fatty acids 
(proprietary formulation, Randox Laboratories, Crum-
lin, UK); arsenazo III for Ca (Janssen and Helbing, 
1991); xylidyl blue for Mg (Svoboda and Chromý, 
1971); bromocresol green for albumin (Dumas et al., 
1997); biuret for total protein (Gornall et al., 1949); 
and peroxidase activity for haptoglobin (Makimura and 
Suzuki, 1982). All assays were performed using a Kone 
20 XT clinical chemistry analyzer (Thermo Fisher Sci-
entific, Waltham, MA) with reagents supplied by Ran-
dox Laboratories for fatty acids, Ca, Mg, and urea, and 
by Regional Laboratory Services for BHB, albumin, 
total protein, and haptoglobin (Makimura and Suzuki, 
1982). Globulin concentrations were calculated as total 
protein concentration minus albumin concentration, 
and A:G as albumin concentration divided by globu-
lin concentration. Descriptive statistics of phenotypes, 
including the number of samples analyzed and optimal 
concentrations ranges for each biomarker, are shown 
in Table 1. Preliminary data analysis was undertaken 
using R version 3.6.0 (R Core Team, 2019).
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Genomic Analysis

Genotypes and Population Structure. Geno-
types for the 1,393 animals used in this study were 
provided by DataGene Ltd. (AgriBio, Bundoora, Vic-
toria, Australia). After editing using the method de-
scribed in Erbe et al. (2012), 47,162 SNP markers were 
available for genomic analyses. A genomic relationship 
matrix (GRM) was constructed according to Yang et 
al. (2010). Principal component analysis of the GRM 
was performed to examine the population structure of 
the data set. Plots of the first 5 principal components, 
which summed to a total of 37% of the variation within 
the GRM, were visually examined and no subpopula-
tions were identified, confirming that the population 
was predominantly Holstein.

Genetic Parameters. First, variance components 
were estimated for each biomarker trait using single 
linear mixed animal models in ASReml version 4.1 
(Gilmour et al., 2015). In matrix notation, the model 
used was

	 y = Xb + Zu + e,	 [1]

where y is a vector of biomarker concentrations (BHB, 
fatty acids, Ca, Mg, urea, albumin, globulins, A:G, 
haptoglobin); b is a vector of fixed effects of DIM at 
time of sampling (covariate, from 0 to 30 d, either as a 
linear, linear + quadratic, third-order orthogonal poly-
nomial, or fourth-order orthogonal polynomial), herd 
(14 levels, with a range of 10 to 254 cows per herd), 
parity (4 levels, defined as 1, 2, 3, or 4+), and date of 
sample collection (class variable with 20 levels); u is a 
vector of random genetic effects; e is a vector of the 
random residual effects; and X and Z are incidence 
matrices for b and u, respectively. It is assumed that 
var ,u GRM( ) = σu

2  var e I( ) = σe
2, where σu

2 is the genetic 

variance, σe
2 is the residual variance, and I is an identity 

matrix.
Estimated variance components were then used to 

calculate the genomic heritability of each biomarker. 
The distributions of the residuals of each model were 
checked for normality using frequency histograms. 
Residuals of models for BHB, fatty acids, and hapto-
globin were positively skewed. To fulfil the assumption 
of normality for subsequent genetic analyses, a log10 
transformation was applied to BHB and haptoglobin 
concentrations, and a square root transformation was 
applied to fatty acid concentrations.

Second, a bivariate model was used to estimate 
the genetic correlation between each pair of serum 
biomarker traits. For a given pair of biomarkers, the 
bivariate model was
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where yi = vector of observations for the ith trait, bi 
= vector of fixed effects for the ith trait, ui = vector of 
random animal effects for the ith trait, ei = residual ef-
fects for the ith trait, and Xi and Zi = incidence matri-
ces relating records of the ith trait to fixed and random 
animal effects, respectively. It was assumed that
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where Σg = additive genetic (co)variance matrix for 
animal effect with each element, defined as g11 = ad-
ditive genetic variance for direct effects for trait 1; g12 

Table 1. Number of samples (n), phenotypic means, standard deviations, coefficients of variation (CV), and optimal concentration ranges of 
serum biomarkers of metabolic health of dairy cattle in the first 30 d of lactation

Phenotype n Mean SD CV  

Optimal concentration 
of serum metabolites

  Reference
Lower 
threshold  

Upper 
threshold

BHB 1,393 0.48 0.22 0.46 — 1.2 mmol/L Compton et al. (2015)
Fatty acids 1,393 0.55 0.33 0.60 — 0.7 mmol/L Ospina et al. (2010)
Ca 1,327 2.31 0.18 0.08 2.0 mmol/L — DeGaris and Lean (2008)
Mg 1,294 0.98 0.14 0.14 0.62 mmol/L — Anderson (2009)
Urea 1,393 5.23 0.17 0.03 1.7 mmol/L — Macrae et al. (2006)
Albumin 1,294 32.79 2.95 0.09 30 g/L — Whitaker (2004)
Globulin 1,294 38.36 6.04 0.16 — 50 g/L Whitaker (2004)
Albumin:​globulin 1,294 0.88 0.17 0.19 0.84 — Kaneko et al. (2008)
Haptoglobin 779 0.27 0.30 1.11 — 1.4 g/L Pohl et al. (2015)
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= g21 = additive genetic covariance between trait 1 
and trait 2; g22 = additive genetic variance for direct 
effects for trait 2; GRM is the genomic relationship 
matrix among animals; and R = (co)variance matrix 
for residual effects, where r11 = residual variance for 
trait 1; r12 = r21 = residual covariance between trait 1 
and trait 2; and r22 = residual variance for trait 2.

Correlations Between Biomarker Genomic 
EBV and Breeding Values for Health, Fertility, 
and Production Traits. Genomic EBV (GEBV) 
for each biomarker trait were predicted using genomic 
BLUP (GBLUP) in ASReml (Gilmour et al., 2015), 
using variance components estimated from the uni-
variate model (model [1]). Published EBV for health 
(survival and SCC), daughter fertility, and milk pro-
duction (milk, fat, and protein yields), calculated using 
BLUP from pedigree, cow data, and genomics, were 
obtained from the Australian routine national genetic 
evaluations performed by DataGene Ltd. (Bundoora, 
Australia). We attempted to use the method described 
in Calo et al. (1973) to correct for the reliability of 
breeding values; however, this method led to unrealisti-
cally high correlations. For this reason, simple Pearson 
correlations between GEBV and EBV were calculated. 
Any individual breeding value (GEBV or EBV) with a 
reliability <0.1 was excluded from the analysis.

Genomic Predictions. The accuracy of genomic 
predictions was assessed in 2 ways. First, empirical 
prediction accuracy (re) was evaluated using 5-fold 
cross-validation as proposed by Legarra et al. (2008). 
This involved randomly dividing the total population 
into 5 equally sized groups or folds. Data from 1 fold 
(approximately 20% of the population) were set aside 
as a testing set. Data from the remaining 4 folds (ap-
proximately 80% of the population) formed the train-
ing set, which was used for model development. The 
resulting model was then used to predict GEBV for 
animals in the testing set. This was repeated 5 times, 
so that all animals appeared in the testing set once. 
Empirical accuracy was then calculated as the Pearson 
correlation between the predicted GEBV and actual 
phenotypic values, corrected for the fixed effects de-
scribed in model [1]. The corrected phenotypes will 
include the additive genetic and residual components 
associated with each phenotype. To calculate predicted 
accuracies of the true breeding values (rp) (as opposed 
to the EBV), the mean correlations between GEBV 
and corrected phenotypes for each cross-validation fold 
were divided by the square root of the heritability of 
the trait (Su et al., 2012).

Second, individual accuracy (ri) of individual i was 
calculated as

	 ri
i

g ii

SE
= −1

2

2σ GRM
	

where SEi is the standard error of GEBV of individual 
i, and σg

2 is the genetic variance of each trait estimated 
from model [1], adjusted for inbreeding by multiplying 
by the corresponding diagonal elements in the GRM 
for each individual (GRMii).

RESULTS

Model Selection and Genetic Parameters

We tested 4 functions of DIM as fixed effects in model 
[1]: linear, linear + quadratic, third-order orthogonal 
polynomial, or fourth-order orthogonal polynomial. 
The Akaike information criteria resulting from these 
models suggested that fatty acids was best fitted with 
linear DIM, whereas the rest of the traits were best 
fitted with the third-order orthogonal polynomial func-
tion of DIM.

Estimated genomic heritabilities obtained from 
model [1] are shown in Table 2. Heritability estimates 
for serum BHB, fatty acids, Ca, Mg, and urea concen-
trations were low, at 0.09, 0.18, 0.07, 0.19, and 0.18, 
respectively. Heritabilities of albumin, globulins, and 
A:G were higher at 0.27, 0.46, and 0.41, respectively. 
The estimated heritability of haptoglobin in our data 
set was close to zero. Standard errors for all heritability 
estimates were low (0.04 to 0.06).

Genetic and phenotypic correlations between bio-
markers, estimated from model [2], are shown in Table 
2. The magnitude of estimated genetic correlations 
varied considerably, ranging from close to 0 (BHB and 
globulin, and Ca and globulins) to −0.96 (globulins and 
A:G). With the exception of correlations between albu-
min and globulin and A:G, standard errors of all corre-
lations were relatively high (0.12 to 0.44). We observed 
significant positive genetic correlations between Ca and 
albumin (0.54 ± 0.31), Mg and urea (0.44 ± 0.22), Mg 
and albumin (0.29 ± 0.17), and urea and albumin (0.79 
± 0.16). Significant negative genetic correlations were 
observed between fatty acids and Ca (−0.82 ± 0.44), 
fatty acids and albumin (−0.29 ± 0.18), and albumin 
and globulins (−0.50 ± 0.12). The trend in the direc-
tion of genetic correlations was generally favorable; 
toward lower concentrations of BHB, fatty acids, and 
globulins, and higher concentrations of Ca, Mg, urea, 
albumin, and A:G. This was true for all genetic correla-
tions, except for those between BHB and Mg, urea and 
albumin, and fatty acids and globulins.
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The magnitude of phenotypic correlations varied 
from 0.01 (between fatty acids and Mg) to 0.44 (be-
tween Ca and albumin). Standard errors for all pheno-
typic correlations were small (≤0.03). The direction of 
phenotypic correlations was the same as the direction 
of genetic correlations for all trait pairs except BHB 
and Mg, BHB and A:G, fatty acids and albumin, fatty 
acids and A:G, and globulins and Ca. Of these, the only 
statistically significant genetic correlation was between 
fatty acids and albumin.

Correlations Between Biomarker GEBV  
and Breeding Values for Health, Fertility,  
and Production Traits

Pearson correlations between biomarker GEBV and 
EBV for survival, SCC, daughter fertility, and milk 
production traits are shown in Table 3. The magnitudes 
of correlations between biomarker GEBV and health 
and fertility EBV were low to moderate: 0.15 to 0.45 
for survival, 0.07 to 0.32 for SCC, and 0.11 to 0.37 
for daughter fertility. The direction of correlations was 
favorable for all pairs of breeding values; BHB, fatty 
acids, and globulins GEBV were negatively correlated 
with health and fertility EBV, whereas Ca, Mg, urea, 
albumin, and A:G GEBV were positively correlated 
with health and fertility EBV.

The magnitude of correlations between biomarker 
GEBV and EBV for production traits (milk, fat, and 
protein yields) were small (0.01 to 0.15). We observed 
small positive correlations between breeding values 
for milk yield and albumin (0.11), milk yield and urea 
(0.10), milk fat yield and BHB (0.15), and milk fat 
yield and urea (0.10). Small negative correlations were 
observed between the breeding values for milk yield 
and BHB (−0.10), milk yield and Mg (−0.06), milk 
protein yield and Mg (−0.13), and milk fat yield and 
Ca (−0.10).

Accuracy of Genomic Predictions

Empirical accuracies and means of individual accura-
cies of genomic predictions resulting from univariate 
models are shown in Table 4. Empirical accuracies for 
all models were low, ranging from 0.05 to 0.27, and 
increased with increasing trait heritability. Expected 
empirical accuracies of true breeding values, estimated 
by correcting empirical accuracies for trait heritabili-
ties, were between 0.20 and 0.40. Mean individual ac-
curacies were greater than empirical accuracies for all 
traits (0.31 to 0.51), but the results of the 2 methods 
were in agreement (i.e., the correlation between the 2 
sets of accuracies was 0.89).T

ab
le

 2
. 

G
en

et
ic

 p
ar

am
et

er
 e

st
im

at
es

 o
f 

se
ru

m
 b

io
m

ar
ke

rs
 o

f 
m

et
ab

ol
ic

 h
ea

lt
h 

in
 d

ai
ry

 c
at

tl
e 

in
 t

he
 f

ir
st

 3
0 

d 
of

 l
ac

ta
ti
on

, 
in

cl
ud

in
g 

he
ri

ta
bi

lit
y 

(d
ia

go
na

l)
, 

ge
ne

ti
c 

(a
bo

ve
 

di
ag

on
al

),
 a

nd
 p

he
no

ty
pi

c 
(b

el
ow

 d
ia

go
na

l)
 c

or
re

la
ti
on

s 
±

 s
ta

nd
ar

d 
er

ro
rs

It
em

B
H

B
L
og

10
Fa

tt
y 

ac
id

s S
Q

R
T

C
a

M
g

U
re

a
A

lb
um

in
G

lo
bu

lin
A

lb
um

in
:​g

lo
bu

lin

B
H

B
L
og

10
1

0.
09

 ±
 0

.0
4

0.
24

 ±
 0

.2
6

−
0.

06
 ±

 0
.4

2
0.

38
 ±

 0
.2

9
0.

21
 ±

 0
.2

8
0.

11
 ±

 0
.2

4
0.

01
 ±

 0
.2

2
−

0.
07

 ±
 0

.2
3

Fa
tt

y 
ac

id
s S

Q
R
T

2
0.

20
 ±

 0
.0

3
0.

18
 ±

 0
.0

5
−

0.
82

 ±
 0

.4
4

−
0.

20
 ±

 0
.2

1
−

0.
17

 ±
 0

.2
1

−
0.

29
 ±

 0
.1

8
−

0.
03

 ±
 0

.1
6

−
0.

05
 ±

 0
.1

6
C

a
−

0.
09

 ±
 0

.0
3

−
0.

05
 ±

 0
.0

3
0.

07
 ±

 0
.0

4
0.

21
 ±

 0
.3

3
0.

48
 ±

 0
.3

1
0.

54
 ±

 0
.2

2
−

0.
01

 ±
 0

.2
5

0.
12

 ±
 0

.2
5

M
g

−
0.

02
 ±

 0
.0

3
−

0.
01

 ±
 0

.0
3

0.
08

 ±
 0

.0
3

0.
19

 ±
 0

.0
6

0.
44

 ±
 0

.2
2

0.
29

 ±
 0

.1
7

−
0.

21
 ±

 0
.1

6
0.

25
 ±

 0
.1

6
U

re
a

0.
16

 ±
 0

.0
3

−
0.

06
 ±

 0
.0

3
0.

07
 ±

 0
.0

3
0.

06
 ±

 0
.0

3
0.

18
 ±

 0
.0

5
0.

79
 ±

 0
.1

6
−

0.
16

 ±
 0

.1
6

0.
38

 ±
 0

.1
6

A
lb

um
in

0.
08

 ±
 0

.0
3

0.
10

 ±
 0

.0
3

0.
44

 ±
 0

.0
2

0.
34

 ±
 0

.0
3

0.
25

 ±
 0

.0
3

0.
27

 ±
 0

.0
6

−
0.

50
 ±

 0
.1

2
0.

70
 ±

 0
.0

8
G

lo
bu

lin
−

0.
14

 ±
 0

.0
3

−
0.

05
 ±

 0
.0

3
0.

03
 ±

 0
.0

3
−

0.
06

 ±
 0

.0
3

−
0.

13
 ±

 0
.0

3
−

0.
31

 ±
 0

.0
3

0.
46

 ±
 0

.0
6

−
0.

96
 ±

 0
.0

2
A

lb
um

in
:​g

lo
bu

lin
0.

12
 ±

 0
.0

3
0.

07
 ±

 0
.0

3
0.

15
 ±

 0
.0

3
0.

18
 ±

 0
.0

3
0.

19
 ±

 0
.0

3
0.

63
 ±

 0
.0

2
−

0.
87

 ±
 0

.0
1

0.
41

 ±
 0

.0
6

1 L
og

10
-t

ra
ns

fo
rm

ed
 B

H
B

 c
on

ce
nt

ra
ti
on

.
2 S

qu
ar

e 
ro

ot
-t

ra
ns

fo
rm

ed
 f
at

ty
 a

ci
d 

co
nc

en
tr

at
io

n.

45



Journal of Dairy Science Vol. 102 No. 12, 2019

GENOMIC PREDICTION OF HEALTH BIOMARKERS 11147

DISCUSSION

The genetic parameters of metabolic disorders in 
early-lactation dairy cows, as defined by producer or 
veterinarian-recorded health data, have been studied 
extensively. Few studies have investigated the genetic 
parameters of serum biomarkers of health, and to the 
best of the authors’ knowledge, this is the first study 
to investigate and report the genetic parameters of a 
metabolic profile that covers a range of biomarkers 
of energy balance, macromineral status, protein nu-
tritional status, and immune status. Furthermore, we 
believe this is the first study to report the accuracies of 
genomic predictions of these traits and marks the start 
of an emerging area for genomic prediction to reduce 
early-lactation disease in dairy cows.

Heritability Estimates of Serum Biomarkers of Health

Our results indicate that genetic variation exists for 
all biomarkers studied except haptoglobin. Heritability 

estimates were consistent with the literature for Mg 
(Tsiamadis et al., 2016a), albumin, globulins, and A:G 
(Cecchinato et al., 2018). The estimated heritability of 
fatty acid concentration in our study was consistent 
with the findings of Oikonomou et al. (2008b); however, 
it should be noted that our heritability estimate is for 
square root-transformed fatty acid concentrations, not 
raw concentrations. No reports of the heritability of 
serum urea concentration were found in the literature. 
However, our results are consistent with the reported 
heritability of MUN concentration (Mitchell et al., 
2005), which is linearly correlated with serum urea 
concentration (Moore and Varga, 1996).

The genetic parameters of BHB have been more 
widely reported than those of the other biomarkers 
investigated in this study. Reported heritabilities of 
BHB concentration vary considerably, from 0.073 ± 
0.77 (Tsiamadis et al., 2016b) to 0.40 ± 0.06 (Oikono-
mou et al., 2008b). However, care must be taken when 
interpreting results because of significant differences in 
study design (in particular, stage of lactation), math-

Table 3. Pearson correlations between genomic EBV for serum biomarkers of early lactation health, and Australian breeding values for survival, 
SCC, daughter fertility, and milk, fat, and protein yields

Biomarker N

EBV

Survival SCC
Daughter 
fertility

Milk 
yield

Milk protein 
yield

Milk fat 
yield

BHBLog10
1 848 −0.15 −0.08 −0.11 −0.10 0.06 0.15

Fatty acidsSQRT
2 1,176 −0.27 −0.16 −0.20 −0.07 0.01 0.04

Ca 719 0.15 0.07 0.24 0.00 0.07 −0.10
Mg 1,129 0.21 0.15 0.25 −0.06 −0.13 0.03
Albumin 1,228 0.45 0.32 0.37 0.11 0.03 0.07
Globulin 1,313 −0.25 −0.19 −0.20 −0.02 0.06 0.03
Urea 1,161 0.38 0.23 0.26 0.10 0.05 0.10
Albumin:​globulin 1,321 0.36 0.26 0.30 0.07 −0.01 0.01
1Log10-transformed BHB concentration.
2Square root-transformed fatty acid concentration.

Table 4. Accuracies of genomic EBV for serum metabolic biomarkers including empirical accuracies for each 
of 5 cross-validation folds, mean empirical accuracy (µ), predicted accuracy of the true breeding value (μ/h), 
and the mean of individual accuracies calculated from predicted error variance (rt)

Trait

Cross-validation fold

µ μ/h rt1 2 3 4 5

BHBLog10
1 0.04 0.08 0.14 0.09 0.08 0.09 0.29 0.34

Fatty acidsSQRT
2 0.15 0.11 0.14 0.16 0.19 0.15 0.36 0.41

Calcium 0.02 0.09 0.12 −0.09 0.13 0.05 0.20 0.31
Magnesium 0.09 0.01 0.13 0.17 0.22 0.12 0.28 0.41
Urea 0.24 0.13 0.18 0.02 0.06 0.13 0.30 0.41
Albumin 0.18 0.26 0.25 0.15 0.14 0.20 0.38 0.44
Globulin 0.24 0.28 0.30 0.29 0.23 0.27 0.40 0.51
Albumin:​globulin 0.24 0.26 0.30 0.28 0.19 0.25 0.40 0.49
1Log10-transformed BHB concentration.
2Square root-transformed fatty acid concentration.
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ematical transformations of metabolite concentrations, 
and the genetic models used. Our study and results are 
most comparable to those of Weigel et al. (2017) and 
van der Drift et al. (2012), who reported heritabilities 
of 0.093 ± 0.045 for square root-transformed BHB, and 
0.17 ± 0.06 for log10-transformed BHB, respectively. 
Oikonomou et al. (2008b) demonstrated that the heri-
tability of serum BHB concentration is greatest in the 
week immediately after calving and decreases rapidly 
over the first 7 wk of lactation. In our study, only 209 
cows were in the first week of lactation at the time of 
sampling, and we expect that increasing the number of 
animals sampled during the suggested high-risk period 
will improve heritabilities.

The heritability of Ca in our data set was significant-
ly less than that reported by Tsiamadis et al. (2016a), 
who found that the heritability of serum Ca at d 1, 2, 
4, and 8 postpartum ranged from 0.23 ± 0.02 to 0.32 ± 
0.03. In adult cows, homeostatic mechanisms maintain 
serum Ca concentrations between 2.1 and 2.5 mmol/L 
(Goff, 2008). However, serum Ca concentrations decline 
in the periparturient period and reach their nadir 12 
to 24 h postcalving before rapidly returning to normal 
physiological levels once homeostatic mechanisms are 
restored (Kimura et al., 2006). It is likely that our low 
heritability estimate is the result of having sampled 
only 14 cows during this period of greatest phenotypic 
variability. Subclinical hypocalcemia, defined as serum 
Ca concentrations between 1.38 and 2.1 mmol/L and 
which increases the risk of other metabolic and infec-
tious diseases, occurs most commonly in this 12-h win-
dow (Goff, 2008). We therefore plan to collect many 
more samples from animals during this period in future 
investigations.

Our study also differed from others that report higher 
heritabilities, in that we took only a single sample from 
each animal. It is likely that taking serial samples from 
individual animals across the early-lactation period 
and using random regression models would increase 
heritability estimates. This was not possible in the 
current study because all farms operated a seasonal 
calving system with large numbers of cows calving in a 
short period, making multiple visits impractical. These 
results demonstrate the importance of careful trait defi-
nition when investigating genetic parameters of health 
traits in the transition period. We plan to collect more 
samples during the periods of highest phenotypic and 
genetic variation in the future (e.g., 0 to 1 DIM for Ca, 
0 to 7 DIM for BHB).

The heritability of haptoglobin in our data set was 
close to 0. Haptoglobin is a positive acute phase pro-
tein produced by the liver (Morimatsu et al., 1991), 
which is used as an indicator of inflammation in cattle 

(Horadagoda et al., 1999). The low genetic variance 
of haptoglobin concentration in our research was sur-
prising, especially given the relatively high heritabil-
ity of albumin, another acute phase protein produced 
by the liver (Jain et al., 2011), and of globulins and 
A:G, other indicators of inflammation (Burke et al., 
2010). One possible reason for this result is the small 
sample size (n = 779), and we consider that more data 
are required to validate this finding. An alternative to 
haptoglobin may be A:G, which has been used as a 
nonspecific indicator of immune status (Piccinini et al., 
2004). Our results indicate that A:G may be a promis-
ing biomarker for genetic selection of improved immune 
competence, similar to selecting for humoral immune 
response, which has been demonstrated to improve 
overall animal health and resilience (De La Paz, 2008; 
Thompson-Crispi et al., 2012b).

Genetic Correlations Between Serum  
Biomarkers of Health

The trend in the direction of genetic correlations 
between biomarkers was mostly favorable, suggesting 
that selection for more optimal concentrations of one 
biomarker may result in improvements in the con-
centrations of others. Optimal concentration ranges 
for health biomarkers, based on epidemiological asso-
ciations between biomarker concentrations and health, 
production, and fertility outcomes, have been studied 
and reported extensively (Whitaker, 2004; Overton et 
al., 2017) and are summarized in Table 1. Our results 
are consistent with previous studies that reported fa-
vorable genetic correlations between the occurrence of 
clinical metabolic diseases such as milk fever and ketosis 
(Heringstad et al., 2005). The most favorable correla-
tions were those of fatty acids with albumin and Ca, 
and albumin with Ca, Mg, urea, and globulins. These 
results suggest that albumin and fatty acids may be po-
tential biomarkers for early lactation health. Albumin 
is an abundant protein synthesized in the liver that is 
responsible for several important biological functions, 
such as maintaining circulating blood volume; trans-
porting metabolites, hormones, fatty acids, and other 
nutrients; and controlling biologically active concentra-
tions of Ca in the bloodstream (Majorek et al., 2012). 
Given these diverse biological functions, it follows that 
higher concentrations of albumin are genetically associ-
ated with improved animal health and fertility. Alter-
natively, it may be that a higher albumin concentration 
is an indicator of good liver function, which is known 
to be important for early lactation health (Bionaz et 
al., 2007). Fatty acid concentration is an indicator of 
negative energy balance, and elevated (>0.57 mmol/L) 
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concentrations in the first 2 wk of lactation are as-
sociated with an increased risk of subsequent negative 
health events (Ospina et al., 2010; Chapinal et al., 2012; 
Sordillo and Raphael, 2013). Selecting for animals that 
mobilize less body fat may therefore lead to a decrease 
in other early-lactation diseases.

We could find relatively few reports in the scientific 
literature of genetic correlations between metabolic pro-
file biomarkers in serum. Our results did not support 
reports of unfavorable correlations between serum BHB 
and albumin and A:G (Cecchinato et al., 2018). This 
may be because data in that study were not restricted 
to early lactation. Although the magnitude of corre-
lations in our data set ranged considerably, standard 
error estimates for many correlations were relatively 
large, and many correlations were not significantly dif-
ferent from zero. This is consistent with the findings 
of Tsiamadis et al. (2016a), who found that genetic 
correlations between Ca, P, Mg, and K concentrations 
in the first 8 d of lactation were not significantly dif-
ferent from zero. The large standard errors we report 
are likely due, in part, to the small sample size, and 
we consider that more data are required to better un-
derstand these genetic relationships. Despite this, the 
trends in our data support previous findings that some 
early-lactation metabolic disorders share some common 
genetic basis, and that there may be potential to select 
for increased resilience in the form of improved meta-
bolic stability in early lactation.

In addition to larger data sets, alternative approach-
es may be required to better understand the complex 
genetic relationships between metabolic diseases in 
early lactation. One approach is that taken by Ha et 
al. (2015), who used gene-based mapping and pathway 
analysis to demonstrate that BHB, fatty acid, and glu-
cose concentrations share genetic pathways associated 
with steroid and lipid metabolism. Another approach 
could be to use metabolomic techniques, such as liq-
uid chromatography-mass spectroscopy and nuclear 
magnetic resonance spectroscopy, in conjunction with 
genome-wide association studies, to identify novel 
biomarkers and genes associated with early-lactation 
health or disease.

Correlations Between Biomarker GEBV  
and Health, Fertility, and Milk Production  
Breeding Values

Correlations between biomarker GEBV and health 
(survival and SCC) and fertility EBV were low to 
moderate, offering further evidence that complex ge-
netic relationships exist between the etiopathology of 
metabolic, inflammatory, and fertility disorders in early 
lactation. Interestingly, all correlations were favorable, 

with more-optimal biomarker concentrations being as-
sociated with higher breeding values for survival, SCC, 
and daughter fertility.

Correlations between breeding values should be 
viewed as indicative of genetic correlations, and it 
should be noted that phenotypic data from some of the 
cows in our study may also have been used in the Data-
Gene evaluation. However, it was encouraging that our 
results were consistent with the findings of Oikonomou 
et al. (2008a), who reported favorable genetic correla-
tions between fatty acid concentrations and fertility 
traits such as calving interval and absence of reproduc-
tive problems, and those of Koeck et al. (2014), who 
reported favorable correlations between milk BHB and 
SCC, fertility, and herd life. Cecchinato et al. (2018) 
reported only nonsignificant correlations between SCC 
and BHB (−0.081 ± 0.49) and SCC and globulins 
(−0.108 ± 0.54), and nonsignificant correlations be-
tween SCC and albumin (0.423 ± 0.52) and SCC and 
A:G (0.350 ± 0.51). Again, this could be attributed 
to differences in study design and lactation period. Of 
particular interest were the moderate correlations we 
observed between health and fertility EBV, and GEBV 
for fatty acids, albumin, globulins, and A:G. These re-
sults are consistent with favorable correlations among 
these biomarkers. Multi-trait genome-wide association 
studies may help improve our understanding of these 
complex genetic relationships.

In contrast to correlations with health and fertility 
traits, correlations between biomarker GEBV and EBV 
for production traits were low (≤0.15), suggesting that 
selection for improved metabolic health in early lacta-
tion may not have a large effect on milk production. In 
contrast, Cecchinato et al. (2018) reported significant 
genetic correlations between BHB and milk yield (0.716 
± 0.21), total protein and fat percentage (−0.854 ± 
0.18), and albumin and fat percentage (−0.894 ± 0.17), 
although it should be reiterated that this study was not 
restricted to biomarker concentrations in early lacta-
tion. Belay et al. (2017) found positive genetic correla-
tions between BHB predicted from milk mid-infrared 
spectra, and milk yield (0.277 ± 0.016), milk protein 
(0.107 ± 0.017), and milk fat (0.248 ± 0.016). These 
differing results are consistent with the variability in 
reported genetic correlations between producer- or 
veterinarian-recorded metabolic diseases traits and 
milk production traits (Pryce et al., 2016). Koeck et 
al. (2014) reported a moderate genetic correlation be-
tween milk BHB concentration and producer-recorder 
clinical ketosis occurrence (0.48 ± 0.35). Such favorable 
genetic correlations between biomarker concentrations 
and clinical disease data should enable the assembly 
of much larger data sets, which are required to better 
understand these relationships.
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Accuracy of Genomic Predictions  
of Serum Biomarkers

The accuracies of genomic predictions observed are 
commensurate with a small female reference popula-
tion and low-to-moderate trait heritabilities (Gonzalez-
Recio et al., 2014). Weigel et al. (2017) reported greater 
empirical genomic prediction accuracies for BHB con-
centrations (0.29 to 0.36); however, those results are 
not comparable to results of the current study because 
their predicted phenotypes included model solutions for 
the herd-year-season contemporary group and parity, 
in addition to the GEBV; that is, their prediction was 
of the expressed phenotype. We expect that increasing 
the size of the reference population and refining trait 
definitions to maximize heritabilities should improve 
accuracies. Given the cost and logistical challenges of 
blood sampling large numbers of cows, one method to 
dramatically increase the number of phenotypes may 
be to use mid-infrared spectroscopy of milk to predict 
serum biomarker concentrations (Belay et al., 2017). 
Additionally, this may be a trait area that is suitable for 
sharing of data sets. A comparable example is genomic 
prediction of DMI using multi-country populations; for 
example, de Haas et al. (2015). They assembled a data 
set of DMI records from ~9,000 cows in 10 popula-
tions to show that genomic prediction accuracies were 
always higher when multi-country reference sets were 
used compared with within-country data sets. Finally, 
high-throughput metabolomic methods such as nuclear 
magnetic resonance spectroscopy and liquid chroma-
tography-mass spectroscopy may help to identify novel 
and more accurate biomarkers of health and disease; if 
these data can be used to facilitate identification of im-
portant genetic variants, this may also help to improve 
genomic prediction accuracies.

CONCLUSIONS

We investigated genetic parameters of serum bio-
markers of health using data collected from a genotyped 
female reference population. We found that biomark-
ers of energy balance (BHB and fatty acids), protein 
nutritional status (albumin and urea), macromineral 
status (Ca and Mg), and immune status (globulins and 
A:G) are heritable traits, and that genomic selection to 
improve the concentrations of these biomarkers should 
be possible. Of the biomarkers investigated, fatty acids, 
albumin, and A:G are of particular interest because of 
their (1) significant phenotypic associations with other 
early-lactation diseases, (2) moderate to high heritabili-
ties, (3) promising genomic prediction accuracies, (4) 
favorable estimated genetic correlations with other bio-
markers, and (5) promising correlations between GEBV 

and existing EBV for health, fertility, and production 
traits.
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ABSTRACT

Metabolic disorders in early lactation have nega-
tive effects on dairy cow health and farm profitability. 
One method for monitoring the metabolic status of 
cows is metabolic profiling, which uses associations 
between the concentrations of several metabolites in 
serum and the presence of metabolic disorders. In this 
cross-sectional study, we investigated the use of mid-
infrared (MIR) spectroscopy of milk for predicting the 
concentrations of these metabolites in serum. Between 
July and October 2017, serum samples were taken from 
773 early-lactation Holstein Friesian cows located on 4 
farms in the Gippsland region of southeastern Victo-
ria, Australia, on the same day as milk recording. The 
concentrations in sera of β-hydroxybutyrate (BHB), 
fatty acids, urea, Ca, Mg, albumin, and globulins 
were measured by a commercial diagnostic labora-
tory. Optimal concentration ranges for each of the 7 
metabolites were obtained from the literature. Animals 
were classified as being either affected or unaffected 
with metabolic disturbances based on these ranges. 
Milk samples were analyzed by MIR spectroscopy. The 
relationships between serum metabolite concentrations 
and MIR spectra were investigated using partial least 
squares regression. Partial least squares discriminant 
analyses (PLS-DA) were used to classify animals as be-
ing affected or not affected with metabolic disorders. 
Calibration equations were constructed using data 
from a randomly selected subset of cows (n = 579). 
Data from the remaining cows (n = 194) were used 
for validation. The coefficient of determination (R2) 
of serum BHB, fatty acids, and urea predictions were 
0.48, 0.61, and 0.90, respectively. Predictions of Ca, 
Mg, albumin, and globulin concentrations were poor 
(0.06 ≤ R2 ≤ 0.17). The PLS-DA models could predict 
elevated fatty acid and urea concentrations with an ac-

curacy of approximately 77 and 94%, respectively. A 
second independent validation data set was assembled 
in March 2018, comprising blood and milk samples 
taken from 105 autumn-calving cows of various breeds. 
The accuracies of BHB and fatty acid predictions were 
similar to those obtained using the first validation data 
set. The PLS-DA results were difficult to interpret due 
to the low prevalence of metabolic disorders in the data 
set. Our results demonstrate that MIR spectroscopy of 
milk shows promise for predicting the concentration of 
BHB, fatty acids, and urea in serum; however, more 
data are needed to improve prediction accuracies.
Key words: mid-infrared spectral prediction, metabolic 
profile, ketosis, energy balance

INTRODUCTION

Metabolic disorders in early lactation have signifi-
cant negative effects on dairy cow health and welfare 
as well as farm profitability (Suthar et al., 2013; McArt 
et al., 2015). The most commonly described metabolic 
disorders are ketosis, hypocalcemia, and hypomagne-
semia. Subclinical metabolic disorders, which are not 
associated with obvious clinical signs, are of particular 
interest due to their relatively high prevalence and 
significant effects on animal welfare and performance 
(Macrae et al., 2006; McArt et al., 2012; Suthar et al., 
2013). Identification of subclinical disorders can also 
allow for timely management interventions to prevent 
the development of clinical disease.

One way of monitoring the metabolic health and nu-
tritional status of dairy cows is serum metabolic profile 
testing, which employs well-established epidemiological 
associations between the concentrations of several me-
tabolites in serum and the presence of both subclinical 
and clinical metabolic disorders (Payne et al., 1970; 
Ospina et al., 2010a). The metabolites evaluated in 
metabolic profile testing vary, but often include BHB 
and fatty acids as indicators of energy balance, albumin 
and BUN as indicators of protein status, globulins as an 

Metabolic profiling of early-lactation dairy cows 
using milk mid-infrared spectra
T. D. W. Luke,1,2 S. Rochfort,1,2 W. J. Wales,3 V. Bonfatti,4 L. Marett,3 and J. E. Pryce1,2*
1Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, Victoria 3083, Australia
2School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
3Department of Economic Development, Jobs, Transport and Resources, Ellinbank Centre, 1301 Hazeldean Rd., Ellinbank, Victoria,  
3820 Australia
4Department of Comparative Biomedicine and Food Science, University of Padova, viale dell' Università 16 35020, Legnaro, PD, Italy

 

J. Dairy Sci. 102:1747–1760
https://doi.org/10.3168/jds.2018-15103
© 2019, The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Received May 23, 2018.
Accepted October 31, 2018.
*Corresponding author: jennie.pryce@​ecodev​.vic​.gov​.au

53



1748 LUKE ET AL.

Journal of Dairy Science Vol. 102 No. 2, 2019

indicator of chronic inflammatory disease, and Ca and 
Mg as indicators of macromineral status (Whitaker, 
2004; Anderson, 2009). Epidemiological studies have 
demonstrated that elevated concentrations of BHB 
and fatty acids in early lactation are associated with 
an increased risk of subsequent negative health events 
and reduced production (Ospina et al., 2010b; Chapinal 
et al., 2012; Sordillo and Raphael, 2013). Blood urea 
nitrogen concentration is of increasing interest, as it (1) 
gives an indication of RDP intake and the ratio of RDP 
to energy in the ration, and (2) has been demonstrated 
to be a useful indicator of an animal’s nitrogen utiliza-
tion efficiency and excretion (Kohn et al., 2005; Kume 
et al., 2008).

Critical concentration thresholds are used to define 
the optimum concentration range for of each metabolite 
employed in a metabolic profile test. Concentrations 
falling outside this range are associated with detri-
mental downstream health and production outcomes 
(Ospina et al., 2010b). Herd prevalence thresholds are 
similarly defined as the proportion of animals with 
metabolite concentrations outside the optimum range, 
above which detrimental herd-level health and produc-
tion outcomes are seen (Ospina et al., 2010b; Chapinal 
et al., 2012). The aim of metabolic profiling is therefore 
not necessarily to identify individual sick animals, but 
to gain objective information on the nutritional status 
and metabolic health of a herd by estimating the preva-
lence of metabolic disorders.

Despite the advantages of metabolic profile testing, 
blood testing animals on a regular basis is invasive, 
logistically challenging, and costly. Given the ready 
availability of milk, its use as a biofluid to monitor the 
health and nutritional status of dairy cows has been 
widely investigated (Hamann and Krömker, 1997). In 
early lactation a milk fat-to-protein ratio of greater than 
1.4 (Schcolnik, 2016) and 2.0 (Toni et al., 2011) have 
been described as indicators of negative energy bal-
ance and subclinical ketosis, respectively, and changes 
in milk fat-to-lactose and milk fat-to-protein ratios in 
early lactation have been suggested as early indicators 
of disease (Paudyal et al., 2016). Milk urea nitrogen is 
routinely used by nutritionists to monitor and optimize 
protein nutrition (Jonker et al., 2002; Nousiainen et al., 
2004). More recently, mid-infrared (MIR) spectroscopy 
of milk has shown promise for assessing more complex 
animal health traits (Gengler et al., 2016). Several au-
thors have demonstrated that MIR spectral data can be 
used to screen for subclinical ketosis through identifica-
tion of ketone bodies in milk (de Roos et al., 2007; van 
Knegsel et al., 2010; Grelet et al., 2016) and to estimate 
energy balance in early lactation (McParland et al., 
2011). Attempts have also been made to estimate the 
concentration of serum biomarkers of energy balance 

using milk MIR spectra (Gelé et al., 2015; Belay et al., 
2017a; Pralle et al., 2018).

The aim of our study was to determine if MIR 
spectral data, obtained from routine milk recording 
in commercial dairy herds, could be used to predict 
the concentration of metabolites routinely employed in 
serum metabolic profiling, with sufficient accuracy to 
provide useful information on the metabolic health of 
early-lactation dairy cows. We also aimed to assess the 
robustness of MIR prediction equations by validating 
our results with data collected from a herd managed 
under a different production system and in a different 
season. If sufficiently accurate, milk MIR predictions 
of serum biomarkers may help to improve the health, 
welfare, and productivity dairy cattle by (1) allowing 
early identification of metabolic disease and (2) provid-
ing high throughput and cost-effective phenotypes for 
genetic evaluation of complex animal health traits.

MATERIALS AND METHODS

All procedures were conducted in accordance with 
the Australian Code of Practice for the Care and Use 
of Animals for Scientific Purposes (National Health and 
Medical Research Council, 2013). Approval to proceed 
was obtained from the Agricultural Research and Ex-
tension Animal Ethics Committee (Department of Eco-
nomic Development, Jobs, Transport and Resources, 
Attwood, Victoria, Australia).

Sample Collection

Data Set 1. A single blood sample was taken from 
773 spring-calving Holstein-Friesian cows in early lac-
tation (between 5 and 49 DIM) on the same day as 
milk recording, between July and October 2017. The 
cows were located on 4 farms (farms A, B, C, and D) 
in the Gippsland region of southeastern Australia. All 
4 farms operated a seasonal calving system, with the 
majority of cows calving in a short period of time to 
align the peak nutritional demands of the herd with 
maximal pasture availability. The farms implemented 
a feeding system reliant on grazed pasture plus other 
forages, with more than 1 t of a cereal grain per cow per 
year fed in the parlor at milking time. Two of the farms 
(farms C and D) operated rotary milking platforms, 
which allowed blood samples to be collected during 
milking. Samples were taken immediately after milking 
on the other 2 farms. Samples were collected after the 
morning milking on farm A, after the afternoon milking 
on farm B, and during the afternoon milking on farms 
C and D.

Blood was collected from the coccygeal vein into 
10-mL serum clot activator vacutainer tubes (Becton 
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Dickinson, Franklin Lakes, NJ). Samples were allowed 
to clot for a minimum of 1 h at room temperature be-
fore centrifugation at 1,200 × g for 10 min at 18°C. All 
samples were processed within 6 h of collection. Serum 
samples were refrigerated at 4°C then transported on 
ice to Regional Laboratory Services (Benalla, Victo-
ria, Australia) within 24 h of collection. Samples were 
analyzed for concentrations of BHB, fatty acids, BUN, 
total Ca, Mg, total protein, and albumin using a Kone 
20 XT clinical chemistry analyzer (Thermo Fisher 
Scientific, Waltham, MA), with reagents supplied by 
Randox Laboratories (Crumlin, UK) for fatty acids, 
BUN, Ca, and Mg, and Regional Laboratory Services 
(Benalla, Victoria, Australia) for BHB, albumin, and 
total protein. Globulin concentrations were calculated 
as total protein concentration minus albumin concen-
tration. Milk samples were collected as part of routine 
milk recording by the Herd Improvement Co-Operative 
Australia (Maffra, Victoria, Australia). Samples were 
preserved with SomaGlo (proprietary formulation, 
Bentley Instruments, Chaska, MN) and analyzed fresh 
using MIR spectroscopy (Bentley Instruments NexGen 
FTS Combi) by TasHerd Pty Ltd. (Hadspen, Tasma-
nia, Australia).

Farm E Independent Validation Data Set. To 
test the robustness of MIR-prediction equations, a 
second independent validation data set was assembled 
in March 2018. This data set comprised a further 105 
blood and milk samples taken from cows of different 
breeds, managed under a different production system, 
and calving in a different season (autumn as opposed to 
spring). The farm was located in the Gippsland region 
of southeastern Australia, and the herd consisted of 
Jersey, Australian Red, Holstein-Friesian, and crossbred 
cows. Cows were fed a diet consisting of grazed chicory, 
a ration of pasture silage, cottonseed and canola meal, 
and a wheat-barley grain mix fed in the parlor at milk-
ing time. Blood samples were collected immediately 
after the afternoon milking. Blood and milk samples 
were analyzed using the same protocols described for 
data set 1.

Statistical Analysis

Effect of Week of Lactation, Parity and Farm 
on Metabolite Concentrations. Fixed effects mod-
els were constructed to evaluate the effect of weeks in 
milk, parity, and farm, on the concentrations of each 
metabolite:

	 yijkl = μ + WIMi + Pj + Fk + eijkl,	 [1]

where y is the metabolite concentration (BHB, fatty 
acids, Ca, Mg, urea, albumin, and globulin), µ is the 
mean, WIM is weeks in milk (from 1 to 8), P is parity 
(primiparous vs. multiparous), F is the effect of farm, 
and e is the random error term. Phenotypic correla-
tions between metabolite concentrations were investi-
gated by calculating the Pearson correlations between 
the residuals of each model.

Optimum metabolite concentration ranges were de-
fined based on thresholds obtained from the literature 
and are shown in Table 1. Each metabolite concentra-
tion for every animal was classified as being either 
within or outside the defined optimum range, thus 
converting each continuous metabolite concentration 
variable into a binary trait. The prevalence of each 
metabolic disorder was then calculated as the percent-
age of animals that had a metabolite concentration 
outside the optimum range.

MIR Predictions. All MIR spectral data analy-
sis was performed with Matlab R2017a (MathWorks, 
Natick, MA) utilizing the PLS Toolbox (Eigenvector 
Research, Manson, WA).

Preprocessing of Metabolite Concentrations. 
The distributions of serum metabolite concentrations 
were visually assessed for normality using frequency 
histograms. The fatty acid and BHB concentration 
distributions were both skewed, with lower values 
over-represented; this type of distribution leads to de-
creased accuracy in predicting high values in partial 
least squares (PLS) regression (Grelet et al., 2016), so 
a logarithmic (10) transformation was applied to BHB 

Table 1. Upper and lower concentration thresholds for serum metabolites used for metabolic profile analyses

Metabolite   Reference

Optimum concentration of serum metabolites

Lower threshold Upper threshold

BHB (mmol/L) McArt et al., 2012; Compton et al., 2015 — 1.2
Fatty acids (mmol/L) Ospina et al., 2010a — 0.7
Ca (mmol/L) DeGaris and Lean, 2008 2.0 —
Mg (mmol/L) Anderson, 2009 0.62 —
Urea (mmol/L) Butler et al., 1996; Macrae et al., 2006 1.7 6.78
Albumin (g/L) Whitaker, 2004 30 —
Globulin (g/L) Whitaker, 2004 — 50
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concentrations and a square root transformation was 
applied to fatty acid concentrations (Figure 1).

Preprocessing of Spectra. The MIR spectra were 
expressed in absorbance, with 899 spectral points be-
tween 649 and 3,998 cm−1. Preliminary analysis of the 
spectral data was conducted using principal component 
analysis. No outliers were identified in the data set. 
Spectral regions associated with the O–H bending and 
stretching regions of water were excluded (Afseth et 
al., 2010; Belay et al., 2017a). This left 538 spectral 
wavelengths between 928 and 1,596 as well as 1,693 and 
3,025 cm−1 for the subsequent chemometric analysis. 
The MIR spectra were preprocessed with Savitzky–Go-
lay second derivative transformation and smoothing, 
removal, of linear trend and autoscaling (Eigenvector, 
2018).

Calibration and Validation. The relationships be-
tween blood metabolite concentrations and milk MIR 
spectra were investigated using PLS regression analysis. 
Partial least squares discriminant analysis (PLS-DA) 
was used to classify animals as being either affected 
or not affected with a metabolic disorder based on the 
aforementioned binary metabolic profile classifications.

Calibration equations were constructed using a ran-
domly allocated subset of data set 1, which consisted 

of serum metabolic profile results and MIR spectral 
data from 579 animals (hereafter referred to as the 
calibration data set). These calibration equations were 
used for all subsequent analyses. The data from the 
remaining 194 animals from data set 1 were used for 
external validation (hereafter referred to as the random 
validation data set). The calibration and random vali-
dation data sets were designed to have a representative 
number of samples from each farm and parity category 
(primiparous or multiparous) and were balanced for 
DIM.

The number of latent variables (LV) included in 
each calibration model was based on maximizing the 
percentage of variance captured while minimizing the 
root mean square error of cross-validation (RMSECV). 
The optimum number of LV was determined for each 
calibration model by examining a plot of RMSECV as a 
function of number of LV.

Each calibration model was assessed for over-fitting 
using a permutation test with 50 iterations. Permutation 
testing of regression models involved randomly reorder-
ing the y block, and nominally assigning an incorrect 
y value to each vector of x values (Eigenvector, 2018). 
For example, with our data this involved randomly 
assigning an incorrect serum metabolite concentration 

Figure 1. (a) Frequency distribution of untransformed serum BHB concentrations, (b) serum BHB concentrations following Log10 transfor-
mation, (c) untransformed serum fatty acids, and (d) serum fatty acid concentrations following square root transformation.
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(the y value) to an MIR absorbance spectrum (a vector 
within the x block). The model was then rerun using 
the original parameters, but with the randomly aligned 
data. This process was repeated 50 times and the re-
sults obtained using the randomly assorted data were 
compared with the results of the correctly aligned data. 
A Wilcoxon signed-rank test was then used to assess 
the probability that the original model was significantly 
different from those built using the randomly assorted 
data (Eigenvector, 2018). A P-value of less than 0.05 
indicated that the original model was significantly dif-
ferent to the random models and was therefore unlikely 
to be over-fitted.

Validation was performed in 3 ways. (1) Cross-vali-
dation was performed on the calibration data set (n = 
579) using a venetian blinds method (which splits the 
data into 20 subsets and performs cross-validation on 
2 samples per subset). (2) External validation was car-
ried out using the random external validation data set 
(n = 194) and (3) external validation was done using 
the farm E independent validation data set (n = 105).

The accuracy of PLS models was assessed using the 
coefficient of determination (R2) and the root mean 
square error (RMSE). The accuracy of PLS-DA mod-
els was assessed by calculating the sensitivity, specific-
ity, classification error (CE), and the area under the 
receiver operator curve (AUC).

RESULTS

Descriptive Statistics

Details of the animals included in the analysis are 
summarized in Table 2. Of the 878 animals included in 
the analysis, 36% (315 cows) were from farm A. The 
remaining 563 animals were evenly distributed between 

the remaining 4 farms. Of the animals sampled, 78% 
(682 cows) were in the first 30 d of lactation, which is 
the period of highest risk for development of metabolic 
disorders (LeBlanc et al., 2006). The overall percentage 
of primiparous animals in the data set was 23%, with a 
range of approximately 12 to 33% between farms.

The identity of the farm had a significant effect (P 
< 0.05) on the concentration of all metabolites. The 
number of weeks after a cow had calved had a signifi-
cant effect on BHB, fatty acid, BUN, magnesium, and 
globulin concentrations. Parity had a significant effect 
on the concentration of all metabolites except those of 
fatty acids and albumin.

Descriptive statistics for the concentrations of each 
metabolite measured are summarized in Table 3. The 
distribution of metabolite concentrations in the calibra-
tion and random validation data sets were very similar; 
however, we found considerable differences in the distri-
butions of fatty acid and urea concentrations between 
the calibration data set and the farm E independent 
validation data set.

Corrected mean metabolite concentrations for each 
7-d period are shown in Figure 2. Both BHB and fatty 
acid concentrations were highest immediately postcalv-
ing and decreased over time. The concentrations of the 
remaining 5 metabolites exhibited an increasing trend 
over the 7-wk period. Calcium, urea, and albumin con-
centrations peaked at wk 7 postcalving, and globulin 
concentrations peaked at wk 5 postcalving. Magnesium 
concentrations peaked at wk 3 postcalving, then pla-
teaued.

The number and percentages of animals with me-
tabolite concentrations outside optimal ranges are 
shown in Table 4. A total of 56% (489 cows) had 1 
or more metabolites outside optimal ranges. Aber-
rant protein concentrations were the most prevalent 

Table 2. Number of cows with metabolic profiles and milk mid-infrared spectral data by farm and by data set, including stage of lactation (DIM 
means and ranges) and percentage of animals in their first lactation

Data No. of cows % Primiparous

DIM

Mean Minimum Maximum

Data set 1
  Farm A 315 27 18.3 5 49
  Farm B 132 27 20.6 5 39
  Farm C 147 12 21.2 5 39
  Farm D 179 18 29.4 6 52
Calibration and random validation data sets
  Calibration 579 22 21.6 5 49
  Random validation 194 23 22.4 5 48
Total
  Data set 1 subtotal 773 22 21.8 5 49
Independent validation data set
  Farm E 105 33 29.5 11 46
All data
  Total 878 23 22.7 5 49
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disorder observed, with 39% (339 cows) having either 
elevated serum urea (31%) or globulin (3%) concentra-
tions or low albumin (8%) concentrations. Less than 
2% of animals had serum urea concentration below 
the optimal range (<1.7 mmol/L), and this disorder 
is not discussed beyond this point. A total of 23% of 
animals (205 cows) had 1 or more energy metabolites 
outside of optimal ranges. Less than 2% (15 cows) 
had BHB concentrations greater than 1.2 mmol/L, 
with a peak incidence of 20% (2/10) at 35 DIM. A 
total of 22% (199 cows) had fatty acids concentra-
tions greater than 0.7 mmol/L, with a peak incidence 
of 67% (18/27) at 8 DIM. Of the 15 hyperketonemic 
cows, 6 did not have a concurrent elevation in fatty 
acids concentrations. The prevalence of hypocalcemia 
and hypomagnesemia were less than 2 (15 cows) and 
1% (6 cows), respectively.

Phenotypic correlations between serum metabolite 
concentrations, corrected for fixed effects outlined in 
model 1, are shown in Table 5. Significant (P < 0.01) 
positive correlations were observed between BHB and 
fatty acids (0.32), Ca and albumin (0.39), Mg and 
albumin (0.34), urea and Mg (0.1), and urea and al-
bumin (0.26). Significant negative correlations were 
noted between BHB and Ca (−0.10), fatty acids and 
Ca (−0.22), fatty acids and urea (−0.12), fatty acids 
and globulins (−0.09), Ca and globulins (−0.11), Mg 
and globulins (−0.21), urea and globulins (−0.16), and 
albumin and globulins (−0.41).

MIR Calibration and Validation

The R2 and RMSE of PLS regression models investi-
gating the relationships between blood metabolite con-

centrations and MIR spectra from milk samples are 
shown in Table 6. The R2 of cross-validation RCV

2( ) and 

random validation RRV
2( ) for serum BHB predictions 

were 0.53 and 0.48, respectively. Predictions of serum 
fatty acids concentration were slightly more accurate, 
with an RCV

2  of 0.56 and an RRV
2  of 0.61. The RMSECV 

and RMSE of random validation (RMSERV) of BHB 
and fatty acids predictions were 0.11 and 0.12, and 0.15 
and 0.14, respectively. The most promising results were 
for predictions of serum urea concentration, which had 
RCV

2  and RRV
2  of 0.90, RMSECV of 0.75, and RMSERV of 

0.82. The accuracy of models predicting serum Ca, Mg, 
and globulin concentrations were poor, with RCV

2  and 
RRV

2  values less than 0.15. The model predicting serum 
albumin concentration performed slightly better, with 
RCV

2  of 0.23 and RRV
2  of 0.17.

The accuracies of prediction models when applied to 
the farm E independent validation data set (reported 
as RIV

2  and RMSEIV) are also reported in Table 6. The 
RIV

2  of BHB and fatty acids predictions were similar to 
the RCV

2 , at 0.60 and 0.45, respectively. The RMSEIV of 
BHB and fatty acids predictions were 0.11 and 0.14, 
respectively, both very close to the respective RMSERV 
and RMSECV values. The RIV

2  for prediction of serum 
urea concentration however was only 0.35, which was 
considerably lower than the RRV

2  (0.90). The RMSEIV of 
urea prediction was 1.53 mmol/L, almost double the 
RMSERV (0.82 mmol/L). The models predicting serum 
albumin, globulin, Ca, and Mg concentrations all per-
formed extremely poorly when applied to the indepen-
dent validation data set, with RIV

2  values between 0.00 
and 0.03.

Table 3. Mean and SD (in parentheses) of metabolite concentrations for each farm, the calibration data set, and the random validation and 
independent farm E validation data sets

Data N1

Metabolite

BHB Fatty acids Ca Mg Urea Albumin Globulin

Data set 1
  Farm A 315 0.56 (0.22) 0.75 (0.33) 2.33 (0.15) 0.98 (0.11) 5.72 (1.37) 33.59 (2.23) 39.14 (5.28)
  Farm B 132 0.49 (0.19) 0.31 (0.21) 2.32 (0.12) 0.96 (0.12) 4.94 (1.52) 35.13 (2.05) 37.07 (6.22)
  Farm C 147 0.37 (0.16) 0.51 (0.29) 2.37 (0.16) 0.99 (0.10) 2.77 (0.74) 32.40 (2.13) 40.49 (5.63)
  Farm D 179 0.66 (0.24) 0.26 (0.14) 2.33 (0.13) 1.02 (0.10) 9.00 (1.23) 32.69 (2.41) 40.00 (6.44)
Randomly assigned calibration 
  and validation data sets
  Calibration 579 0.53 (0.21) 0.51 (0.34) 2.33 (0.14) 0.99 (0.11) 5.80 (2.40) 33.37 (2.42) 39.33 (6.03)
  Validation 194 0.54 (0.29) 0.53 (0.34) 2.34 (0.14) 0.98 (0.11) 5.75 (2.50) 33.55 (2.34) 38.98 (5.48)
Total
  Data set 1 subtotal 773 0.53 (0.23) 0.51 (0.34) 2.34 (0.14) 0.98 (0.11) 5.79 (2.43) 33.42 (2.40) 39.24 (5.89)
Independent validation data set
  Farm E 105 0.56 (0.26) 0.29 (0.26) 2.43 (0.13) 1.10 (0.10) 3.75 (0.78) 34.60 (2.30) 37.18 (4.87)
All data
  Total 878 0.54 (0.23) 0.49 (0.34) 2.35 (0.14) 1.00 (0.12) 5.54 (2.38) 33.56 (2.42) 39.00 (5.81)
1Number of cows in the data set.
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The results of PLS-DA models, where affected 
and unaffected groups were defined using previously 
described metabolic profile thresholds, are shown in 
Table 7. Models for the prediction of elevated BHB 
and globulin concentrations, as well as low Ca, Mg, 
and albumin concentrations, were deemed to be over-
fitted and therefore not significant (P > 0.05) based 
on pairwise Wilcoxon signed rank permutation testing. 
Models for the prediction of elevated fatty acids and 
urea concentrations, however, were highly significant 

(P < 0.001). The sensitivity and specificity for the 
prediction of elevated fatty acids concentrations when 
applied to the random validation data set were 73 and 
81%, respectively, and the CE was 23% and the AUC 
was 0.87. The MIR predicted prevalence of elevated 
serum fatty acids concentrations was 35%. The sen-
sitivity and specificity of the prediction of elevated 
urea concentrations in the random validation data set 
were 90 and 98%, respectively, and the CE was 6% 
and the AUC was 0.98. The MIR-predicted prevalence 

Figure 2. Estimated marginal means (±SEM) of serum metabolite concentrations for each 7-d period, corrected for farm identification and 
parity.
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of elevated serum urea concentrations in the random 
validation data set was 33%.

The accuracy of PLS-DA models, when validated us-
ing the farm E independent data set, are also shown in 
Table 7. The sensitivity and specificity for the predic-
tion of elevated fatty acid concentrations were 25 and 
90%, respectively, and the CE was 42% and the AUC 
was 0.82. The MIR-predicted prevalence of elevated 
fatty acids in this data set was 11%. The sensitivity 
and specificity of independent validation for the predic-
tion of elevated urea concentrations were 100 and 89%, 
respectively, and the CE was 6%. The AUC could not 
be calculated, as no positive results (serum urea con-
centration >6.8 mmol/L) were recorded. The predicted 
prevalence of elevated urea concentrations was 11%.

DISCUSSION

Serum concentrations of BHB, fatty acids, Ca, Mg, 
urea, albumin, and globulin, as measured by colorimet-
ric methods, are routinely used to assess the metabolic 
health of dairy cows. Although some studies have inves-
tigated the use of MIR spectroscopy of milk to predict 
serum BHB and fatty acids concentrations, to the best 

of our knowledge this is the first study to investigate 
the use of MIR spectral data to predict serum con-
centrations of all the above metabolites. We believe 
this is also the first reported use of PLS-DA models 
to classify animals as being either affected or not af-
fected with metabolic disorders directly from MIR 
spectra. Our results indicate that MIR spectral data 
may be a useful predictor of serum BHB, fatty acids, 
and urea concentrations, but not Ca, Mg, albumin, or 
globulin concentrations. The performance of both PLS 
and PLS-DA models were affected by the distribution 
of the calibration and validation data sets, and larger 
and more diverse data sets are required to improve the 
accuracy of predictions.

Prevalence of Metabolic Disorders

No recent studies have investigated the epidemiology 
of metabolic disorders in the Australian dairy herd; 
thus, all concentration thresholds used in ou study are 
based on work undertaken in New Zealand, Europe, 
and the United States. It should be noted that our 
study was not intended as an epidemiological investiga-
tion, and prevalence data are presented principally to 

Table 4. The number and percentage (in parentheses) of animals with serum metabolite concentrations outside optimum ranges for each farm, 
the calibration data set, and the random validation and independent farm E validation data sets

Data N1

Metabolite

BHB Fatty acids Ca Mg Urea Albumin Globulin

Data set 1
  Farm A 315 8 (3) 162 (51) 4 (1) 3 (1) 78 (25) 24 (8) 9 (3)
  Farm B 132 1 (1) 5 (4) 4 (3) 2 (2) 18 (14) 2 (2) 4 (3)
  Farm C 147 1 (1) 27 (18) 1 (1) 1 (1) 0 22 (15) 7 (5)
  Farm D 179 3 (2) 1 (1) 4 (2) 0 175 (98) 21 (12) 8 (4)
Randomly assorted calibration and  
  validation data sets
  Calibration 579 8 (1) 139 (24) 11 (2) 3 (1) 202 (35) 54 (9) 24 (4)
  Validation 194 5 (3) 56 (29) 2 (1) 3 (2) 69 (36) 15 (8) 4 (2)
Data set 1 subtotal 773 13 (2) 195 (25) 13 (2) 6 (1) 271 (36) 69 (9) 28 (8)
Independent external validation data set
  Farm E 105 2 (2) 4 (4) 2 (2) 0 0 4 (4) 1 (1)
All data
  Total 878 15 (2) 199 (23) 15 (2) 6 (1) 271 (31) 73 (8) 29 (3)
1Number of cows in the data set.

Table 5. Pearson correlations between serum metabolite concentrations, corrected for weeks in milk, farm 
identification, and parity

Item Fatty acids Ca Mg Urea Albumin Globulin

BHB 0.32* −0.10* −0.03 0.07 −0.02 −0.07
Fatty acids   −0.22* −0.06 −0.12* 0.01 −0.09*
Ca     0.08 0.08 0.39* −0.11*
Mg       0.1* 0.34* −0.21*
Urea         0.26* −0.16*
Albumin           −0.41*

*P < 0.01.
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illustrate the data used to develop and validate PLS-
DA models.

The prevalence of hyperketonemia in our data set was 
2% (15 cows), which is considerably lower than values 
reported in studies undertaken in New Zealand, Europe, 
and North America (McArt et al., 2012; Compton et 
al., 2014; Suthar et al., 2013). The low prevalence may 
have been because only approximately 4% of animals 
(34 cows) in our data set were in the first week of lacta-
tion, which McArt et al. (2012), demonstrated to be 
the period of highest hyperketonemia incidence. This 
was an unavoidable consequence of our study design, 
which involved convenience sampling on the day of rou-
tine milk recording in commercial herds. Furthermore, 
farmers with seasonal calving herds are often reluctant 
to record milk in early lactation, as it is generally a 
busy time of year. The timing of sampling, during or 

immediately after concentrate feeding, may also have 
affected our results, as BHB concentrations are known 
to vary over time, when access to feed is not constant, 
and to peak 4 to 5 h after feeding (Oetzel, 2004). All 5 
farms were well-managed and implemented good tran-
sition cow management practices, which are known to 
minimize the incidence of ketosis. The prevalence of 
elevated fatty acid concentrations was 23% (199 cows), 
with a peak incidence of 67% (18/27) at 6 d after calv-
ing. This was consistent with the results of Ospina et 
al. (2010b), who found that 65% of herds sampled had 
greater than 15% prevalence of elevated fatty acid con-
centration (>0.70 mmol/L) in cows between 3 and 14 
DIM. Elevated fatty acid concentrations are arguably 
more significant than elevated BHB concentrations, 
as fatty acid concentrations have been demonstrated 
to be more stable over time than BHB concentrations 

Table 6. Results of partial least square regression models for the prediction of serum metabolite concentrations using milk mid-infrared spectra

Metabolite P-value1
No.  

of LV2

Cross-validation3  
(n = 579)

 

Random validation4  
(n = 194)

 

Farm E validation5  
(n = 105)

RCV
2 RMSECV RRV

2 RMSERV RIV
2 RMSEIV

BHB <0.001 6 0.53 0.11   0.48 0.12   0.60 0.11
Fatty acids <0.001 8 0.56 0.15   0.61 0.14   0.45 0.14
Urea <0.001 20 0.90 0.75   0.90 0.82   0.35 1.53
Calcium <0.001 4 0.08 0.14   0.12 0.13   0.03 0.18
Magnesium <0.001 5 0.06 0.11   0.08 0.10   0.01 0.17
Albumin <0.001 5 0.23 2.14   0.17 2.18   0.02 2.40
Globulin <0.001 3 0.12 5.67   0.06 5.42   0.00 5.57
1P-value for pairwise Wilcoxon signed rank test.
2Number of latent variables (LV) included in the model.
3RCV

2  = coefficient of determination of cross-validation; RMSECV = root mean square error of cross-validation.
4RRV

2  = coefficient of determination of random external validation; RMSERV = root mean square error of random external validation.
5RIV

2  = coefficient of determination of independent validation; RMSEIV = root mean square error of independent validation.

Table 7. Results of partial least square discriminant analysis models for the classification of serum metabolite concentrations based on metabolic 
profile thresholds using milk mid-infrared spectra

Metabolite P-value1 LV2

Cross-validation 
(n = 579)

 

Random validation 
(n = 194)

 

Independent validation 
 (n = 105)

Sens3 Spec4 CE5 AUC6 Sens Spec CE AUC Sens Spec CE AUC

BHB >0.05 4 1.00 0.94 0.03 0.97   0.40 0.93 0.33 0.92   1.00 0.83 0.03 0.99
Fatty acids <0.001 5 0.82 0.75 0.22 0.85   0.73 0.81 0.23 0.87   0.25 0.90 0.42 0.82
Urea <0.001 20 0.81 0.91 0.15 0.94   0.90 0.98 0.06 0.98   1.00 0.89 0.06 —
Calcium >0.05 2 0.36 0.72 0.46 0.61   0.00 0.76 0.62 0.51   1.00 0.06 0.47 0.75
Magnesium >0.05 2 0.33 0.93 0.37 0.61   0.00 0.91 0.55 0.54   1.00 0.95 0.02 —
Albumin >0.05 3 0.67 0.67 0.33 0.73   0.53 0.64 0.41 0.59   0.25 0.99 0.38 0.85
Globulin >0.05 5 0.46 0.73 0.41 0.63   0.75 0.76 0.24 0.87   1.00 0.42 0.29 0.99
1P-value for pairwise Wilcoxon signed rank test.
2Number of latent variables (LV) included in the model.
3Sensitivity.
4Specificity.
5Classification error.
6Area under the receiver operator characteristic curve.
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(Eicher et al., 1999) and have a higher association with 
subsequent adverse health events (Ospina et al., 2010a; 
Sordillo and Raphael, 2013).

A considerable percentage of animals sampled 
(31%) had serum urea concentrations greater than 6.8 
mmol/L, whereas less than 2% had a urea concentra-
tion less than 1.7 mmol/L. These results are consistent 
with animals grazing rapidly growing forage with high 
levels of RDP (Macrae et al., 2006). Urea concentra-
tions in serum can be used to monitor RDP intake and 
the ratio of RDP to energy in the ration (Roseler et 
al., 1993; Macrae et al., 2006). Low blood urea concen-
trations can indicate insufficient RDP intake, whereas 
high serum urea concentrations can indicate excessive 
RDP intake, often in the form of high protein pasture. 
Both insufficient and excessive RDP intake are known 
to limit milk production, the former due to reduced 
rumen microbial protein synthesis and the latter due to 
the significant metabolic cost of removing and detoxi-
fying excess nitrogenous by-products from the rumen 
(Waghorn and Wolff, 1984; Ulyatt, 1997). Elevated 
serum urea concentrations before AI have also been 
suggested to have a negative effect on reproductive per-
formance (Raboisson et al., 2017). Several studies have 
used serum urea concentrations to predict nitrogen ef-
ficiency and urinary nitrogen excretion in cattle (Kohn 
et al., 2005; Kume et al., 2008), which is becoming an 
environmental concern for the global dairy industry.

Our results indicate that metabolic disorders are 
prevalent in the Australian dairy herd, but further stud-
ies are required to better understand the epidemiology 
of early-lactation metabolic disorders. Further work is 
also required to determine appropriate serum metabolic 
profile concentration thresholds and herd-level thresh-
olds for Australia’s diverse dairy production systems.

PLS Regression Models for Predicting Serum 
Metabolite Concentrations

The accuracy of our MIR prediction model for serum 
BHB was moderate (0.48 ≤ R2 ≤ 0.60), which was bet-
ter than those reported by Belay et al. (2017a) and 
similar to those reported by Smith et al. (2016) and 
Pralle et al. (2018). The moderate accuracy may have 
been in part due to the low prevalence of elevated se-
rum BHB concentrations in our data set. The skewed 
distribution of the data likely resulted in lower predic-
tion accuracy of higher BHB concentrations. Despite 
this, the RIV

2  was higher than the RCV
2  and the RRV

2 , 
suggesting that the model may be a useful indicator of 
ketosis risk when applied to independent data. This 
finding was supported by fact that the RMSE of all 3 
validation methods were similar (0.11–0.12 mmol/L). 

The reported accuracies of MIR predictions of milk 
ketone bodies are considerably higher than the accura-
cies of MIR serum BHB predictions (de Roos et al., 
2007; Grelet et al., 2016); however, serum BHB is con-
sidered to be a superior biomarker of ketosis (Duffield 
et al., 1997; Denis-Robichaud et al., 2014). Whether a 
less-accurate predictor of the gold standard biomarker 
is superior to a higher accuracy predictor of a less-
valuable biomarker requires further investigation. This 
discussion is further complicated by the fact that, argu-
ably, no true gold standard tests exist for many of the 
animal health traits being investigated (Krogh et al., 
2011).

Serum fatty acid concentrations are routinely used to 
quantify the degree of fat mobilization, and therefore 
the magnitude of negative energy balance in early lac-
tation (Ospina et al., 2010a). Few studies, however, 
have investigated the use of MIR of milk for predicting 
serum fatty acid concentrations. The RRV

2  of our fatty 
acids prediction was 0.61, which is similar to the result 
of Smith et al. (2016), who reported a correlation coef-
ficient of 0.80 (R2 = 0.64) between measured serum 
fatty acid concentration and MIR-predicted fatty acids 
concentration. McParland et al. (2011) were able to 
predict computed energy balance with reasonable ac-
curacy (R2 = 0.56), but they noted that their predic-
tion equations were not robust when applied to data 
obtained from cows managed differently to the animals 
in the reference population (McParland et al., 2012). 
Similarly, the accuracy of our fatty acids prediction was 
lower when applied to the independent farm E valida-
tion data set (R2 = 0.45), but may still be a useful in-
dicator of energy balance.

Mid-infrared is routinely used to predict MUN con-
centrations (Gengler et al., 2016) with good accuracy. 
Serum and milk urea concentrations are linearly cor-
related (Moore and Varga, 1996), so it follows that the 
MIR prediction of serum urea concentration had the 
highest coefficient of determination of all the metabolite 
models we tested. The accuracy of the urea prediction 
model, when applied to data from farm E, was consid-
erably lower than when applied to the random external 
validation data. This may have been due to differences 
in the distribution of urea concentrations between the 
farm E independent data set and the reference popula-
tion data set (see Table 3), as the range of data is 
known to have a significant effect on the R2 of PLS 
regression models (Davies and Fearn., 2006). Further 
validation with larger, more varied data sets is required 
to better understand these results.The MIR predictions 
of serum urea may be accurate enough to be a useful 
indicator of the protein nutrition of a herd. Large-scale 
predictions of serum urea concentrations could also be 
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used to identify variation in nitrogen efficiency and 
excretion between individuals. This could be exploited 
in breeding programs to lower the environmental im-
pact of dairy cattle and could also be considered as a 
way to increase the accuracy of genomic predictions of 
feed efficiency due to the high energy cost of removing 
excess nitrogenous by-products from the rumen. The 
MIR predictions of serum urea concentration could also 
help manage the nitrogen output of the global dairy 
industry, which is becoming an increasingly important 
environmental issue.

Mid-infrared spectroscopy has been used successfully 
to quantify the concentration of several milk proteins, 
including casein, αS1-CN, whey protein, and β-LG, with 
reasonable accuracy (De Marchi et al., 2009; Bonfatti 
et al., 2011; McDermott et al., 2016); however, MIR 
predictions of serum albumin and globulin concentra-
tions in our study were extremely poor. Similarly, MIR 
spectral data has been used to estimate the Ca and P 
concentration of milk with reasonable accuracy (Tof-
fanin et al., 2015); however, its ability to predict serum 
Ca and Mg concentrations was poor. Studies have 
demonstrated that animals suffering from subclinical 
hypocalcemia showed significant changes in their serum 
proteome (Wang et al., 2016; Fan et al., 2017). Given 
that changes in serum albumin and globulin concentra-
tions could not be identified with milk MIR spectra, it 
follows that changes in serum proteome associated with 
hypocalcemia are also not detectable using milk MIR 
spectral analysis. This may suggest that changes in 
serum protein concentrations are not reflected in milk 
composition, or that a significant delay occurs between 
changes in serum metabolome and subsequent changes 
in milk composition. It should also be noted that we 
found considerably less variation in the concentrations 
of these metabolites (see Table 2) compared with the 
concentrations of BHB, fatty acids, and urea. As dis-
cussed previously, the distribution of data is known to 
have a significant effect on the accuracy of calibration 
models. Our results highlight the need for further work 
to investigate the relationships between the proteomes 
and metabolomes of serum and milk.

Several authors have observed that many milk MIR 
predictions of animal health traits are not sufficiently 
accurate to provide useful information on the health 
status of individual animals (de Roos et al., 2007; van 
der Drift et al., 2012; Grelet et al., 2016). These predic-
tions may, however, be considered accurate enough to 
employ in genomic evaluations, as described by Bastin 
et al. (2016) and Bonfatti et al. (2017). The accuracy of 
our MIR prediction of serum BHB was better than that 
of Belay et al. (2017b), who used MIR predictions of 
serum BHB to investigate the genetic parameters of ke-
tosis and the genetic relationships between serum BHB 

concentration and milk production traits. Similarly, our 
MIR prediction of serum fatty acids concentration had 
comparable accuracy to the MIR prediction of energy 
balance reported by McParland et al. (2015), who 
found favorable correlations between MIR-predicted 
and measured energy balance. As well as forming the 
basis of new traits, Pryce et al. (2016) suggested that 
MIR-predicted traits could be included in multitrait 
models to improve the accuracy of existing genomic 
predictions, but exactly how accurate such MIR predic-
tions need to be to provide useful phenotypic informa-
tion requires further investigation.

PLS-DA for Classifying Animals Based on Metabolic 
Profile Testing Thresholds

The aim of metabolic profile testing is to gain objec-
tive information on the nutritional status and metabolic 
health of a herd by estimating the prevalence of certain 
metabolic disorders. This requires a diagnostic test 
that can classify animals as being either affected or not 
affected with metabolic disorders with reasonable accu-
racy. The PLS-DA models are routinely used in chemo-
metric studies to classify samples based on multivariate 
data. It follows, therefore, that these models may be 
useful for identifying cows with metabolic disorders 
based on their milk MIR spectra. Several authors have 
converted MIR predictions of continuous traits, such as 
BHB concentration, into binary traits based on meta-
bolic profile thresholds (Gelé et al., 2015; Pralle et al., 
2018). As far as we know, ours is the first report using 
PLS-DA models to classify animals directly using milk 
MIR spectral data. Given the poor accuracy of MIR 
predictions of serum Ca, Mg, albumin, and globulin 
concentrations, only BHB, fatty acids, and urea PLS-
DA models will be discussed beyond this point.

Cows that experience a serum fatty acid concentra-
tion greater than 0.7 mmol/L in the immediate postpar-
tum period are more likely to develop clinical ketosis, 
metritis, or a displaced abomasum, and are more likely 
to be culled early than cows with normal fatty acid 
concentrations (McArt et al., 2013). At herd level, sev-
eral authors have demonstrated that an increase in the 
prevalence of cows with elevated postpartum fatty acid 
concentrations is associated with reduced milk produc-
tion and poorer fertility (Ospina et al., 2010a; Chapinal 
et al., 2012; McArt et al., 2013). The same authors 
demonstrated similar results for elevated postpartum 
BHB concentrations. When applied to the random 
validation data set, our PLS-DA model was able to 
predict elevated serum fatty acid concentrations (>0.7 
mmol/L) with a sensitivity of 73% and a specificity of 
81%. Our findings are reasonably consistent with those 
of Gelé et al. (2015), who used a combination of BHB 
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and fatty acid concentrations to identify animals at risk 
of subclinical ketosis with a sensitivity of 81% and a 
specificity of 69%. The true prevalence of elevated fatty 
acid concentrations in our data set was 29% (95% CI = 
22.5–35.2). The MIR-predicted prevalence of elevated 
serum fatty acid concentrations was 35%, within the 
95% confidence interval of the true prevalence. When 
applied to the farm E validation set, the sensitivity of 
our fatty acids prediction decreased significantly to only 
25%. The MIR-predicted prevalence of elevated fatty 
acid concentrations in this data set was 11%, which 
was significantly higher than the true prevalence of 4% 
(95% CI = 0.1–7.5). This highlights the need for larger 
and more diverse calibration data sets to improve the 
accuracy of predictions before they can be used for on-
farm management purposes.

Butler et al. (1996) reported that animals with a 
plasma urea concentration of greater than 6.8 mmol/L 
had lower pregnancy rates than animals with normal 
plasma urea concentrations. Similarly, Raboisson et al. 
(2017) showed a 43% lower odds of pregnancy when 
serum urea concentrations were above 7 mmol/L, espe-
cially before AI. This may be highly relevant for the 
largely pasture-based Australian dairy industry, as 
most cows are mated in late spring at a time when they 
are grazing pasture high in RDP. When applied to the 
random validation data set, PLS-DA models could 
identify animals with elevated serum urea concentra-
tions with good sensitivity (90%) and specificity (98%). 
The predicted prevalence of elevated urea concentra-
tions was 33%, close to the true prevalence of 36% (95% 
CI = 28.8–42.3). When applied to the independent 
farm E validation data set, the sensitivity of the urea 
prediction increased to 100% and the specificity de-
creased to 89%. We believe these results are misleading 
and are artifacts of the independent validation data set 
being (1) relatively small, (2) having a different distri-
bution and narrower range than the calibration data 
set, and (3) containing no positive results (urea concen-
trations >6.8 mmol/L). Given that the RIV

2  of the PLS 
prediction of serum urea concentration was consider-
ably lower than the RRV

2   (0.35 and 0.90, respectively), 
we would expect the accuracy of PLS-DA predictions 
to be similarly lower. The MIR-predicted prevalence of 
elevated urea concentrations was 11%, significantly 
higher than the true prevalence of 0%. This is further 
evidence that a larger, more varied calibration data set 
is required to improve the accuracy of predictions.

The results of our PLS-DA model to predict elevated 
serum BHB concentrations were not significant (P > 
0.05) based on pairwise Wilcoxon rank testing of per-
muted samples. This was likely due to the low number 
of hyperketonemic samples in the data set. Lowering 

the threshold of BHB concentration to 1.0 mmol/L in-
creased the statistical significance of the model. Given 
that the accuracy of BHB and fatty acids PLS models 
were similar, we would expect that the addition of more 
hyperketonemic samples to our data set will yield a 
statistically significant PLS-DA model for estimating 
the prevalence of subclinical ketosis.

If their accuracy can be improved, PLS-DA predic-
tions offer a potentially useful tool to monitor the 
prevalence of elevated serum fatty acids, BHB, and 
urea concentrations. This could provide dairy produc-
ers with a valuable early warning tool that would allow 
them to address dietary imbalances, and thereby opti-
mize animal health, production, and fertility.

CONCLUSIONS

We assessed the accuracy of MIR spectroscopy, per-
formed as part of routine milk recording, for predicting 
the metabolic health and nutritional status of early-lac-
tation dairy cows. We found that MIR spectroscopy of 
milk provided a potentially useful prediction of energy 
balance by reasonable estimation of serum BHB and 
fatty acid concentrations. The accuracy of MIR predic-
tion of serum urea concentration was good when the 
validation data set had a similar range and distribution 
to the calibration data set. However, when the model 
was applied to an independent data set taken from 
cows of differing breeds that were managed differently, 
the accuracy of the prediction dropped significantly. 
The accuracy of MIR predictions of serum Ca, Mg, 
albumin, and globulin concentrations were poor. Our 
results demonstrate that MIR PLS-DA models may be 
a useful tool for estimating the prevalence of metabolic 
disorders in early lactation, but more data are required 
to improve the accuracy of prediction equations. The 
MIR PLS models offer potential for large-scale pheno-
typing that can be employed in breeding programs to 
breed more resilient animals with smaller environmen-
tal footprints. We aim to improve the accuracy of our 
prediction models by sampling more animals, particu-
larly in the first 2 wk of lactation, thereby increasing 
the size and variation of our data set.
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Abstract: Disorders of energy metabolism, which can result from a failure to adapt to the period of
negative energy balance immediately after calving, have significant negative effects on the health,
welfare and profitability of dairy cows. The most common biomarkers of energy balance in dairy cows
areβ-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA). While elevated concentrations of
these biomarkers are associated with similar negative health and production outcomes, the phenotypic
and genetic correlations between them are weak. In this study, we used an untargeted 1H NMR
metabolomics approach to investigate the serum metabolomic fingerprints of BHBA and NEFA.
Serum samples were collected from 298 cows in early lactation (calibration dataset N = 248, validation
N = 50). Metabolomic fingerprinting was done by regressing 1H NMR spectra against BHBA and
NEFA concentrations (determined using colorimetric assays) using orthogonal partial least squares
regression. Prediction accuracies were high for BHBA models, and moderately high for NEFA models
(R2 of external validation of 0.88 and 0.75, respectively). We identified 16 metabolites that were
significantly (variable importance of projection score > 1) correlated with the concentration of one or
both biomarkers. These metabolites were primarily intermediates of energy, phospholipid, and/or
methyl donor metabolism. Of the significant metabolites identified; (1) two (acetate and creatine)
were positively correlated with BHBA but negatively correlated with NEFA, (2) nine had similar
associations with both BHBA and NEFA, (3) two were correlated with only BHBA concentration,
and (4) three were only correlated with NEFA concentration. Overall, our results suggest that BHBA
and NEFA are indicative of similar metabolic states in clinically healthy animals, but that several
significant metabolic differences exist that help to explain the weak correlations between them. We also
identified several metabolites that may be useful intermediate phenotypes in genomic selection for
improved metabolic health.

Keywords: metabolic profile; ketosis; transition period; livestock; methyl donor; one-carbon
metabolism; negative energy balance

1. Introduction

Most dairy cows experience a period of negative energy balance immediately after calving due to
both a reduction in feed intake preceding calving [1], and an increase in energy requirements for milk
production [2]. A successful transition from pregnancy to lactation requires a series of complex and
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coordinated changes in metabolism and nutrient partitioning, known as homeorhesis [3]. Failure of
these homeorhetic controls can lead to the development of metabolic disorders such as ketosis and fatty
liver [4]. These disorders can have significant negative effects on the health, welfare and profitability of
early-lactation dairy cows due to their (1) relatively high incidence [5,6], (2) demonstrated association
with other diseases [4,7] and (3) their significant economic costs [8,9].

Serum β-hydroxybutyrate (BHBA) and non-esterified fatty acids (NEFA) are biomarkers that
are commonly used to evaluate the energy balance of dairy cows in the transition period [6,10,11].
One of the main physiological responses to reduced energy intake is the mobilization of stored energy
from adipose tissue as NEFA. Serum NEFA concentration is a measure of the degree of lipolysis,
and therefore an indicator of the magnitude of negative energy balance [12]. Once released, NEFA are
transported via the bloodstream to the mammary gland for milk fat synthesis, or to the liver where
they undergo either (1) complete oxidation via the TCA cycle, (2) partial oxidation to ketone bodies
(BHBA, acetone and acetoacetate), or (3) re-esterification to form triglycerides which can either be
stored or exported as very low density lipoprotein (VLDL). BHBA is the most stable of the three ketone
bodies [13], and is commonly used as a biomarker of energy balance [14].

Mild elevations in serum BHBA and/or NEFA concentration during the transition period are
considered normal [15], but marked elevations are indicative of excessive negative energy balance
and/or perturbed metabolism [16]. Elevated concentrations of both BHBA and NEFA can be observed in
clinically healthy animals (i.e., showing no visible signs of illness), and are associated with (1) reduced
reproductive performance [11,17], (2) an increased incidence of clinical diseases such as displaced
abomasa and metritis [15,17,18], (3) decreased milk production [6,11,19] and (4) an increased risk of
culling [6,15,20]. However, despite these similarities, both the phenotypic [21,22] and genetic [23]
correlations between these two biomarkers are low. This is not necessarily important if biomarkers are
being used for management purposes (such as the identification of sick animals or the assessment of
nutritional status) but may be significant if the biomarkers are used as phenotypes for genetic selection
for improved animal health and resilience. There is therefore a need to better understand the metabolic
states represented by BHBA and NEFA.

Untargeted metabolomics combines high throughput molecular analytical techniques such as
proton nuclear magnetic resonance (1H NMR) spectroscopy with multivariate statistical modelling,
to characterize the metabolic response of a biological system to pathophysiological stimuli [24].
Examples in dairy cattle include studies of ketosis [25,26], fatty liver [27], hypocalcaemia [28] and
displaced abomasa [29]. The collective metabolic features of a given state or condition can be described
as its “metabolomic fingerprint”. As well improving our understanding of the biological processes,
metabolomic studies can uncover intermediate molecular phenotypes (metabotypes) associated with
complex animal health traits such as metabolic resilience. These metabotypes can then be integrated
with genomic data to (1) elucidate the genetic architecture of these traits, and (2) improve genomic
prediction accuracies [30,31].

The aim of this study was therefore to use an untargeted 1H NMR metabolomic approach to
investigate the metabolomic fingerprints of serum BHBA and NEFA concentrations in clinical healthy
dairy cows in early lactation, and in so doing (1) identify common and differential metabolic pathways,
and (2) identify novel metabotypes for application to genetic selection for improved metabolic health.

2. Results

2.1. Analysis of Experimental Metadata

Descriptive statistics of the datasets used in this experiment are shown in Table 1.
BHBA concentrations were significantly higher in Dataset 1 than in Dataset 2 (p < 0.001). The differences
in all other parameters were not statistically significant (p > 0.05). The correlation between BHBA and
NEFA concentrations was 0.45 in Dataset 1 and 0.40 in Dataset 2.
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Table 1. Descriptive statistics of the datasets used in this experiment, including number of animals (N),
stage of lactation defined as days in milk (DIM), age in years, and β-hydroxybutyrate (BHBA) and
non-esterified fatty acid (NEFA) concentrations (mmol/L) in the serum obtained from clinically healthy
dairy cows.

Variable
Dataset 1 (N = 248) Dataset 2 (N = 50)

p 1

Min Max Mean
(SD) Min Max Mean

(SD)

DIM (days) 4 30 16.7 (6.0) 4 30 18.6 (7.3) 0.09
Age (years) 2 12 3.7 (2.0) 2 9 3.9 (1.8) 0.22

BHBA (mmol/L) 0.22 1.86 0.55 (0.21) 0.23 0.94 0.42 (0.17) <0.001
NEFA (mmol/L) 0.11 2.18 0.75 (0.32) 0.14 1.91 0.67 (0.36) 0.07

1 Statistical significance of the differences between Datasets 1 and 2 were determined using paired t-test for DIM,
and a paired Wilcoxon signed-rank test for age, BHBA and NEFA.

2.2. 1H NMR Spectra

Twenty-four metabolites could be clearly identified from the 1H NMR spectra. Two metabolites,
cholate and 3-phenyllactate, were tentatively identified. Figure 1 shows representative spectra
from animals in Dataset 1 with (a) elevated BHBA concentration, (b) elevated NEFA concentration
and (c) normal BHBA and NEFA concentrations. Upfield regions of spectra were dominated by
branched-chain amino acids (leucine, isoleucine and valine), organics acids (BHBA, lactate, acetate) and
the methyl and methylene groups of low density (LDL) and very low density lipoproteins (VLDL) at
δ 0.86 ppm and δ 1.25 ppm, respectively [32]. We also observed a prominent peak at δ 2.03 ppm which
was consistent with the N-acetyl groups of glycoproteins [33]. The singlet at δ 3.14 ppm was identified
as dimethyl sulfone (DMSO2) [34,35]. The middle of the spectrum was complex and dominated by
glucose. Signal overlap and weak 2D signal strength meant that hippurate was the only compound
that could be clearly identified in the downfield region. Relative chemical shifts and the multiplicity of
identified peaks are available in the supplementary material (Table S1).

Unsupervised analysis of the data using PCA showed no obvious clustering of samples by dataset.
Results of ANOVA-simultaneous component analysis showed that fixed effects (cow age, herd of
origin and days in milk (DIM)) explained only 13.94% of the spectral variation (Table S2). Only the
effect of age was statistically significant (p < 0.05). This suggests that most spectral variation is due to
differences between individual animals.
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Figure 1. Representative 700 MHz 1H nuclear magnetic resonance spectra of serum samples 
from early lactation dairy cows with (a) elevated β-hydroxybutyrate (BHBA), (b) elevated 
non-esterified fatty acid (NEFA), and (c) normal BHBA and NEFA concentrations. 
Downfield regions were vertically expanded 32 times for clarity. Legend: 1, cholate; 2, very 
low density lipoprotein/low density lipoprotein; 3, leucine; 4, isoleucine; 5, valine; 6, β-
hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl glycoprotein; 11, pyruvate; 
12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone (DMSO2); 16, choline; 
17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, β-Glu; 23, α-Glu; 
24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification. 

2.3. Accuracy and Robustness of Prediction Models 

The robustness of the orthogonal partial least squares (OPLS) regression models built using data 
from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation 
with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were 
high for BHBA (R2 = 0.88), and moderately high for NEFA (R2 = 0.75). BHBA models were remarkably 
robust, with external validation R2 and RMSE results almost identical to cross-validation results. 
Models predicting serum NEFA concentration were less accurate than those predicting BHBA 
(NRMSE 0.32 and 0.50, respectively), but external validation results indicated that these models were 
still quite robust. p-values derived from permutation testing were < 0.001 for all models, indicating 
that models were not over-fitted. 

Figure 1. Representative 700 MHz 1H nuclear magnetic resonance spectra of serum samples from early
lactation dairy cows with (a) elevated β-hydroxybutyrate (BHBA), (b) elevated non-esterified fatty acid
(NEFA), and (c) normal BHBA and NEFA concentrations. Downfield regions were vertically expanded
32 times for clarity. Legend: 1, cholate; 2, very low density lipoprotein/low density lipoprotein;
3, leucine; 4, isoleucine; 5, valine; 6, β-hydroxybutyrate; 7, lactate; 8, alanine; 9, acetate; 10, N-acetyl
glycoprotein; 11, pyruvate; 12, citrate; 13, creatine; 14, creatine phosphate; 15, dimethyl sulfone
(DMSO2); 16, choline; 17, phosphocholine; 18, betaine; 19, methanol; 20, glucose; 21, glycine; 22, β-Glu;
23, α-Glu; 24, 3-phenyllactate; 25, hippurate; 26; formate. * = tentative identification.

2.3. Accuracy and Robustness of Prediction Models

The robustness of the orthogonal partial least squares (OPLS) regression models built using data
from Dataset 1 was assessed using (1) 10-fold cross-validation (Figure 2a,c) and (2) external validation
with data from Dataset 2 (Figure 2b,d). Prediction accuracies derived from external validation were
high for BHBA (R2 = 0.88), and moderately high for NEFA (R2 = 0.75). BHBA models were remarkably
robust, with external validation R2 and RMSE results almost identical to cross-validation results.
Models predicting serum NEFA concentration were less accurate than those predicting BHBA (NRMSE
0.32 and 0.50, respectively), but external validation results indicated that these models were still quite
robust. p-values derived from permutation testing were < 0.001 for all models, indicating that models
were not over-fitted.
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Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum β-
hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from 1H NMR spectra, 
built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs. 
measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted 
NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA. 

2.4. Metabolomic Fingerprints of BHBA and NEFA 

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS 
regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both 
BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features 
contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). 
Spectral features with positive loadings correspond to metabolites that are positively correlated with 
reference biomarker concentrations, and vice-versa. Peaks with a variable importance of projection 
(VIP) score greater than one were considered statistically significant [37] (Figure S2). 

Figure 2. Accuracy of orthogonal partial least squares (OPLS) regression models predicting serum
β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations from 1H NMR spectra,
built using data from Dataset 1 (N = 248); (a) 10-fold cross-validation (CV)-predicted BHBA vs.
measured BHBA; (b) external validation (N = 50)-predicted BHBA vs. actual BHBA; (c) CV-predicted
NEFA vs. measured NEFA; (d) external validation-predicted NEFA vs measured NEFA.

2.4. Metabolomic Fingerprints of BHBA and NEFA

The metabolomic fingerprints associated with BHBA and NEFA were investigated using OPLS
regression. Larger scores on the first latent variable (LV1) correspond to higher concentrations of both
BHBA and NEFA (Figure 3a,b). LV1 loadings plots were used to identify which spectral features
contributed most to the variation in the reference biomarker concentrations [36] (Figure 3c,d). Spectral
features with positive loadings correspond to metabolites that are positively correlated with reference
biomarker concentrations, and vice-versa. Peaks with a variable importance of projection (VIP) score
greater than one were considered statistically significant [37] (Figure S2).
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Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum 
BHBA and NEFA concentrations from 1H NMR spectra; (a) First latent variable (LV1) vs. second latent 
variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA prediction 
model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA prediction 
model. Scores plots color-coded by reference biomarker concentration, loadings plots by VIP score. 

Figure 3. Results of the orthogonal partial least squares (OPLS) regression models predicting serum
BHBA and NEFA concentrations from 1H NMR spectra; (a) First latent variable (LV1) vs. second
latent variable (LV2) scores for the BHBA prediction model; (b) LV1 vs. LV2 scores for the NEFA
prediction model; (c) LV1 loadings for the BHBA prediction model; (d) LV1 loadings for the NEFA
prediction model. Scores plots color-coded by reference biomarker concentration, loadings plots
by VIP score. α-Glu = α glucose, β-Glu = β glucose, Ace = acetate, Ala = alanine, Bet = betaine,
BHBA = β hydroxybutyrate, Cr = creatine, DMSO2 = dimethyl sulfone, Glu = glucose, Gly = glycine,
Ile = isoleucine, Lac = lactate, Leu = leucine, NAG = N-acetyl glycoprotein, ChoP = phosphocholine,
Pyr = pyruvate, Val = valine, LDL = low density lipoprotein; VLDL = very low density lipoprotein.
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2.4.1. Commonalities in the Metabolomic Fingerprints of BHBA and NEFA

The results of this study show that several metabolites showed similar co-variances with
both BHBA and NEFA concentrations. The largest effect we observed was from peaks assigned
to glucose, which were negatively correlated with both biomarkers. Other metabolites with
common co-variances included lactate, valine and alanine (negatively correlated), and glycine and
phosphocholine (positively correlated). Spectral regions attributed to lipoproteins (LDL and VLDL)
and glycoproteins were positively correlated with both BHBA and NEFA concentrations.

2.4.2. Differences between the Metabolomic Fingerprints of BHBA and NEFA

Figure 4 highlights the differences we observed between the metabolomic fingerprints of BHBA
and NEFA. Acetate and creatine were positively correlated with BHBA, and negatively correlated
with NEFA. A small number of metabolites showed significant co-variance with only one of the
biomarkers. BHBA concentration was positively correlated with betaine, and negatively correlated
with dimethyl sulfone (DMSO2), while NEFA concentration was positively correlated with isoleucine
and negatively correlated with leucine.
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Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares 
(OPLS) regression of 1H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations in 

Figure 4. Loadings on the first latent variable (LV1) derived from orthogonal partial least squares
(OPLS) regression of 1H NMR spectra against serum BHBA (blue) and NEFA (red) concentrations
in early lactation dairy cows. Spectral regions between (a) δ 0.2 ppm to 2.9 ppm and (b) δ 2.9 ppm
to 5.5 ppm are shown. Figure (b) has been for clarity purposes. Ace = acetate, Bet = betaine,
ChoP = Phosphocholine, Cr = creatine, DMSO2 = dimethyl sulfone, Ile = isoleucine, Leu = leucine,
LDL/VLDL = low/very low-density lipoprotein, NAG = N-acetyl glycoprotein, Pyr = pyruvate.
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3. Discussion

3.1. Similarities between BHBA and NEFA

Not surprisingly, many of the metabolites identified as having common co-variance with both
BHBA and NEFA concentrations are involved in hepatic energy metabolism. These relationships
are summarized in Figure 5. Most obvious was the negative relationship between both biomarkers
and glucose. Hypoglycaemia has been widely reported in early lactation dairy cows due to the
massive demand for glucose for lactogenesis [3,38]. More recently, NMR metabolomics studies have
identified serum glucose concentration as being (1) directly correlated to energy balance (r = 0.84) [39],
and (2) lower in cows with clinical and subclinical ketosis [25] and fatty liver [27] when compared
to healthy controls. Our results offer further evidence of the pivotal role glucose plays in the early
lactation metabolic health in dairy cows.
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Figure 5. Summary of hepatic energy metabolism in early lactation dairy cows. Arrows indicate
the direction of the relationship between the metabolites and the reference BHBA (blue) and
non-esterified fatty acid (NEFA) (red) concentrations. BHBA = β-hydroxybutyrate; OAA = oxaloacetate;
TAG = triglyceride, TCA = tricarboxylic acid, VLDL = very low density lipoprotein.

Lactate and alanine, important gluconeogenic substrates in ruminants [40,41], were also negatively
associated with both BHBA and NEFA, as was valine (another gluconeogenic amino acid). Interestingly,
Xu et al. [39] found no correlation between calculated energy balance in early lactation dairy
cows and the concentrations of any of the branched-chain amino acids or lactate. Conversely,
when compared to healthy controls, cows with fatty liver and displaced abomasa have been shown
to have lower serum alanine concentrations [27,29], and cows with ketosis have lower lactate and
alanine concentrations [25,42]. This suggests that alterations in glucogenic precursors, in particular
lactate and alanine, are indicative of a perturbed metabolism, not simply negative energy balance.
We previously showed that lactate concentration in pasture-fed dairy cows is heavily influenced by
herd-specific management factors [43], and as such may not be heavily influenced by genetic factors.
Alanine has been shown to be the most important glucogenic amino acid, and the most important
gluconeogenic precursor after lactate and propionate, in dairy cows [41]. Therefore, genetic selection for
cows with higher serum concentrations of alanine in early lactation may help to increase endogenous
glucose supply.

Spectral features attributed to VLDL and LDL were positively correlated with the concentrations
of both BHBA and NEFA. These results need to be interpreted with caution as the methanol extraction
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used in this study removed much of the protein from the samples and may have introduced
experimental artefacts. Interestingly, 1H NMR spectroscopy has recently been shown capable of
providing high-throughput and accurate quantification of lipoprotein subclasses in human serum and
plasma samples [32,44]. It is important to note that these protocols used different pulse sequences and
involved the dilution of plasma/serum in a deuterated water/phosphate buffer solution without any
metabolite extraction, such as the one used in our study. The findings of these studies cannot, therefore,
be applied directly to our results. However, lipoprotein metabolism is central to early lactation health
in dairy cows, and impaired VLDL production in the liver can result in hepatic triglyceride (TAG)
accumulation (Figure 4) and the development of fatty liver [45]. Dyslipoproteinaemia is also an
important feature of metabolic syndrome in humans, and the quantification of lipoprotein subclasses is
considered critical to the better understanding of this disease [44]. We believe that the investigation of
serum lipoproteins using 1H NMR spectroscopy holds great promise in the research of early lactation
metabolic health in dairy cows, and we plan to validate the aforementioned protocols on bovine serum
and plasma samples.

The region of the spectrum associated with glycoproteins was also significantly positively
correlated with both NEFA and BHBA concentrations. Glycoproteins are acute phase proteins which
can be used as indicators of inflammation in cattle [46]. In dairy cattle, increased serum NEFA
concentrations in early lactation are associated with uncontrolled inflammation, and this inflammatory
dysfunction is hypothesized to be a central link between metabolic and infectious disorders [14,47].
1H NMR spectroscopy is showing promise for the quantification of glycoprotein A (GlcA) in human
research into metabolic diseases such obesity, diabetes mellitus and the metabolic syndrome [33].
Given that these syndromes have much in common with early lactation metabolic disease in dairy
cows (e.g., insulin resistance), we believe that further research into GlcA as a biomarker for early
lactation health is warranted. Overall, our results offer further evidence that inflammation plays an
important role in early lactation metabolic health of dairy cows.

Glycine was positively correlated with the concentrations of both BHBA and NEFA. Metabolomics
studies comparing healthy and ketotic dairy cows have reported (1) no change in glycine
concentrations [25], (2) increased glycine concentrations in cows with sub-clinical ketosis [26],
(3) increased glycine concentrations in cows with clinical ketosis [48] and (4) decreased glycine
concentrations in cows with clinical ketosis [26] and fatty liver [49]. Glycine concentration has also been
shown to increase in response to lipolysis [50]. These differing results suggest that changes in glycine
concentration may be dependent on the severity of the metabolic disorder (i.e., increased in mild cases,
and decreased in more severe cases). Most interesting are the findings of a recent metabolomics study
that showed that glycine concentrations in plasma and milk were strongly negatively correlated with
energy balance in early lactation dairy cows (r = −0.80 and r = −0.79, respectively) [39]. The authors of
this study hypothesized that this relationship was due to an increase in one-carbon or methyl donor
metabolism, specifically an increase in the conversion of choline to glycine. Given that all cows in our
study were clinically healthy, our results are consistent with glycine being an indicator of negative
energy balance, lipolysis, and/or sub-clinical ketosis. Further work is required to better understand the
role of glycine metabolism in clinical metabolic disease.

The positive correlations between phosphocholine and both BHBA and NEFA concentrations, and
between betaine and BHBA concentration, are consistent with an increase in methyl donor metabolism
in cows experiencing negative energy balance. Methyl donor metabolism and nutrition are receiving a
great deal of attention in dairy science due to links with early-lactation cow health (including fatty liver),
milk production and immune function [51]. Betaine, phosphocholine and glycine are intermediates in
several important one-carbon metabolic pathways including the folate and methionine cycles, and the
cytidine diphosphate (CDP)–choline pathway [51] (Figure 6a). The positive correlation between
NEFA and phosphocholine may be due to increased breakdown of phosphatidylcholine (Figure 6a).
This is consistent with the findings of Imhasly et al. [52] who showed that serum concentrations of
lyso-phosphatidylcholines and phosphatidylcholines increase in response to negative energy balance
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in post-partum dairy cows. The positive association observed between betaine and BHBA could be
due to increased oxidation of choline. A detailed description of these pathways is beyond the scope of
this study, however our results suggest that methyl donor metabolism has an important influence on
both BHBA and NEFA concentrations in early-lactation dairy cows.
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3.2. Differences between BHBA and NEFA

Despite many similarities, we observed some significant differences between the metabolomic
fingerprints of BHBA and NEFA. Most obvious was the difference in the direction of correlation between
acetate and the two biomarkers. Acetate is a volatile fatty acid produced by microbial fermentation of
feedstuffs in the rumen, and is an important energy source [55] (via oxidation or the partial oxidation
of acetyl-CoA in the liver) and substrate for de novo milk fat synthesis [56] in cows. The negative
relationship we observed between acetate and NEFA is consistent with the findings of Bielak et al. [57],
who reported a negative correlation (r = 0.44) between plasma NEFA and acetate concentrations in
early lactation dairy cows, possibly due to the down-regulation of the active transport of acetate across
the rumen wall. The positive association between acetate and BHBA is consistent with previously
discussed metabolomic studies of ketosis and fatty liver [25,27]. These results suggest that differences
in acetate metabolism may help to explain the weak correlation between serum BHBA and NEFA
concentrations in early lactation dairy cows.

The positive correlation between creatine and BHBA concentration is consistent with previous
reports that creatine is a potentially useful biomarker of ketosis and severe energy deficiency in dairy
cows [25,26,39]. Creatine is an important intermediate in energy metabolism, and this result may
represent increased breakdown of creatine phosphate in skeletal muscle and the release of high-energy
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phosphate for the conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP)
(Figure 6b). Interestingly, creatine concentration was negatively correlated with NEFA concentration
(albeit weakly and non-significantly (VIP < 1)). That mobilization of energy from skeletal muscle is
a feature of the BHBA metabolomic fingerprint, but not that of NEFA, suggests that elevated BHBA
concentrations are indicative of a more severe energy deficiency than are elevated NEFA concentrations.
However, the ability to rapidly mobilize energy from skeletal muscle may be advantageous to
early-lactation dairy cows, and we believe the role of creatine metabolism in transition cow health
warrants further investigation. We therefore plan to undertake genome-wide association studies to
better understand the genetic relationships between hepatic and skeletal muscle energy metabolism.

The significant negative correlation between DMSO2 and BHBA concentration was an interesting
finding of this study. DMSO2 concentration in the milk and rumen fluid of dairy cows has been shown
to vary according to feeding system; higher in pasture-fed cows managed outdoors than in cows fed a
total mixed ration indoors [58]. Maher et al. [59] showed that the concentrations of DMSO2 in milk and
plasma are highly correlated (r = 0.69), so serum DMSO2 may also be an indicator of pasture intake.
Given that all animals in this experiment were fed pasture, the negative association we observed
between DMSO2 and BHBA concentration may indicate that hyperketonemic cows are consuming
less feed.

4. Materials and Methods

All procedures undertaken in this study were conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical
Research Council, 2013). Approval to proceed was granted by the Agricultural Research and Extension
Animal Ethics Committee of the Department of Jobs, Precincts and Regions Animal Ethics Committee
(DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian Department of
Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and Welfare Branch,
13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval code 2017-05.

4.1. Animals and Datasets

A total of 298 Holstein-Friesian cows were used in this experiment. The calibration dataset (Dataset
1) was collected between August and September 2017 from 248 animals located at the Ellinbank Dairy
Research Centre, Ellinbank, Victoria, Australia. An independent validation dataset (Dataset 2) was
collected in September 2018, from 50 cows located on a commercial dairy farm in Smithton, Tasmania,
Australia. All cows were clinically healthy, and had been calved for between 4 and 30 days at the time
of sampling. Feeding systems on Australian dairy farms are diverse but can be classified into 5 main
feeding systems [60]. Both farms operated under feeding system 2; grazed pasture plus moderate to
high level concentrate feeding (>1.0 tonne of concentrate fed in the milking parlour per cow per year).

4.2. Blood Sample Collection and Reference Biomarker Measurements

A single serum sample was taken from each cow immediately after morning milking
(approximately 07:00) according to the protocol described in Luke et al. [43]. Cows were fed their
concentrate ration as soon as they entered the milking parlour, meaning that samples were collected
approximately 10 min after grain feeding.

An aliquot of each serum sample was shipped on ice to Regional Laboratory Services (Benalla,
Victoria, Australia) for BHBA and NEFA analyses. Colorimetric assays were performed using a Kone
20 XT clinical chemistry analyser (Thermo Fisher Scientific, Waltham, MA, USA); an enzymatic kinetic
assay for BHBA (McMurray et al., 1984) and enzymatic end point assay for NEFA (Randox Laboratories,
Crumlin, UK). The uncertainty of measurement (at a 95% confidence level) was ±0.060 mmol/L at
0.85 mmol/L for BHBA, and ±0.031 mM at 1.45 mM for NEFA. A second aliquot was stored at −20 ◦C
until processing for NMR spectroscopy.
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4.3. Sample Preparation for NMR Spectroscopy

Details of the sample preparation and metabolite extraction protocols used in this study can be
found in Luke et al. [43]. Briefly, 300 µL of serum was (1) mixed with 600 µL of methanol, (2) vortexed,
(3) incubated at −20 ◦C for 20 min, and (4) centrifuged at 11,360× g at 21 ◦C for 30 min to pellet
proteins. A 600 µL aliquot of the supernatant was then transferred to a clean 2 mL microcentrifuge
tube, dried under vacuum at 21 ◦C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo
Fisher Scientific, Waltham, MA, USA) then reconstituted in a D2O phosphate buffer solution (100 mM
K2HPO4) containing 0.25 mM DSS-d6 as an internal standard. A 550 µL aliquot of reconstituted extract
was transferred to a 5 mm NMR tube for analysis.

4.4. 1H NMR Data Acquisition and Pre-Processing

One-dimensional proton spectra were acquired using a Bruker Ascend 700 MHz
spectrometer equipped with cryoprobe and SampleJet automatic sample changer (Bruker Biospin,
Rheinstetten, Germany). A Bruker noesypr1d pulse sequence was used over a −0.76–10.32 ppm
spectral range with the following acquisition parameters; (1) a temperature of 298 K, (2) 256 scans
after eight dummy scans (3) acquisition time per increment of 2.11 s, and (4) relaxation delay (D1)
of 2.00 s. This resulted in 32,768 data points. A line broadening of 0.3 Hz was applied to all spectra
prior to Fourier transformation. Spectra were manually phased, baseline corrected and referenced
to the internal standard (DSS-d6) at δ 0.00 ppm using the Topspin v.3.6.1 software (Bruker Biospin,
Rheinstetten, Germany).

Data pre-processing was performed in MatLab v.R20017b (Mathworks, Natick, MA, USA).
Spectra were imported as a matrix of signal intensities using the ProMetab v.1.1 script [61].
Spectral pre-processing involved (1) deletion of the residual water peak region (δ 4.68–5.00 ppm),
(2) spectral alignment using the correlation optimized warping algorithm [62], (3) normalization to
total signal area (area = 1), (4) deletion of methanol (δ 3.32–3.36 ppm) and DSS-d6 (δ 0.4–0.60 ppm)
peak regions, and the non-informative region beyond 9.00 ppm, (5) baseline correction using automatic
weighted least squares and (6) mean centering.

4.5. Statistical Analysis

Statistical analysis of experimental metadata was performed in R v3.6.2 [63]. Differences between
the 2 datasets were analysed using a paired t-test or a Wilcoxon signed-rank test depending on the
normality of the data.

Multivariate statistical analyses were performed using the PLS Toolbox v. 8.5.2 (Eigenvector
Research Inc., Manson, WA, USA). Preliminary data analysis and outlier detection was performed
using an unsupervised PCA. Examination of PC1 vs. PC2 scores plot showed 14 samples from Dataset 1
outside the 95% confidence level ellipse (Figure S1). These samples were individually examined, and a
single spectrum with poor water suppression and baseline correction was removed from subsequent
analyses. The influences of fixed effects (DIM, age and herd) on spectra were investigated using
ANOVA simultaneous component analysis with 1000 permutations [64]. Untargeted metabolomic
fingerprinting was done by regressing reference NEFA and BHBA concentrations against 1H NMR
spectra using supervised OPLS regression. Variable importance of projection (VIP) scores for the first
latent variable were used to identify the most statistically significant peaks in each model. Peaks of
interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., Edmonton, AB,
Canada), comparison to the literature, 2D NMR analysis (COSY, gHMBC and gHSQC), and statistical
total correlation spectroscopy [65].

OPLS models were constructed using data from Dataset 1. The robustness of models was assessed
using (1) cross-validation using a venetian blind technique (10 sample splits with 1 sample per blind)
and (2) external validation using data from Dataset 2. The prediction accuracy of OPLS models was
assessed using the coefficient of determination (R2) and root mean square error (RMSE). Normalized
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RMSE (NRMSE) values, calculated as external validation RMSE divided by the interquartile interval
of the observed data, were used to compare RMSE estimates for NEFA and BHBA predictions.
Permutation testing (50 iterations and statistical significance determined using a Wilcoxon signed-rank
test) was performed to ensure that models were not over-fitted.

5. Conclusions

In this study we used an untargeted 1H NMR metabolomics approach to investigate the serum
metabolic fingerprints of the two most common biomarkers of energy balance in dairy cows, BHBA
and NEFA. Our results suggest that while BHBA and NEFA are indicative of similar metabolic
states in early-lactation dairy cows, there are significant differences between the two biomarkers.
Metabolites with common co-variances were intermediates of energy, phospholipid, and methyl donor
metabolism. The most significant differences in the metabolomic fingerprints were related to acetate
and creatine metabolism. We also identified several intermediate metabotypes which, when combined
with genomic data, will enable further the investigation of the genetic architecture of metabolic health
in early lactation dairy cows.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/6/247/s1,
Table S1: 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated water
(D2O). Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; dd, doublet of a doublet; m,
multiplet; t, triplet. The right two columns show the direction of the relationship with serum β-hydroxybutyrate
(BHBA) and non-esterified fatty acid (NEFA) concentrations determined by colorimetric assays, Table S2: Results
of ANOVA-simultaneous component analysis (ASCA) of 1H NMR spectra of bovine serum (N= 298). Effect
describes the relative influence of each variable (herd, age and days in milk (DIM)) on spectra. p-value is derived
from permutation testing (1000 iterations), Figure S1: Results of PCA of 1H NMR spectra of serum obtained from
298 dairy cows in early lactation from the Ellinbank research farm (Dataset 1, N = 248) and a commercial dairy
farm in Tasmania (Dataset 2, N = 50), Figure S2: VIP scores from OPLS regressions of 1H NMR spectra of serum
obtained from 298 dairy cows in early lactation against (a) BHBA concentration and (b) NEFA concentration.
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Abstract: Most livestock metabolomic studies involve relatively small, homogenous populations of
animals. However, livestock farming systems are non-homogenous, and large and more diverse
datasets are required to ensure that biomarkers are robust. The aims of this study were therefore
to (1) investigate the feasibility of using a large and diverse dataset for untargeted proton nuclear
magnetic resonance (1H NMR) serum metabolomic profiling, and (2) investigate the impact of fixed
effects (farm of origin, parity and stage of lactation) on the serum metabolome of early-lactation dairy
cows. First, we used multiple linear regression to correct a large spectral dataset (707 cows from
13 farms) for fixed effects prior to multivariate statistical analysis with principal component analysis
(PCA). Results showed that farm of origin accounted for up to 57% of overall spectral variation,
and nearly 80% of variation for some individual metabolite concentrations. Parity and week of
lactation had much smaller effects on both the spectra as a whole and individual metabolites (<3%
and <20%, respectively). In order to assess the effect of fixed effects on prediction accuracy and
biomarker discovery, we used orthogonal partial least squares (OPLS) regression to quantify the
relationship between NMR spectra and concentrations of the current gold standard serum biomarker
of energy balance, β-hydroxybutyrate (BHBA). Models constructed using data from multiple farms
provided reasonably robust predictions of serum BHBA concentration (0.05 ≤ RMSE ≤ 0.18). Fixed
effects influenced the results biomarker discovery; however, these impacts could be controlled using
the proposed method of linear regression spectral correction.

Keywords: NMR; metabotype; metabolomics; transition; ketosis; cattle; chemometrics;
spectral correction

1. Introduction

Modern metabolomic techniques such as proton nuclear magnetic resonance (1H NMR)
spectroscopy allow high-throughput, synchronous characterization of the small metabolites present
in biological matrices [1]. In dairy cows, the metabolome gives a snapshot of the complex
interactions between host genetics, the rumen microbiome, and the environment at a given time
point. 1H NMR-based metabolomics therefore offers exciting opportunities to better understand and
characterize the complex physiological and biochemical challenges facing cows in the transition period
(defined as the three weeks before and after calving [2,3]) which is the period of greatest disease
risk [4]. This in turn can facilitate identification of new molecular phenotypes (metabotypes) for genetic
selection for improved animal health. These “intermediate phenotypes,” so-termed because they sit
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between the genome and external phenotype [5], can then be integrated with genomic data to improve
genomic prediction accuracies of complex traits [6,7]. The aim of metabotype identification is therefore
to identify biomarkers that represent inter-animal variation free of confounding environmental factors.

Another aim of dairy cattle metabolomic studies is to identify biomarkers which enable early
identification of health disorders in the transition period such as ketosis [8,9], hypocalcemia [10] and
displaced abomasa [11]. Of particular interest are studies that have identified biomarkers that are
predictive of transition period disorders, such as that by Hailemariam et al. [12], who identified a
panel of three metabolites that could predict the occurrence of peri-parturient disease up to four weeks
before calving. If robust, such predictive biomarkers would enable producers and veterinarians to
implement preventive nutritional, management and/or veterinary interventions before the onset of
disease.Unlike metabotype biomarkers used for genetic selection, the aim of biomarkers used for
management purposes is to predict the external phenotype, and these must therefore capture all
sources of phenotypic variation (i.e., host genetics, rumen microbiome, and the environment).

To date, most serum 1H NMR-based metabolomic studies of livestock have involved relatively
small numbers of animals, often of a single breed, and often located on a single farm. In their
review, Goldansaz et al. [13] identified limited sample size and diversity as limitations of many
livestock metabolomics studies and highlighted the need for larger and more diverse datasets to ensure
models and biomarkers are robust. However this needs to be balanced against the need for careful
experimental design to account for potential confounding from systematic environmental effects such
as diet/nutritional management, parity and stage of lactation, which are known to affect the metabolic
status of cows [13]. However, in order to achieve large datasets, it may be necessary to obtain samples
from multiple different farms, especially when the prevalence of the condition being investigated is
low (e.g., displaced abomasa). Previous studies have reported differences in the milk metabolome of
animals from different geographical regions [14], farms [15], and of different breeds [16]. However,
given that there is not a strong relationship between blood and milk metabolomes [17,18], these findings
cannot be extrapolated to the blood serum/plasma metabolome. More information is therefore needed
on the impact of systematic environmental effects on the serum metabolome of livestock.

Linear models are routinely used by quantitative geneticists to account for the influence of
systematic environmental effects (also known as fixed effects) known to have significant effects
on phenotypic variation [19], and thus disentangle genetic from non-genetic effects. Frequently
used fixed effects include stage of lactation, parity, and herd-year-season. Similar approaches have
recently been applied to metabolomic data, for example Wanichthanarak et al. [20], who used linear
mixed-effects models and patient metadata to account for biological variation in metabolomics data,
and Laine et al. [21], who used linear models to study the effect of pregnancy on mid-infrared spectral
data derived from cows’ milk.

The aim of this study was therefore to investigate the feasibility of using of large and diverse
datasets in livestock metabolomics studies by examining the effects of fixed environmental and
physiological effects on the 1H NMR serum metabolome of clinically healthy dairy cows in early
lactation. We propose a method that uses linear models to correct spectra for fixed effects and
demonstrate its potential utility by quantifying the relationship between 1H NMR spectra and the
current gold-standard serum biomarker of energy balance, β-hydroxybutyrate (BHBA) [22,23].

2. Results

2.1. Dataset

Serum samples were collected from 707 early lactation cows (<30 d in milk) from 13 farms located
in southeastern Australia. Descriptive statistics of the animals included in the experiment, including
herd of origin, stage of lactation (reported as days in milk, or the number of days post-calving), parity
and serum BHBA concentrations and are summarized in Table 1. Of particular interest were the BHBA
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results obtained from Farm 1, which had a greater mean and standard deviation than observed in
other farms.

Table 1. Descriptive statistics of dataset used in this experiment, including farm details, number of
cows (N), mean and standard deviation (shown in parentheses) of parity, days in milk (DIM), and serum
β hydroxybutyrate (BHBA) concentrations obtained from dairy cows in the first 30 days of lactation
from 13 farms in south eastern Australia.

Farm N Location Parity DIM BHBA

1 129 Sth Gipp 1 2.9 (1.1) 19.4 (7.2) 1.25 (0.69)
2 11 Sth Gipp 2.6 (1.2) 20.4 (8.1) 0.34 (0.12)
3 12 W Gipp 2 2.6 (1.4) 22.8 (5.7) 0.33 (0.10)
4 11 W Gipp 3.1 (1.2) 17.9 (10.2) 0.54 (0.15)
5 18 MID 3 2.9 (1.1) 22.6 (5.1) 0.61 (0.25)
6 248 W Gipp 2.1 (1.0) 16.7 (6.0) 0.55 (0.21)
7 9 GV 4 2.6 (1.0) 13.9 (6.7) 0.53 (0.27)
8 24 MID 2.4 (1.2) 17.7 (8.2) 0.38 (0.09)
9 33 Sth Gipp 2.5 (1.2) 18.3 (7.2) 0.55 (0.33)

10 27 Sth Gipp 1.8 (1.1) 13.1 (7.7) 0.50 (0.14)
11 50 Tas 5 2.6 (1.3) 18.6 (7.3) 0.42 (0.17)
12 123 MID 2.8 (1.2) 15.8 (8.6) 0.38 (0.15)
13 12 Tas 2.7 (0.8) 16.0 (7.6) 0.58 (0.22)

ALL 707 - 2.5 (1.2) 17.4 (7.3) 0.63 (0.46)
1 South Gippsland Region, 2 West Gippsland Region, 3 Macalister Irrigation District, 4 Goulburn Valley Region,
5 Tasmania.

2.2. 1H NMR Spectroscopy of Serum Samples

1H NMR spectra were complex; however, more than 20 metabolites could be identified.
Spectra were dominated by organic acids, amino acids, glucose and phospholipid intermediates
(Figure S1 and Table S1).

2.3. Preliminary Data Analysis Using Principal Component Analysis

Preliminary data analysis and outlier identification was performed using principal component
analysis (PCA). Plots of the first 2 principal components (PCs) identified several samples located
outside the 95% confidence level. These spectra were manually inspected, and a single outlier with
erroneous phasing was identified and removed from subsequent analyses.

PCA was repeated after outlier removal. The first 13 PCs explained greater than 90% of the
variation in the spectra. Scores plots of the first three PCs, which explain 47.64%, 15.59%, and 7.45%
of variation, respectively, are shown in Figure 1a–c. There was obvious clustering of samples by
herd of origin. Samples from Farm 1 showed greater variation than those from the other farms.
The separation between farm clusters was most obvious along PC1 and PC2. Visual comparisons
based on stage of lactation (defined as weeks in milk (WIM)) and parity were also performed, but no
obvious clustering or separation was observed. Loadings plots of the first three PCs show that energy
metabolites BHBA, lactate, acetate and glucose, have the largest influences on spectral differences
(Figure 1d–f), with smaller influences from the branched chain amino acids, lipoproteins, glycine,
creatine, and betaine.
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Figure 1. Results of principal component analysis (PCA) of 707 proton nuclear magnetic resonance 
(1H NMR) spectra of serum obtained from dairy cows in early lactation; (a) principal component (PC) 
1 vs PC 2 scores, (b) PC 1 vs PC 3 scores, (c) PC 2 vs PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings, 
and (f) PC 3 loadings plots. Scores plots are colored by farm of origin. The δ 6.5 to 8.5 region of 
loadings plots have been magnified for clarity purposes. α-Glu = α glucose, Ace = acetate, Ala = 
alanine, β-Glu = β glucose, Bet = betaine, BHBA = β hydroxybutyrate, Cr = creatine, Glu = glucose, Gly 
= glycine, Hip = hippurate, Ile = isoleucine, Lac = lactate, Leu = leucine, Val = valine, VLDL/LDL = 
Very low density lipoprotein and low density lipoprotein. 

2.4. Principal Component Analysis of Spectra Corrected for Fixed Effects 

Principal component analysis (PCA) was repeated on spectra that had been corrected for (1) 
WIM, (2) Parity, (3) Herd, and (4) WIM, Parity and Herd simultaneously (hereafter referred to as all 
fixed effects) (Models 1 to 4). Results derived from spectra corrected separately for WIM and Parity 
are nearly identical to uncorrected spectra (Figures S2 and S3). By contrast, scores plots derived from 

Figure 1. Results of principal component analysis (PCA) of 707 proton nuclear magnetic resonance
(1H NMR) spectra of serum obtained from dairy cows in early lactation; (a) principal component (PC)
1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings,
and (f) PC 3 loadings plots. Scores plots are colored by farm of origin. The δ 6.5 to 8.5 region of loadings
plots have been magnified for clarity purposes. α-Glu = α glucose, Ace = acetate, Ala = alanine, β-Glu
= β glucose, Bet = betaine, BHBA = β hydroxybutyrate, Cr = creatine, Glu = glucose, Gly = glycine,
Hip = hippurate, Ile = isoleucine, Lac = lactate, Leu = leucine, Val = valine, VLDL/LDL = Very low
density lipoprotein and low density lipoprotein.

2.4. Principal Component Analysis of Spectra Corrected for Fixed Effects

Principal component analysis (PCA) was repeated on spectra that had been corrected for (1) WIM,
(2) Parity, (3) Herd, and (4) WIM, Parity and Herd simultaneously (hereafter referred to as all fixed
effects) (Models 1 to 4). Results derived from spectra corrected separately for WIM and Parity are
nearly identical to uncorrected spectra (Figures S2 and S3). By contrast, scores plots derived from
PCA of spectra corrected for Herd (Figure S4), and spectra corrected for all fixed effects (Figure 2a–c),
show no obvious clustering of samples by Herd, WIM or Parity. There is, however, still considerable
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separation of samples along all three PC axes, suggesting that significant inter-animal variation in the
serum metabolome exists after accounting for fixed effects. Compared to the uncorrected data; (1) more
PCs were required to explain >90% of spectral variation (24 vs. 13), (2) the percentage of variation
captured by PC1 was lower (25.70% vs. 47.64%), and (3) the percentage of variation captured by PC2
and PC3 was higher (16.92% vs. 15.59% and 11.79% vs. 7.45%, respectively). Loadings plots are shown
in Figure 2d–f. Interestingly, separation of samples along PC1 (25.70%) is due almost entirely to lactate.
Loadings on PC2 and PC3 are similar to uncorrected data.
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Figure 2. Results of PCA of 707 1H NMR spectra of serum, corrected for herd of origin, week of
lactation, and parity obtained from dairy cows in early lactation; (a) PC 1 vs. PC 2 scores, (b) PC 1 vs.
PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings plots.
Scores plots are colored by farm of origin. The δ 6.5 to 8.5 region of loadings plots have been magnified
for clarity purposes. α-Glu = α glucose, Ace = acetate, Ala = alanine, β-Glu = β glucose, Bet = betaine,
BHBA = β hydroxybutyrate, Cr = creatine, Glu = glucose, Gly = glycine, Ile = isoleucine, Lac = lactate,
Leu = leucine, Val = valine, VLDL/LDL = Very low density lipoprotein and low density lipoprotein.
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2.5. Effect of Stage of Lactation, Parity, and Herd Effects on 1H NMR Spectra

In order to quantify the effect of each fixed effect on NMR spectra, we calculated Pearson’s
correlations between scores for the first three PCs from the previously described PCAs (Figure 3).
The largest differences (i.e., lowest correlations) were seen between uncorrected spectra, and spectra
corrected for Herd (r = 0.43). This suggests that there are significant differences between those 2 spectral
datasets, and that Herd, therefore, has a significant effect on the serum NMR metabolome. This is
consistent with the clustering of samples by farm in the original PCA (Figure 1a–c). By comparison,
the correlations between PC scores derived from uncorrected spectra, and spectra corrected for WIM
and Parity, were high (0.99 and 0.97, respectively). This suggests that these spectra are nearly identical,
and that these fixed effects have minimal influence on the serum metabolome. Correlations between
PC2 scores were consistent with those observed between PC1 scores, and correlations between PC3
scores were all high (≥0.89).
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Figure 3. Pearson’s correlations between scores derived from PCA of uncorrected 1H NMR spectra
of bovine serum, and the same spectra corrected using linear regression for week of lactation (WIM),
parity, herd of origin, and WIM, parity, and herd simultaneously (All). Color map shows strength of
Pearson’s correlation.

To test the statistical significance of fixed effects on 1H NMR spectra, we used conditional Wald
F statistics derived from multiple linear regression models on the first three PC scores (Model 5).
The higher the F statistic, the greater the effect of that variable on the PC score, and the lower the P
value, the greater the statistical significance. Results derived from these models are summarized in
Table 2. PC1 results were consistent with the results of Pearson’s correlations, showing that Herd had
the greatest effect. Interestingly, results for PC2 and PC3 differed slightly from Pearson’s correlations.
While Herd had a relatively large and significant (P < 0.001) impact on both PC2 and PC3, the effect of
Parity was nearly as great on PC2 scores and greater on PC3 scores.

Table 2. Results of multiple linear regression models of principal component (PC) scores derived from
PCA of 1H NMR spectra, against weeks in milk (WIM), parity, and herd of origin. Conditional Wald F
statistics (F-con) and corresponding P values describe the magnitude and statistical significance of each
fixed effect, respectively.

PC1 (47.64%) PC2 (15.59%) PC3 (7.45%)

Fixed Effect F-con P Value F-con P Value F-con P Value

WIM 2.66 0.047 5.42 0.001 2.14 0.094
Parity 2.78 0.041 20.39 <0.001 15.19 <0.001
Herd 158.29 <0.001 26.78 <0.001 6.66 <0.001
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R2 values obtained from models 1–4 were used to investigate which regions of the NMR spectra
were most strongly influenced by the fixed effects. As the signal intensity at each chemical shift was
treated as a separate response variable, the R2 values from Models 1, 2, and 3 describe the effect
of WIM, parity, and herd on each of the 24,349 chemical shifts, respectively. These R2 values were
color-coded, and overlaid on an average NMR spectrum. Plots showing the effects of WIM and Parity
were unremarkable (all R2 < 0.2, Figure S5), however R2 values obtained from Model 2 showed that
approximately 10–20% of the variation in glucose and acetate concentration could be explained by
parity. The plot showing the effect of herd is shown in Figure 4. The strongest effect was seen in the
downfield region of the spectrum, with close to 80% of variation in the concentration of some phenolic
compounds being explained by Herd. Of these, hippurate could be clearly identified. Peaks at δ 7.31
and 7.39 were tentatively assigned to 3-phenyllactate, but the peak at δ 7.22 could not be identified.
Lactate, acetate, BHBA, betaine, pyruvate, glycine, and glucose concentrations were also strongly
influenced by herd effect.
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6.5 to 8.5 region has been magnified for clarity purposes. Ace = acetate, Bet = betaine, BHBA = β

hydroxybutyrate, Gly = glycine, Hip = hippurate, Lac = lactate, Pla = 3-phenyllactate, Pyr = pyruvate,
U = unidentified peak. * indicates tentative identification.

The results of ANOVA-simultaneous component analysis (ASCA) were consistent with results of
linear regression spectral correction and are shown in Table S2. Herd had the greatest effect (43.99,
P = 0.02), followed by parity (4.10, P = 0.02) and WIM (1.37, P = 0.02). When ASCA was performed on
corrected spectra, the effect of the fixed effect(s) was reduced to zero. For example, when ASCA was
performed on spectra corrected for Herd, the effect of herd was zero (P = 1.00), but the effects of WIM
(1.68, P = 0.02) and parity (3.30, P = 0.02) were retained.

2.6. Robustness of 1H NMR Predictions of Serum BHBA

Our results show that 1H NMR spectra can be used to predict serum BHBA concentration with
good accuracy. This result is expected, as BHBA is directly quantifiable from NMR spectra. The overall
robustness of our approach was assessed using a “leave-one-farm-out” external validation of OPLS
models built using uncorrected data. This involved iteratively setting aside data from one farm,
training models using data from the remaining 12 farms, then using the withheld data for external
validation. R2 results were variable (0.30 ≤ R2

≤ 0.99), however RMSE values remained relatively
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low (≤ 0.18) (Table 3). Interestingly, RMSE values were considerably higher when Farm 1 data were
withheld for validation.

Table 3. Results of leave-one-farm out external validation of orthogonal partial least squares (OPLS)
regression models predicting serum BHBA concentration from uncorrected 1H NMR spectra. Validation
farm specifies the identity of the data used for validation, N the number of animals used in calibration
and validation datasets. The coefficient of determination (R2) and root mean square error (RMSE) are
reported for each calibration/validation subset.

Calibration Cross Validation External Validation

Validation Farm P LV N R2 RMSE R2 RMSE N R2 RMSE

- <0.05 3 707 0.95 0.10 0.95 0.10 - - -
1 <0.05 5 578 0.87 0.08 0.85 0.08 129 0.96 0.18
2 <0.05 3 696 0.95 0.10 0.95 0.10 11 0.59 0.10
3 <0.05 4 695 0.96 0.09 0.96 0.10 12 0.78 0.06
4 <0.05 3 696 0.95 0.10 0.95 0.10 11 0.93 0.09
5 <0.05 3 689 0.96 0.10 0.95 0.10 18 0.99 0.09
6 <0.05 3 459 0.96 0.11 0.96 0.11 248 0.87 0.10
7 <0.05 3 698 0.95 0.10 0.95 0.10 9 0.98 0.05
8 <0.05 3 683 0.95 0.10 0.95 0.10 24 0.30 0.07
9 <0.05 3 674 0.95 0.10 0.95 0.10 33 0.95 0.11
10 <0.05 3 680 0.95 0.10 0.95 0.10 27 0.85 0.09
11 <0.05 3 657 0.95 0.10 0.95 0.10 50 0.82 0.08
12 <0.05 3 584 0.97 0.09 0.96 0.09 123 0.52 0.12
13 <0.05 3 695 0.95 0.10 0.95 0.10 12 0.98 0.05

2.7. Influence of Fixed Effects on Interpretation of 1H NMR Metabolomic Data

The impact of fixed effects on the interpretation of 1H NMR metabolomic data was determined
by comparing the results of OPLS models built using (1) data from Farm 1 only (used as a control),
(2) uncorrected data from all farms, and (3) data from all farms corrected for all fixed effects. Fixed
effects appeared to have minimal effect on the predictive ability of models. We observed similar 10-fold
cross validation prediction accuracies for all 3 datasets (Table 4). Interestingly, RMSE results were quite
close to the results of the leave-one-farm out external validation (0.05 ≤ RMSE ≤ 0.18).

Table 4. Results obtained from 10-fold cross validation of OPLS regression models predicting serum
BHBA concentration from 1H NMR spectra using data from Farm 1 only, uncorrected data from all
farms, and data from all farms corrected for the effect of herd. Number of cows (N), number of latent
variables included in each mode (LV), coefficient of determination (R2) and root mean square error
(RMSE) of calibration (C) and 10-fold cross validation (CV) are shown.

Dataset N LVs P Value 1 R2
C RMSEC R2

CV RMSECV

Farm 1 Uncorrected 129 4 <0.001 0.98 0.10 0.97 0.12
All Data Uncorrected 707 4 <0.001 0.96 0.09 0.96 0.10

All Data Corrected for Herd 707 4 <0.001 0.93 0.09 0.93 0.09
1 P-value derived from permutation testing (50 iterations) and pairwise Wilcoxon signed rank test.

The influences of fixed effects on biomarker discovery were investigated by comparing loadings
on LV1. Results obtained using only Farm 1 data were used as a reference and show a strong positive
correlation between BHBA concentration and acetate, and strong negative correlations with lactate
and glucose (Figure 5a,b). Loadings from the complete dataset corrected for all fixed effects were
very similar (Figure 5e,f). Results from uncorrected data, however, were quite different (Figure 5c,d),
with BHBA being positively correlated with lactate and glycine. Examination of scores plots shows
obvious clustering and separation by herd (especially Farm 1) when uncorrected data are used
(Figure S6a), but not when corrected data are used (Figure S6b). Results from the original PCA showed
that samples from Farm 1 clustered at the positive end of PC1, and that lactate and glycine both had
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strong positive influences on PC1 loadings. Therefore, it is possible that OPLS results are confounded
by a strong herd effect when uncorrected data are used.
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Figure 5. Results of OPLS regressions of serum BHBA concentration against 1H NMR spectrum of
bovine serum: (a) Farm 1 (N = 179) LV1 vs. LV2 scores and (b) LV1 loadings, (c) all farms (N = 707)
uncorrected data LV1 vs. LV2 scores and (d) LV1 loadings, and (e) all farms data LV1 vs. LV2 scores
and (d) LV1 loadings.

3. Discussion

To the best of the authors’ knowledge, this is the first large-scale serum metabolomics study
to investigate the impact of systematic environmental and physiological fixed effects on the 1H
NMR serum metabolome of clinically healthy dairy cattle. Our results indicate that herd-specific
environmental factors have much greater effects on the serum metabolome of early lactation dairy
cows than physiological factors such as WIM and parity. We demonstrate that, while confounding
from herd effects can significantly influence the results of biomarker discovery, models built using
data collected from multiple farms can give robust predictions of external phenotypes such as BHBA.
In order to overcome the potential confounding of fixed effects on biomarker discovery, we propose a
method to correct 1H NMR spectra prior to multivariate analysis using multiple linear regression.

3.1. Differences in 1H NMR Spectra Between Herds

Our results clearly demonstrate that there are significant differences in the serum metabolomes
of animals from different herds. The fact that energy metabolites BHBA, lactate, acetate and glucose
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dominated PCA loadings (Figure 2d–f), and that herd effect accounted for a large percentage of the
variation seen in lactate, acetate, pyruvate, glucose, and BHBA concentrations, (Figure 4) suggests that
metabolic state, in particular energy balance, varied significantly between farms.

The importance of lactate was particularly interesting. Lactate was one of the most abundant
metabolites identified in this experiment. This is very different to the findings of Sun et al. [8],
who reported that lactate was one of the weakest signals in serum 1H NMR spectra obtained from
early-lactation cows fed a total mixed ration. One possible explanation for the very high concentrations
of lactate seen in our dataset could be ruminal lactate production. During spring, dairy cows in pastoral
farming systems of southeastern Australia are typically fed rations high in fermentable carbohydrate,
and low in neutral detergent fiber. As a consequence, ruminal acidosis is common [24]. Serum
concentrations of lactate, and in particular D-lactate from microbial fermentation, have been shown
to increase following experimental induction of ruminal acidosis [25,26]. Without the use of a shift
reagent and specialized experiments it is not possible to differentiate between the different lactate
isomers by 1H NMR [27]. We therefore plan to quantify the relative contributions of L- and D- lactate
to better understand the cause of high lactate concentrations in our dataset.

The strong influence of Herd on the concentration of phenolic compounds could also be consistent
with ruminal acidosis. Signal intensities in the downfield region of 2D spectra were weak, meaning clear
identification of some of the phenolic peaks in our dataset was not possible. Our tentative identification
of 3-phenyllactate is consistent with the findings of Yang et al. [26], who demonstrated that beef steers
fed high starch (corn) diets had higher plasma concentrations of phenyllactate compared to those fed
low starch diets. This study also identified L-phenyllalanine biosynthesis and metabolism as important
metabolic pathways in high starch feeding. We plan to (1) enrich samples and repeat 2D analyses and
(2) perform LCMS-based metabolomics on a subset of samples to identify these compounds.

Nearly 80% of the variation seen in hippurate concentration could be explained by herd effect
(Figure 4). Hippurate is formed by the conjugation of glycine and benzoic acid, and has been associated
with microbial degradation of dietary compounds [28]. Concentrations of hippurate increase with
increased consumption of phenolic compounds [13], which are present in relatively high concentrations
in pasture species. Milk hippurate concentration has been proposed as a biomarker of pasture/forage
intake in goats [29], and it is possible that our results represent differences in feeding regimens between
farms. Hippurate has also been proposed as a biomarker for gut microbiome diversity in humans [30],
and our results may indicate differences in the gastrointestinal health of animals from different farms
(i.e., ruminal acidosis). Detailed information of ration formulations is very difficult to define in grazing
systems as pasture quality and intake vary considerably within and between herds. This information
was therefore not available for the herds in our dataset and more data are required to further investigate
this finding.

Results of the initial PCA showed that data from Farm 1 were significantly different to, and showed
more variation than, data from the other farms. The reasons for these differences are hard to determine
from our dataset, as Farm 1 differed in environment/management, breed and reference BHBA
concentrations (and therefore it is assumed animal metabolic status). Given that we also observed
clustering and separation of the 12 Holstein-Friesian herds in the initial PCA (Figure 2), it appears
that herd-specific environmental factors have a larger effect on the serum metabolome than breed.
However, Liao et al. [31] recently reported clear differences in the serum metabolomes (GC-MS) of
three different breeds of beef steers, all the same age, fed the same ration, and managed under the
same conditions. Further data are therefore required to investigate if there are differences between the
serum metabolomes of different dairy breeds.

Pre-analytical sample handling and processing have been shown to have significant effects on
human metabolomic data [32], and considerable efforts are made to streamline and standardize sample
collection and processing protocols [33–35]. Standardizing protocols in livestock studies provides its
own challenges, when relatively large number of samples are being taken at once, often in diverse,
challenging and remote locations. While all attempts were made to ensure consistency, there were
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some unavoidable differences in the way samples from different herds were handled (for example time,
between blood sample collection and centrifugation varied from approximately 2–4 h). It is therefore
possible that some of the variation between farms seen in our data could be due to pre-analytical
sample handling. However, overall our results suggest that metabolomic differences between animals
from different farms are due largely to differences in diet/nutritional management. We plan to collect
more samples from animals receiving different diets to investigate this further.

3.2. Effect of Lactation Stage and Parity on Serum Metabolome

Our results suggest that stage of lactation appeared to have a minimal effect on the NMR spectra.
This is consistent with the findings of Ilves et al. [17] who found that the mass spectrometry (MS)
based plasma metabolome of dairy cows was more heavily influenced by animal individuality than by
lactation stage. By contrast, several authors report that both the NMR and MS-derived milk metabolome
changes across lactation [17,36]. This suggests that blood-based metabolomics may be more suitable
for identification of individual animal-specific differences within a population, and therefore provide
more robust metabotypes for genetic selection.

Parity appeared to have a small but significant (P < 0.05) effect on the overall 1H NMR serum
metabolome. We could find no other reports in the literature describing the effect of parity on the entire
serum metabolome. However, our results are consistent with other studies that showed parity has a
significant effect on the concentration of several metabolites in serum including glucose, creatinine,
urea and BHBA [37–39]. This suggests that parity should be taken into consideration when undertaking
metabolomic studies in dairy cows.

3.3. Accuracy of OPLS Models for Predicting Serum BHBA Concentration

Despite the significant influence of fixed effects on the serum metabolome, results obtained from
the leave-one-farm out external validation suggest that prediction models constructed with data from
multiple farms are quite robust. R2 values varied significantly depending on which farm was used
for validation (0.30 ≤ R2

≤ 0.99); however, the R2 is known to be affected by the range of the dataset,
and RMSE is often considered to be a better predictor of model performance [40]. Promisingly, external
validation RMSE results (0.05 ≤ R2

≤ 0.18) were close to those obtained from 10-fold cross validation of
models built using only Farm 1 data (RMSE = 0.12) and all data (RMSE = 0.10). The fact that prediction
errors were highest when Farm 1 data were withheld for validation suggests that the increased variation
observed in Farm 1 data represents valuable biological variation rather than confounding/noise.

Correcting data for fixed effects had very little impact on the predictive ability of OPLS models.
Furthermore, when corrected spectra were used, y-values also had to be corrected, making interpretation
of phenotypic values difficult. Interestingly, Wanichthanarak, et al. [20] found that “readjusting”
mass spectroscopy metabolite signals using patient metadata and linear mixed models improved the
sensitivity and specificity of classification of human tissue samples with and without colorectal cancer.
Conversely, Posma et al. [41] found that adjusting NMR data for confounding factors lead to a loss of
predictive power for cardiovascular risk in a large-scale human NMR metabolomic dataset. Whether
using NMR spectra corrected using linear regression will improve the performance of classification
models (as opposed to regression against a continuous variable as used in this study) requires further
investigation. Overall, our results suggest that models constructed using uncorrected data collated
from multiple farms may be appropriate for prediction of external phenotypes which are influenced by
both genetic and environmental factors.

3.4. Impact of Fixed Effects on the Interpretation of Metabolomic Data for Biomarker and Metabotype Discovery

Loadings from OPLS models built using uncorrected spectra from Farm 1, and spectra from all
farms corrected for fixed effects, were consistent with the literature. BHBA and glucose concentrations
have been shown to be negatively correlated in the serum of cows in early lactation dairy cows [42].
L-lactate is an important gluconeogenic substrate in dairy cows [43,44], so it follows that lactate
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concentration is also negatively correlated with BHBA concentration. Our results are also consistent
with the findings of Sun et al. [8] who showed that cows with subclinical (1.2 < BHBA < 2.9 mmol/L)
and clinical ketosis (BHBA > 2.9 mmol/L) had lower lactate and glucose concentrations and higher
BHBA and acetate concentrations than the healthy controls.

The fact that loadings were different when uncorrected spectra from all farms were used
demonstrates that herd-specific environmental effects can influence the results of biomarker discovery.
How significant this is ultimately depends on the research question being asked. If the study aim
is to identify biomarkers of external phenotypes (i.e., biomarkers that represent both genetic and
environmental factors which are used for management purposes such as disease prediction), then the
impact of environmental effects is important and must be captured. However, if the aim is to identify
biomarkers indicative of inter-animal differences free of environmental confounding, or to understand
biological processes, our results suggest that the influence of environmental effects could lead to
erroneous results. This is consistent with the findings of Posma et al. [41] who showed that differences in
fixed effects between subjects from the north and south of China explained some metabolite associations,
which had previously been attributed to cardiovascular disease risk. This study also reported that
adjusting metabolomic data for confounding using an algorithm called Covariate-Adjusted Projection
to Latent Structures (CA-PLS) improved model interpretability and led to the identification of more
robust biomarkers. Our results are also consistent with other studies that have explored the impacts of
data pretreatments on the interpretation of metabolomics data. For example, van den Berg et al. [45]
showed that pretreatment methods such as scaling, centering and transformations can greatly affect
the outcome of metabolomic analyses (including the biological ranking of important metabolites) and
have the potential to enhance biological interpretability. Similarly, Emwas et al. [46] concluded that the
choice of spectral processing and post-processing depended on many factors including the aim of the
experiment and the quality of data.

We believe that our approach has particular application in animal breeding, where the aim
is to understand the biological processes that underpin economically important traits [47] and
to identify metabotypes that represent inter-animal variation independent of confounding from
systematic environment effects. Even with the advent of genomic selection, livestock genetic studies
require relatively large numbers of animals to ensure there is adequate genetic variation in the study
population [48,49]. The same is likely to be true for metabotype discovery studies. Such large datasets
can be hard to compile, especially when the trait of interest is difficult and/or expensive to measure.
As well as collecting data from multiple farms, another potential solution is data sharing through
international collaboration. This is routinely done by geneticists; for example, de Haas et al. [50] used
data from Holstein cattle in Europe, North America and Australasia to improve genomic prediction
accuracies for feed intake. The ability to correct metabolomic data for factors such as experimental
batch, diet, herd, year and season should allow similar collaborations in metabotype studies.

4. Materials and Methods

All procedures undertaken in this study were conducted in accordance with the Australian Code
of Practice for the Care and Use of Animals for Scientific Purposes (National Health and Medical
Research Council, 2013). Approval to proceed was granted by the Agricultural Research and Extension
Animal Ethics Committee of the Department of Jobs, Precincts and Resources Animal Ethics Committee
(DJPR, 475 Mickleham Road, Attwood, Victoria 3049, Australia), and the Tasmanian Department of
Primary Industries, Parks, Water and Environment (DPIPWE Animal Biosecurity and Welfare Branch,
13 St Johns Avenue, New Town, Tasmania 7008, Australia). AEC project approval codes 2017-05
and 2018-07.

4.1. Sample Collection

A single 10 mL blood sample was taken from 708 clinical healthy cows, located on 13 farms in
south-eastern Australia between September 2017 and July 2019. All cows had been calved 30 days
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or less at the time of sampling. Cows on all farms except Farm 1 were Australian Holstein-Friesians,
while cows on Farm 1 were crossbred animals (including Holstein–Friesian, Jersey, and Australian
Red breeds). All farms operated a feeding system reliant on grazed pasture plus other forages,
and concentrates fed in the bail at milking time.

Blood samples were collected from the coccygeal vein into 10 mL serum clot activator vacutainer
tubes (Becton Dickinson, Franklin Lakes, NJ, USA). Samples were allowed to clot at room temperature,
before being centrifuged at 1000 g for 20 min at 20 ◦C. Sera were divided into two aliquots. The first
aliquot was refrigerated at 4 ◦C then shipped on ice to a commercial laboratory for BHBA analysis.
The second aliquot was stored at –20 ◦C until processing for NMR spectroscopy.

4.2. Reference BHBA Measurements

Serum BHBA concentrations were determined using a colorimetric enzymatic kinetic assay [51].
All assays were performed by Regional Laboratory Services (Benalla, Victoria, Australia) using a Kone
20 XT clinical chemistry analyzer (Thermo Fisher Scientific, Waltham, MA, USA). The uncertainty of
measurement (at a 95% confidence level) was ± 0.060 mmol/L at 0.85 mmol/L.

4.3. Chemicals

Methanol (>99.9% pure) and dipotassium hydrogen phosphate (anhydrous) were purchased
from Fisher Chemical (Fair Lawn, NJ, USA). Sodium 2,2-dimethyl- 2-silapentane-5-sulfonate (DSS-d6,
98%) and deuterium oxide (D2O, 98%) were purchased from Cambridge Isotope Laboratories, Inc.
(Tewksbury, MA, USA).

4.4. Sample Preparation for NMR Spectroscopy

Serum samples were thawed at room temperature for one hour and were prepared for NMR
spectroscopy using a methanol protein precipitation method described by Nagana Gowda and
Raftery [52]. Briefly, 300 µL of serum was mixed with 600 µL of methanol, vortexed (Ratek multi tube
vortex mixer, MTV1), incubated at –20 ◦C for 20 min, then centrifuged to pellet proteins (11,360 g, 21 ◦C,
30 min). A 600 µL aliquot of supernatant was then transferred to a clean 2 mL microcentrifuge tube
and dried under vacuum at 21 ◦C overnight using a SpeedVac Savant SPD 2010 Concentrator (Thermo
Fisher Scientific, Waltham, MA, USA). Dried extracts were then reconstituted in a D2O phosphate
buffer solution (100 mM K2HPO4) containing 0.25 mM DSS-d6 as an internal standard. A 550 µL
aliquot was transferred to 5 mm NMR tube for analysis.

4.5. 1H NMR Data Acquisition

Routine 1D proton spectra were obtained on a Bruker Ascend 700 MHz spectrometer equipped
with cryoprobe and SampleJet automatic sample changer (Bruker Biospin, Rheinstetten, Germany).
A Bruker noesypr1d pulse sequence was used over –0.76 ppm to 10.32 ppm spectral range with
256 scans collected after eight dummy scans at 298K, with a total acquisition time of 2.11 seconds per
increment and a relaxation delay (D1) of 2.00 seconds. The overall number of data points was 32,768.
A line broadening of 0.3 Hz was applied to all spectra prior to Fourier transformation. Spectra were
manually phased then baseline corrected in Topspin v.3.6.1 (Bruker Biospin, Rheinstetten, Germany).
Samples were referenced to the internal standard (DSS-d6) at δ 0.00.

4.6. 1H NMR Spectral Processing & Multivariate Statistical Analysis

NMR spectra were imported into MatLab v.R2017b (Mathworks, Natick, WA, USA) using the
ProMetab v.1.1 script [53]. Each raw spectrum consisted of 31,313 data points between −0.60 and
10.00 ppm.

Statistical analyses were performed in MatLab utilizing the PLS Toolbox v. 8.5.2 (Eigenvector
Research Inc., Manson, WA, USA). The spectral region containing the residual water peak (δ 4.68–5.00)
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was removed. Spectra were aligned using the correlation optimized warping algorithm [54] to account
for chemical shift drift, then normalized to total signal area to account for inherent concentration
differences between samples. After normalization, spectral regions containing methanol (δ 3.32–3.36)
and DSS-d6 (δ 0.4–−0.60) peaks, and the non-informative region beyond 9.00 ppm were removed.
Finally, spectra were baseline corrected using automatic weighted least squares, and scaled by mean
centering. After editing, a total of 24,349 chemical shift datapoints were included in subsequent
statistical analyses.

For multivariate analyses, unsupervised principal component analysis (PCA) was used. Peaks of
interest were identified using the Chenomx NMR suite software v.8.4 (Chenomx Inc., Edmonton, AB,
Canada), comparison to the literature, and 2D NMR analysis.

4.7. Correction of 1H NMR Spectra for the Effects of Systematic Environemtal and Physiological Effects

In order to investigate the effects on spectra of systematic environmental effects (also known as
fixed effects) spectra were “corrected” using linear regression models. When correcting for a single
categorical fixed effect, this is equivalent to scaling data using the “class centering” pre-processing
step. Rather than mean centering, which involves subtracting the global mean from each variable,
class centering subtracts the mean of each class. This allows investigation of intra-class variation by
removing the effects of inter-class variation [55]. The advantage of using linear models rather than
class centering is that the effect of multiple fixed effects or classes can be modelled simultaneously.

The approach we took was based on the principals of quantitative genetic models, where

Phenotypic observation = environmental effects + genetic effects + residual effects (1)

In this study, we only want to remove the effect of environmental factors (as it is the variation
in NMR spectra under genetic influence that we are interested in), so the equation can be further
simplified to

Phenotypic observation = genetic effects + residual effects (2)

The “corrected phenotype” (i.e., the phenotypic observation with the effects of the environmental
effects removed) is defined as the residuals from the above model. For the purposes of this study each
chemical shift was treated as a separate phenotype, with the signal intensity at each chemical shift
being an individual phenotypic observation. The “corrected spectra” was a matrix of the residuals of
each model.

A 707 × 24,349 matrix of signal intensities of pre-processed spectra was imported into the R
statistical software package v 3.6.2 [56]. Each row in the matrix represented a single sample, and each
column represented 1 of the 24,349 chemical shifts between δ 0.40 and δ 8.99 that made up an individual
spectrum. The following 4 linear models were applied to each of the 24,349 columns in the matrix
(i.e., the signal intensity at each chemical shift was treated as the response variable in a separate
regression model):

yil = µ + WIMi + eil (Model 1) (3)

yjl = µ + Pj + ejjl (Model 2) (4)

ykl = µ + Hk + ekl (Model 3) (5)

yijkl = µ + WIMi + Pj + Hk + eijkl (Model 4) (6)

where y is the signal intensity at a given chemical shift, µ is the mean, WIM is weeks in milk (4 levels,
defined as 1, 2, 3, or 4), P is parity (4 levels, defined as 1, 2, 3, or ≥ 4), H is the effect of herd (13 levels,
with a range of 9 to 248 cows per herd), and e is the random error term. This resulted in four separate
707 × 24,349 matrices containing spectra corrected for the effects of WIM, parity, herd, and all fixed
effects, respectively.
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The R2 values from each regression model were stored in a separate vector. This resulted in four
vectors each containing 24,349 R2 values; each value representing the percentage of variation in signal
intensity explained by the fixed effect(s) at a given chemical shift.

4.8. Quantifying the Effect of Stage of Lactation, Parity and Herd on 1H NMR Spectra

A separate PCA was performed on each of the 4 corrected spectral datasets (as described in 4.7).
Scores of the first three PCs were extracted for each model, and for the PCA model constructed using
uncorrected data. We then calculated Pearson’s correlations between scores derived from the 5 PCAs
using the corrplot package [57] in R v 3.6.2 [56]. This resulted in three correlation matrices (one for
each PC). The lower the Pearson’s correlation coefficient, the greater the differences between PC scores,
the greater the differences between the two spectral datasets and therefore the greater the significance
of the fixed effect(s).

An alternative approach to investigating the influence of fixed effects is to use multiple linear
regression on PC scores from uncorrected spectra. The advantage of this approach is that all fixed
effects can be fitted simultaneously, and the statistical significance of each fixed effect can be calculated.
The model used was

yijkl = µ + WIMi + Pj + Hk + eijkl (Model 5) (7)

where y is the PC score (on either PC1, PC2, or PC3) and µ, WIM, P, H, and e are the mean, fixed effect,
and error terms described previously. The statistical significance of each fixed effect was determined
using conditional Wald F statistics in ASReml v 4.2 (VSN International Ltd., Hemel Hempstead, UK).
Conditional F statistics are used in multiple linear regression to infer the significance of a given fixed
effect assuming that the effect of remaining predictor variables have been accounted for [58].

Finally, we validated our results using the analysis of variance (ANOVA) simultaneous component
analysis (ASCA) method in the PLS Toolbox [55]. ASCA is a generalization of ANOVA used to quantify
the variation induced by fixed experimental design factors on complex multivariate datasets [59].
ASCA was performed on all spectral datasets (corrected and uncorrected). Statistical significance was
determined using permutation testing (50 iterations).

4.9. The Relationships between 1H NMR Spectra and Existing Energy Balance Biomarker Concentrations

In order to assess the utility of large and diverse datasets in livestock metabolomics studies,
we used orthogonal partial least squares (OPLS) regression to compare 1H NMR spectra to serum
BHBA concentrations determined by colorimetric assay. The aims of this analysis were (1) to assess
the robustness of OPLS models built using uncorrected data and (2) investigate the influence of
systematic environmental effects on the interpretation of 1H NMR spectra when used for untargeted
metabolomic analyses.

4.9.1. Robustness of OPLS Models to Predict External Phenotypes Using Uncorrected Data

The robustness of OPLS models constructed using large and diverse datasets was assessed using
a leave-one-farm-out external validation. This involved setting aside data from one farm, training
OPLS models using data from the remaining 12 farms, then using the withheld data for external
validation. This process was repeated until data from each farm was used as an external validation
set once. Model performance was assessed using the R2 and RMSE of calibration, cross validation
(venetian blind CV with 10 data splits, and one sample per split), and external validation. The statistical
significance of OPLS models was determined using permutation testing (cross validated, Wilcoxon
test). Only uncorrected data were used for this part of the analysis.

4.9.2. Influence of Fixed Effects on Interpretation of 1H NMR Metabolomic Data

To assess the impact of fixed effects on the results of untargeted metabolomic analyses we
compared the results of OPLS models constructed from (1) uncorrected data from Farm 1 only
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(N = 129), (2) uncorrected data from all farms, and (3) data from all farms corrected for all fixed effects
(Model 4). Farm 1 data was used to simulate a more “typical” metabolomics experiment in which
confounding from environmental effects is controlled through experimental design.

When corrected spectra were used, reference BHBA concentrations were corrected for the same
fixed effects (Model 4). The residuals of this model represent the “corrected BHBA” concentration,
which is the expected BHBA concentration of an individual accounting for differences in WIM,
Parity and Herd. This poses some challenges in terms of interpretation, as negative residual values
(i.e., negative BHBA concentrations) are possible. However, for the purposes of genetic evaluations,
the ranking of an animal, or the relative phenotypic value, is of more interest than an absolute value.
The corrected value can therefore be considered a “corrected phenotypic ranking.”

The impact of fixed effects on the ability of NMR spectra to predict external phenotypes
(i.e., to classify animals or predict biomarker concentrations for management purposes) was assessed
by comparing the predictive ability of OPLS models. The influences of fixed effects on biomarker
discovery were investigated using scores and loadings on LV1 which show the magnitude and direction
of relationships between BHBA concentration and 1H NMR spectral features. Variable importance of
projection (VIP) scores were used to identify the most statistically significant spectral features in each
model. Variables with VIP scores greater than one were considered significant [60].

5. Conclusions

In this study we investigated the feasibility of using large and diverse datasets for untargeted 1H
NMR serum metabolomic profiling of clinically healthy dairy cows in early lactation. In particular,
we investigated the effects of systematic environmental factors on the serum metabolome. We used
linear regression to correct spectra for (1) herd of origin; (2) parity; (3) WIM; and (4) herd, parity, and WIM
simultaneously. Corrected and uncorrected spectra were then analyzed using PCA. Comparison of
PCA results showed that herd of origin had a much greater impact on the serum metabolome than
either parity or WIM. In order to simulate the impact of these effects in untargeted metabolomics,
we used OPLS regression to quantify the relationship between both corrected and uncorrected NMR
spectra, and the current gold-standard biomarker of energy balance in dairy cows, BHBA. Our results
showed that (1) models constructed using uncorrected data from multiple farms provided reasonably
robust predictions of serum BHBA concentration, (2) environmental effects can alter the results of
biomarker discovery, and (3) that correcting spectra for environmental effects using linear regression
may be useful when the aim of analysis is to investigate phenotypic variation free of confounding from
environmental effects (e.g., identification of metabotypes for genetic selection).

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-1989/10/5/180/s1,
Table S1. 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated water
(D2O).; Table S2. Results of ANOVA-simultaneous component analysis (ASCA) of uncorrected 1H NMR spectra
of bovine serum.; Figure S1. Representative 700MHz 1H NMR spectrum (δ 0.4 to 9.0) of serum obtained from a
Holstein–Friesian cow in early lactation.; Figure S2. Results of PCA of 707 1H NMR spectra of serum obtained
from dairy cows in early lactation, corrected for weeks in milk using linear regression; (a) PC 1 vs. PC 2 scores,
(b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings
plots.; Figure S3. Results of PCA of 707 1H NMR spectra of serum obtained from dairy cows in early lactation,
corrected for Parity using linear regression; (a) PC 1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3
scores, (d) PC 1 loadings, (e) PC 2 loadings, and (f) PC 3 loadings plots.; Figure S4. Results of PCA of 707 1H
NMR spectra of serum obtained from dairy cows in early lactation, corrected for Herd using linear regression;
(a) PC 1 vs. PC 2 scores, (b) PC 1 vs. PC 3 scores, (c) PC 2 vs. PC 3 scores, (d) PC 1 loadings, (e) PC 2 loadings,
and (f) PC 3 loadings plots.; Figure S5. Average 1H NMR spectrum of bovine serum. Color-coding represents
the percentage of variation in the signal at each chemical shift intensity that can be explained by (a) WIM and
(b) Parity: Figure S6: Results of OPLS regressions of serum BHBA concentration against 1H NMR spectrum of
bovine serum (n = 707): (a) LV1 vs. LV2 scores for uncorrected data (b) CV predicted vs. measured BHBA (c) LV1
vs. LV2 scores for corrected data (d) CV predicted vs. measured corrected BHBA ranking.
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Chapter 6: Towards a Breeding Value for Improved Metabolic Health 

The importance of maximising metabolic health in early lactation dairy cows is widely 

accepted, and is aptly illustrated by the fact that (1) 75% of all adverse health events and 80% 

of all dairy farm health expenditure occur during the first four weeks of lactation (LeBlanc et 

al., 2006; Lean and Degaris, 2010), and (2) many of these adverse health events are closely 

associated with failure of homeorhetic controls and perturbed metabolism (Drackley, 1999). To 

date, much of the research on improving dairy cow metabolic health has focussed on nutritional 

and management solutions (Overton and Waldron, 2004), however, there is increasing interest 

in improving dairy cow metabolic health through genetic selection (Pryce et al., 2016). While 

traditional genetic evaluations have enabled some genetic improvement in metabolic health, the 

only phenotypes available on a sufficiently large scale have been producer- and/or veterinary- 

recorded clinical health records. Typically, such records lack the resolution required for 

accurate and objective capture of the physiological and biochemical complexity that is 

characteristic of metabolic disorders in early lactation. More recently, genomic selection and 

the increasingly widespread availability of single nucleotide polymorphism (SNP) genotypes 

are facilitating genetic improvement in economically important traits that are lowly heritable, 

and difficult and costly to measure (Calus et al., 2013; Chesnais et al., 2016). The aim of the 

work described in this thesis was to investigate novel metabolic phenotypes for use in genomic 

selection for improved metabolic health in early lactation. 

6.1 Review of important findings 

The results presented in Chapter 2 demonstrate that, with the exception of haptoglobin, 

“traditional” serum metabolic profile biomarkers (BHBA, NEFA, Ca, Mg, urea, albumin, 

globulin and albumin to globulin ratio) are heritable traits (0.07 ≤ h2 ≤ 0.41), and that genomic 

selection for more optimal biomarker concentrations is possible. Of particular interest were the 

favourable trends in genetic relationships observed between biomarker traits, and between 

biomarker GEBVs and existing health breeding values. These findings suggest that selecting 

for overall metabolic resilience/stability should be possible, and that selecting for improved 

metabolic health should improve the overall health, fertility and longevity of dairy cows. Of the 

biomarkers investigated, NEFA, albumin and albumin to globulin ratio (A:G) were particularly 

promising owing to (1) relatively high heritability estimates and genomic prediction accuracies 

(2) favourable genetic correlations with other biomarkers, and (3) favourable correlations with 

breeding values for other health traits. 

In Chapter 3, the use of milk mid-infrared (MIR) spectral data to predict the serum 

concentrations of the aforementioned biomarkers is discussed. Prediction accuracies were 

106



found to be moderate for serum BHBA, NEFA and urea concentrations, and poor for the 

remaining metabolites. Of particular interest were the results obtained from a true external 

validation (which used data collected in a different season, from cows of different breeds 

managed under a different production system), which suggested that BHBA and NEFA 

predictions were relatively robust. Partial least squares discriminant analysis (PLS-DA) models 

were used to classify animals as being affected or not affected with subclinical metabolic 

disorders, based on biomarker thresholds obtained from the literature. Overall, the results from 

this chapter indicate that while milk MIR-predictions of serum BHBA, NEFA and urea 

concentrations are not currently accurate enough to form the basis of individual animal 

diagnostic tests, or management decision making tools, their use as indicator traits in genetic 

selection for improved metabolic health warrants further investigation. 

The final two research chapters contain description of investigation into use of proton 

nuclear magnetic resonance (1H NMR) spectroscopy-based metabolomics to better (1) better 

characterise existing serum biomarkers of energy balance, and (2) identify novel intermediate 

metabolic phenotypes (metabotypes) for use in genetic analysis. In chapter 4, there is 

description of an untargeted metabolomics approach to investigate if differences exist in the 

metabolomic fingerprints of BHBA and NEFA, which could help to explain the weak genetic 

and phenotypic correlations between them. Results indicate that while BHBA and NEFA 

represent similar metabolic states, there are significant differences between the states, in acetate 

and creatine metabolism. Furthermore, 16 intermediate metabolites were identified, which were 

primarily intermediates of energy, phospholipid, and/or methyl donor metabolism. The ability 

to predict serum NEFA concentration (a “non-NMR-observable” feature) from NMR spectra 

was another interesting finding that warrants further investigation.  

Finally, in Chapter 5, there is description of the feasibility of applying an untargeted 

metabolomics approach, to a dataset that is sufficiently large and diverse to be useful for 

identifying metabotypes for use in genetic evaluations. Results of this study indicated that herd-

specific factors had large and significant effects on the serum metabolome. Furthermore, these 

effects could potentially influence the results of metabotype discovery by erroneously 

attributing herd-specific environmental effects to inter-animal variation. A method to correct 
1H NMR spectra for fixed environmental and physiological effects using multiple linear 

regression was proposed, and this enabled identification of metabotypes indicative of inter-

animal variation free of confounding environmental effects. 

6.2 Towards a reliable breeding value for metabolic resilience… 

The findings of this thesis provide further evidence that metabolic phenotypes are likely 

to be of great value in the development of more accurate breeding values for improved 
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metabolic health. For the purposes of this discussion, let us consider a metabolic resilience 

index which consists of the 8 traditional biomarker traits identified in Chapter 2 as having 

genetic variance (BHBA, NEFA, Ca, Mg, urea, albumin, globulin and A:G). Assuming equal 

weighting of all traits, the average heritability of metabolic resilience would be approximately 

0.23. The theoretical genomic prediction reliability of this index is approximately 0.17, which 

while promising and commensurate with the small reference population size (Gonzalez-Recio 

et al., 2014), limits its practical utility in its current form. The focus of the rest of this discussion 

is therefore how the findings of this thesis might be applied to develop a breeding value for 

metabolic resilience that is sufficiently reliable to be adopted by the Australian dairy industry. 

6.2.1 How reliable does a breeding value need to be? 

The FeedSaved Australian Breeding Value (ABV) provides an excellent template for 

the design and implementation of a breeding value for an economically important trait that is 

expensive and difficult to measure (Pryce et al., 2015). FeedSaved was introduced in 2015 and 

includes a residual feed intake (RFI) component, and a maintenance requirement component 

calculated from body weight estimated breeding values (EBV). Of particular interest in the 

context of this thesis is the RFI component of FeedSaved, which was developed using a 

genotyped female reference population (N = 2,036) of comparable size to the one used in 

Chapter 2 of this thesis (N = 1,393). The estimated genomic heritability and reliability of the 

RFI trait were 0.20 and 0.06, respectively. The average reliability of the FeedSaved breeding 

value in genotyped Holstein bulls is 0.37, which we will take as our benchmark for adoption of 

a breeding value by the Australian dairy industry.  

6.3 How can the findings of this thesis be applied to achieve a sufficiently reliable 

breeding value? 

The accuracy of genomic selection is influenced by several factors, including (1) the 

effective population size, (2) the size of the reference population, (3) the heritability of the trait, 

and (4) the genetic architecture of the trait (Daetwyler et al., 2008; Meuwissen, 2009; Hayes et 

al., 2010; Gonzalez-Recio et al., 2014). The novel metabolic phenotyping strategies 

investigated in this thesis offer exciting opportunities to improve the accuracy of genomic 

selection for improved metabolic health by: 

1. Sustainably and cost-effectively increasing the size of the reference population 

2. Improving heritability estimates by refining trait definitions 

3. Facilitating identification of functional variants  

These concepts are summarised in Figure 1. 
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Figure 1. Opportunities to improve the accuracy of genomic selection for improved metabolic health 

using novel metabolic phenotyping strategies. Adapted from Gonzalez-Recio et al. (2014) 

6.3.1 How can we cost-effectively and sustainably increase reference population size? 

Perhaps the most obvious way to improve genomic breeding value reliability is to 

increase the size of the reference population. According to Gonzalez-Recio et al. (2014), for a 

trait with a heritability of 0.2, achieving a genomic prediction reliability of 0.37 would require 

a female reference population of approximately 20,000 animals. While not impossible, 

obtaining serum samples from 20,000 animals in early lactation is logistically challenging, 

costly and relatively invasive, so alternatives should be considered. 

The moderately accurate yet robust MIR-predictions of serum BHBA, NEFA and urea 

reported in Chapter 3 offer further evidence that metabolic phenotypes predicted from milk 

MIR spectra are likely to be a valuable way of cost-effectively increasing the size of the 

reference population for some traits. For example, MIR-predicted biomarker concentrations 

could be used as predictor traits for serum biomarker phenotypes, in a similar way that somatic 

cell count (SCC) is used as a predictor trait for clinical mastitis (CM) (Mrode and Swanson, 

1996; Abdelsayed et al., 2017). This approach requires a relatively strong and favourable 

genetic correlation between the traits (e.g. Abdelsayed et al. (2017) reported that the genetic 

correlation between CM and SCC in Australian dairy cattle is 0.55 ± 0.11). Promisingly, Belay 

et al. (2017) reported the genetic correlation between blood BHBA concentration predicted 
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from milk MIR spectra between 11 and 30 days in milk (DIM), and clinical ketosis, to be 0.46 

± 0.05. While lower than the genetic correlation between clinical ketosis and serum BHBA and 

acetone concentrations (0.68 and 0.78, respectively) (Rius-Vilarrasa et al., 2018), this is still a 

very promising result. Furthermore, unpublished results from work undertaken as part of this 

thesis show promising genetic correlations between serum and milk MIR-predicted 

concentrations of BHBA, NEFA and urea (0.29 ± 0.18, 0.62 ± 0.18 and 0.79 ± 0.24, 

respectively).  

An alternative approach could be to use MIR-predicted traits as the “gold standard” 

phenotype. In a recent epidemiological study, Bach et al. (2019) showed that MIR-predictions 

of milk BHBA, blood NEFA, and relative percentages of de novo milk fatty acids are promising 

indicators of subsequent disease or removal from the herd. Heritability estimates for MIR-

predicted milk BHBA, serum BHBA and serum NEFA concentrations are 0.14 (Koeck et al., 

2014), 0.25-0.31 (Belay et al., 2017; Benedet et al., 2020), and 0.19 (Benedet et al., 2020), 

respectively). Given that these MIR-predicted traits are both heritable, and epidemiologically 

associated with similar adverse health outcomes to their “gold-standard” serum counterparts, it 

may make more sense to use these as the primary traits in genetic evaluations for improved 

metabolic health. 

Another demonstrated way of increasing the size of reference populations is through 

data sharing and international collaboration. Again, the FeedSaved breeding value offers a 

perfect example, as nearly half of all the RFI phenotypes came from the UK and the Netherlands 

(Pryce et al., 2015). Similarly, de Haas et al. (2015) demonstrated that integrating phenotypic 

information for dry matter intake (DMI) from multiple countries improved the accuracy of 

genomic evaluations of individual countries. The objective, measurable characteristics of the 

metabolic phenotypes examined in this thesis make them ideal for such data sharing. It is 

therefore highly likely that augmenting reference populations with data from other countries 

will lead to similar increases in genomic prediction accuracies for metabolic health traits. 

Overall, by using MIR-predicted phenotypes, and by sharing data with international 

collaborators, it should be possible to assemble a reference population that is large enough to 

allow development of a breeding value for metabolic resilience that is sufficiently reliable to 

be implemented by the Australian dairy industry. 

6.3.2 How can refining the definitions of metabolic health traits increase heritability 

estimates? 

It may be possible to increase heritability estimates for some of the metabolic traits 

discussed in this thesis by further refining trait definitions. BHBA and NEFA concentrations 

are perfect examples of such traits. Previous studies have shown that the heritability of both 
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serum and MIR-predicted BHBA and NEFA concentrations vary depending on the stage of 

lactation (Oikonomou et al., 2008, Koeck et al., 2014, Benedet et al., 2020). For example, 

Oikonomou et al. (2008) reports that the heritabilities of serum BHBA and NEFA 

concentrations are highest in the first week of lactation (0.40 ± 0.06 and 0.35 ± 0.05, 

respectively), and decrease rapidly to less than 0.20 in the fourth week of lactation (Figure 2). 

These differences in heritability are largely due to differences in genetic variances, which 

follow a similar trajectory (Figure 2) (Oikonomou et al., 2008). Furthermore, genetic 

correlations between metabolite concentrations in different weeks, decreased for weeks that 

were further apart, indicating that measurements taken at different time points represent distinct 

traits. Therefore, by narrowing the window of sampling to the first two weeks of lactation, it 

should be possible to considerably improve the heritabilities of both BHBA and NEFA reported 

in Chapter 2 (0.09 ± 0.04 and 0.18 ± 0.05, respectively).  

 

Figure 3. Estimated (a) heritability and (b) genetic variance of serum BHBA and NEFA concentrations 

by week of lactation in primiparous dairy cows. Adapted from Oikonomou et al. (2008) 

The same is likely to be true for Ca concentration. There is evidence in the literature 

that there is genetic variation in clinical hypocalcaemia (Pryce et al., 2016), subclinical 

hypocalcaemia (Tsiamadis et al., 2016b), and serum calcium concentration (Tsiamadis et al., 
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2016a). The low heritability of calcium concentration reported in Chapter 2 is almost certainly 

a reflection of the small number of samples taken in the high-risk, immediate periparturient 

period. Tsiamadis et al. (2016a) reports that the heritability of Ca concentration across the first 

8 days of lactation is 0.20 (±0.02), ranging from 0.32 (±0.03) on day one, to 0.23 (±0.02) on 

day four. Only 256 animals in our dataset were sampled during this period, however, the 

estimated genomic heritability calculated using this data was 0.21 (±0.23), compared to 0.06 

(±0.05) for the period between days 9 and 30 (N = 1071). As expected, both the genetic and 

residual variance appear to be higher in early lactation. Recent epidemiological studies 

undertaken by researchers at Cornell University have shown that associations between 

hypocalcaemic events and adverse health and production are highly dependent on both the 

timing and duration of hypocalcaemia (Neves et al., 2018; McArt and Neves, 2020). This work 

offers exciting potential trait definitions for future genetic analyses of hypocalcaemia.  

Refining BHBA, NEFA and Ca trait definitions to achieve heritability estimates of 

0.35, 0.30 and 0.20, respectively, would increase the overall heritability of our metabolic 

resilience index to approximately 0.30. This would halve the size of reference population 

required to achieve a genomic selection reliability of 0.36 from approximately 20,000 animals, 

to approximately 10,000 animals (Figure 1) (Gonzalez-Recio et al., 2014). 

6.3.3 How can intermediate metabolite phenotypes be used to identify functional 

variants? And how might this help to improve the accuracies of genomic 

predictions? 

One of the most exciting potential applications of metabolic phenotypes in animal 

breeding is the identification of functional variants through metabolite-base genome-wide 

association studies (mGWAS) (Fontanesi, 2016). In humans, such studies have helped to 

unravel the contribution of genetics to complex metabolic traits (Karsten and Christian, 2012). 

In livestock, there is increasing evidence that incorporating such functional genomic data can 

significantly improve the accuracy of genomic prediction (MacLeod et al., 2016; Daetwyler et 

al., 2019). Excitingly, Xiang et al. (2019) recently demonstrated that sequence variants 

identified from an mGWAS (using lipidomic data from 338 animals) were highly heritable, and 

that including these variants in SNP sets significantly increased genomic prediction accuracies 

for 34 complex traits in bovines. 

Several recent studies have performed mGWAS on metabolic phenotypes investigated 

in this thesis. For example, mGWAS of serum BHBA and NEFA in early lactation dairy cows 

identified five candidate genes related to energy metabolism and homeostasis (Yepes et al., 

2019), and Nayeri et al. (2019) identified several genomic regions associated with MIR-
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predicted BHBA. It is highly likely that prioritising the variants identified in these studies will 

increase the accuracy of genomic predictions of BHBA and NEFA. 

Another interesting finding reported by Xiang et al. (2019) was the value of 

intermediate phenotypes in identifying variants which have significant influences on complex 

traits. Intermediate phenotypes are so-called because they sit between the external phenotype 

and the genotype (Houle et al., 2010). For example, if we consider serum BHBA as an external 

phenotype, the 9 metabolites and 2 classes of protein (lipoproteins and glycoproteins) shown to 

be significantly correlated with BHBA in Chapter 4 can be considered intermediate phenotypes 

(Figure 3). Quantitative trait loci (QTL) associated with intermediate phenotypes often have a 

larger “signal to noise” ratio compared to QTL associated with external phenotypes, making 

them potentially more valuable for identifying true causal variants (Xiang et al., 2019). This is 

consistent with a recent GWAS study that demonstrated that metabolic clustering (a relatively 

“broad” ternary trait) is highly polygenic and regulated by many small effects (Atashi et al., 

2020). 

Furthermore, intermediate phenotypes offer more potential traits for mGWAS studies. 

For example, unpublished data from an mGWAS performed as a part of this thesis, using 

imputed whole genome sequence data, identified three genomic regions significantly (-log10(p) 

> 6) associated with NEFA concentration. Subsequent GWAS analyses performed on three of 

the intermediate metabolites identified in Chapter 4 revealed significant associations with a 

further six genomic regions.  

 

Figure 3. Intermediate metabolic phenotype (metabotype) of serum BHBA concentration, identified 
using 1H NMR-based metabolomics. α-Glu = α glucose, β-Glu = β glucose, Ace = acetate, Ala = alanine, 
Bet = betaine, BHBA = β hydroxybutyrate, Cr = creatine, DMSO2 = dimethyl sulfone, Glu = glucose, 
Gly = glycine, Ile = isoleucine, Lac = lactate, Leu = leucine, NAG = N-acetyl glycoprotein, ChoP = 
phosphocholine, Pyr = pyruvate, Val = valine, LDL = low density lipoprotein; VLDL = very low density 
lipoprotein. 
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Overall, it is highly likely that functional genomic data identified by mGWAS studies 

will facilitate the identification of variants associated with metabolic health traits. These 

variants can then be prioritised, either using statistical approaches such as BayesRC (MacLeod 

et al., 2016), or by creating custom variant sets (Xiang et al., 2019) that can be included on 

custom SNP chips such as the AgVic50kXT (Illumina, San Diego, CA, USA). This should 

ultimately increase genomic prediction accuracies for complex traits such as metabolic health.  

6.4 What comes next? 

6.4.1 More samples… 

The findings of this thesis have helped narrow the sampling window for blood 

collections. Future sampling should focus on the first two weeks of lactation for energy balance 

traits, and the first four days of lactation for calcium traits. Even if heritability estimates can be 

improved through refined trait definitions, many more samples will be required to achieve a 

reliable breeding value for metabolic resilience. Furthermore, many of the genetic correlations 

reported in Chapter 2 were not significantly different from zero, and it is hoped that increasing 

the number of samples will lead to development of better understanding of the genetic 

architecture of traits. 

6.4.2 Continued refinement of trait definitions 

Perhaps the biggest challenge I encountered throughout this PhD project, was how exactly 

does one define a holistic metabolic health trait? While I hope the findings of this thesis have 

made a substantial contribution to answering this question, there is still much work to be done. 

In Australia, the dairy industry is working hard to improve the flow of animal health data from 

farms and veterinary clinics to genetic researchers through the implementation of a new online 

data repository, DataVat (DataGene, 2020). Such data will be essential in helping to define and 

validate metabolic health traits. Another obstacle is the lack of epidemiological studies on 

metabolic disorders in the Australian dairy herd. Such studies are required to (1) assess the 

prevalence of metabolic disorders, and thereby determine their economic cost, (2) identify 

appropriate thresholds for existing biomarkers, and (3) establish associations between 

biomarkers (both existing and novel), and adverse health, production and reproductive 

outcomes. This work is central to further our understanding of the genetic architecture of 

metabolic health traits, and therefore what traits should be included in any index. 

Fertility has recently been identified as one of the most important breeding objectives for 

Australian dairy farmers. Given the strong epidemiological links between metabolic health and 

fertility, it may be that fertility data can be used as a form of validation for metabolic 

phenotypes. However, given that the risk of pregnancy in hyperketonaemic (BHBA ≥ 1.0 

114



mmol/L) animals is only 16% less than in non-hyperketonaemic animals (Ospina et al., 2010a), 

this approach is likely to miss a lot of the important adverse effects of subclinical disease, such 

as reduced milk production and quality, and increased risk of other diseases (Ospina et al., 

2010a; Ospina et al., 2010b; McArt et al., 2013).  

Another option could be to define a successful transition period as the absence of any 

disorder, clinical or subclinical, during the transition period. Such a multi-trait model could take 

into consideration all available health data including clinical disease records, existing metabolic 

phenotypes (serum, milk and MIR-predicted phenotypes) and somatic cell count (SCC). This 

could help identify what Dr Bill Wales of Agriculture Victoria Research refers to as “invisible 

cows” – those that successfully make it through lactation year after year with no problems.  

6.4.3 Metabolomic studies 

Metabolomics was recently described as the being the “cornerstone of the next generation 

phenotyping approaches that are needed to refine and improve trait descriptions” in livestock 

(Fontanesi, 2016). Exciting opportunities exist to use metabolomic approaches to identify 

objective, measurable metabotypes associated with more complex trait definitions such as the 

aforementioned “successful transition” or “invisibility”.  

While extremely promising, novel biomarkers require extensive validation and 

epidemiological studies to confirm associations with adverse animal health and production 

outcomes. For this reason, there is also great value in continuing to better characterise the 

biochemical and genetic parameters of existing biomarkers, and thereby build on the already 

extensive body of epidemiological and physiological research in the literature. As more samples 

are collected, there will be great value in undertaking detailed metabolomic phenotyping on a 

subset of animals identified as being “extreme”, such as those with extreme values of traditional 

metabolic profile biomarker concentrations, and those with clinical diseases. Increasing the size 

and diversity (both phenotypic and genetic) of metabolomic reference populations should 

enable identification of more metabotypes that are truly representative of genetic differences in 

metabolic resilience. The approach presented in Chapter 5 should make increasing the size of 

the reference population easier, by allowing integration of metabolomic data from multiple 

sources (within and between countries) without confounding from fixed environmental effects. 

The large and significant effects of herd-specific factors on the serum metabolome also 

warrant further investigation. In particular, serum lactate concentrations varied significantly 

between farms. In chapter 5, we hypothesized that these differences may be due to dietary 

and/or management differences leading to ruminal acidosis, however, these differences could 

also reflect differences in pre-analytical sample handling. After collection, serum remains 

biologically active, and continued anaerobic metabolism by blood cells can lead to increases in 
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lactate concentration (Teahan et al. 2006). Watkins et al. (2011) reported that lactate 

concentrations in human whole blood samples were significantly (P < 0.05) higher in samples 

that had been stored at room temperature for 30 minutes compared to those in samples that were 

analysed immediately after collection. Similarly, Teahan et al. (2006) demonstrated that 

variations in clotting time and prolonged serum-clot contact time lead to changes in energy 

metabolite concentrations, in particular those of lactate. Interestingly, unpublished statistical 

analysis of the data used in Chapter 5 reveals that lactate concentration has a very large and 

significant effect on NMR spectra even when herd-specific factors (which include differences 

in pre-analytical sample handling) are accounted for (Table 1). Given the unique logistical 

challenges of large-scale, on-farm sample collection, further work is required for us to develop 

better understanding of the impacts of differences in pre-analytical sample handling on the 

bovine serum metabolome.  

Table 1. Results of multiple linear regression models of principal component (PC) scores derived 

from PCA of 1H NMR spectra, against days in milk (DIM), parity (1 to 4 +), herd/sample collection date 

(SCD) (each visit to a herd was treated as an independent event to account for differences in feed and 

sample handling), and lactate concentration. Conditional Wald F statistics (F-con) and corresponding P 

values describe the magnitude and statistical significance of each fixed effect, respectively, assuming 

that the effects of remaining predictor variables have been accounted for. 

  PC1 (47.64%)   PC2 (15.59%)   PC3 (7.45%) 

Fixed 
Effect F-con1 P Value   F-con P Value   F-con P Value 

DIM 2.23 <0.001  3.05 <0.001  1.55 0.035 
Parity - -  - -  - - 

Lactate 95.23 <0.001  194.95 <0.001  18.38 <0.001 

Herd/SCD 25.6 <0.001   10.71 <0.001   3.36 <0.001 

Further work is also warranted to investigate the use of 1H NMR spectroscopy to 

quantify lipoproteins and glycoproteins. There is also likely to be great value in using more 

sensitive metabolomic techniques for metabotypes discovery, such as liquid chromatography 

mass-spectroscopy. 

6.4.4 Functional genomic studies 

Finally, perhaps the most exciting future work to follow on from this thesis will be the 

search for QTL associated with metabolic health. Recent updates to the bovine reference 

genome (Hayes and Daetwyler, 2019) and improvements in imputation methods have increased 

the power of GWAS to identify causal variants. It is hoped that the phenotypes investigated in 

this thesis will form the basis of exciting future work in this area. 
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6.5 Concluding statement 

I hope that the findings of this thesis will contribute to improving the health and welfare 

of dairy cattle by offering a preliminary “metabolic phenotype framework” for use in genetic 

selection for improved metabolic health during early lactation.  
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Appendix 2: Chapter 4 Supplementary Material 
Table S1. 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in deuterated 
water (D2O). Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; dd, doublet 
of a doublet; m, multiplet; t, triplet. The right two columns show the direction of the relationship with 
serum β-hydroxybutyrate (BHBA) and non-esterified fatty acid (NEFA) concentrations determined by 
colorimetric assays. * = tentative identification. 

 
Metabolite Chemical shift (δ) and multiplicity BHBA NEFA 

1 cholate* 0.70 (m), 0.91 (m), 0.96 (m), 1.43 (m), 1.87 
(m), 2.10 (m), 2.22 (m), 3.65 (m), 4.06 (t) 

- ↓ 

2 LDL/VLDL 0.86 (m), 1.25 (m) ↑ ↑ 
3 leucine 0.94 (d), 0.95 (d), 1.66 (m), 1.66 (m), 1.73 

(m), 3.72 (m) 
- ↑ 

4 isoleucine 0.93 (t), 1.00 (d), 1.24 (m), 1.45 (m), 1.45 
(m), 3.66 (d) 

- ↓ 

5 valine 0.98 (d), 1.03 (d), 2.26 (m), 3.60 (d) ↓ ↓ 
6 β-hydroxybutyrate 1.20 (d), 2.31 (m), 2.41 (m), 4.16 (m)  ↑ ↑ 
7 lactate 1.31 (d), 4.31 (q) ↓ ↓ 
8 alanine 1.46 (d), 3.77 (q) ↓ ↓ 
9 acetate 1.9 (s) ↑ ↓ 
10 N-acetyl glycoprotein 2.03 (m) ↑ ↑ 
11 pyruvate 2.46 (s), 7.65 (s) - ↓ 
12 citrate 2.52 (d), 2.66 (d) - - 
13 creatine 3.02 (s), 3.92 (s) ↑ ↓ 
14 phosphocreatine 3.03 (s), 3.93 (s) - - 
15 dimethyl sulfone 3.14 (s) ↓ - 
16 choline 3.19 (s), 3.50 (m), 4.05 (m) - - 
17 phosphocholine 3.21 (s), 3.58 (t), 4.17 (m) ↑ ↑ 
18 betaine 3.25 (s), 3.89 (s) ↑ - 
19 methanol 3.34 (s)   
20 glucose 3.23 (dd), 3.40 (m), 3.46 (m), 3.52 (dd), 

3.73 (m), 3.82 (m), 3.89 (dd), 4.63 (d), 5.22 
(d) 

↓ ↓ 

21 glycine 3.50 (s) ↑ ↑ 
22 β-glucose 4.63 (d) ↓ ↓ 
23 α-glucose 5.22 (d) ↓ ↓ 
24 3-phenyllactate* 2.87 (dd), 3.09 (dd), 4.26 (dd), 7.31 (m), 

7.39 (m) 
- - 

25 hippurate 3.96 (d), 7.54 (m), 7.62 (m), 7.83 (dd) - - 
26 formate 8.44 (s) - - 
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Figure S1. Results of PCA of 1H NMR spectra of serum obtained from 298 dairy cows in early lactation 
from the Ellinbank research farm (Dataset 1, N = 248) and a commercial dairy farm in Tasmania (Dataset 
2, N = 50). 

Table S2. Results of ANOVA-simultaneous component analysis (ASCA) of 1H NMR spectra of bovine 
serum (N = 298). Effect describes the relative influence of each variable (Herd, Age and days in milk 
(DIM)) on each spectra. P-value is derived from permutation testing (1000 iterations). 
 

Variable PCs Effect P-Value 
Herd 1 0.47 0.33 
Age 10 4.72 0.04 
DIM 20 10.17 0.09 

Residuals - 86.06 - 
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(a) 

 
(b) 

Figure S2. Variable importance of projection (VIP) scores derived from orthogonal partial least squares 
(OPLS) regression of 1H NMR spectra of serum obtained from 298 dairy cows in early lactation, against 
(a) BHBA concentration and (b) NEFA concentration. 
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Figure S1. Representative 700MHz 1H NMR spectrum (δ -0.1 to 9.0) of serum obtained from a 
Holstein-Friesian cow in early lactation. The δ 0.4 to 2.9, δ 2.9 to 5.25 and δ 6.5 to 9.0 regions have 
been magnified for clarity purposes. α-Glu = α glucose, β-Glu = β glucose, Ace = acetate, Ala = 
alanine, Bet = betaine, BHBA = β hydroxybutyrate, Cit = citrate, Chol = choline, Cr = creatine, For = 
formate, GA = glycolate, Glu = glucose, Gly = glycine, Hip = hippurate, Ile = isoleucine, Lac = lactate, 
Leu = leucine, Mal = malonate, Meth = methanol, NAG = N-acetyl glycoprotein, PC = 
phosphocholine, PCr = phosphocreatine, PLa* = 3-phenyllactate, Pyr = pyruvate, TMAO = 
Trimethylamine N-oxide, Val = valine, VLDL/LDL = Very low density lipoprotein and low density 
lipoprotein. * = tentative identification. 

Table S1. 1H NMR chemical shifts (δ) and multiplicity of metabolites in bovine serum run in 
deuterated water (D2O). Clearly observed resonances are indicated in bold text. s, singlet; d, doublet; 
dd, doublet of a doublet; m, multiplet; t, triplet.

Label Metabolite Chemical shift (δ) and multiplicity 
Leu leucine 0.94 (d), 0.95 (d), 1.66 (m), 1.66 (m), 1.73 (m), 3.72 

(m) 
Ile isoleucine 0.93 (t), 1.00 (d), 1.24 (m), 1.45 (m), 1.45 (m), 3.66 

(d) 
Val valine 0.98 (d), 1.03 (d), 2.26 (m), 3.60 (d) 
BHBA β-hydroxybutyrate 1.20 (d), 2.31 (m), 2.41 (m), 4.16 (m)  
Lac lactate 1.31 (d), 4.31 (q) 
Ala alanine 1.46 (d), 3.77 (q) 
Ace acetate 1.9 (s) 
Pyr pyruvate 2.46 (s), 7.65 (s) 
Cit citrate 2.52 (d), 2.66 (d) 
Cr creatine 3.02 (s), 3.92 (s) 
PCr phosphocreatine 3.03 (s), 3.93 (s) 
Mal malonate 3.11 (s) 
Chol choline 3.19 (s), 3.50 (m), 4.05 (m) 
PC phosphocholine 3.21 (s), 3.58 (t), 4.17 (m) 
Bet betaine 3.25 (s), 3.89 (s) 
TMAO trimethylamine N-oxide 3.25 (s) 
Meth methanol 3.34 (s) 
Glu glucose 3.23 (dd), 3.40 (m), 3.46 (m), 3.52 (dd), 3.73 (m), 

3.82 (m), 3.89 (dd), 4.63 (d), 5.22 (d) 
Gly glycine 3.50 (s) 
GA glycolate 3.93 (s) 
β-Glu β-glucose 4.63 (d) 
α-Glu α-glucose 5.22 (d) 
PLa 3-phenyllactate* 2.87 (dd), 3.09 (dd), 4.26 (dd), 7.31 (m), 7.39 (m) 
Hip hippurate 3.96 (d), 7.54 (m), 7.62 (m), 7.83 (dd) 
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                       (a)                                            (b) 

 
                       (c)                                            (d) 

 
                       (e)                                            (f) 

Figure S2. Results of PCA of 707 1H NMR spectra of serum obtained from dairy cows in early 
lactation, corrected for weeks in milk using linear regression; (a) PC 1 vs PC 2 scores, (b) PC 1 vs PC 3 
scores (c) PC 2 vs PC 3 scores (d) PC 1 loadings (e) PC 2 loadings and (f) PC 3 loadings plots. Scores 
plots are coloured by farm of origin.  
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                       (a)                                            (b) 

 
                       (c)                                            (d) 

 
                       (e)                                            (f) 

Figure S3. Results of PCA of 707 1H NMR spectra of serum obtained from dairy cows in early 
lactation, corrected for Parity using linear regression; (a) PC 1 vs PC 2 scores, (b) PC 1 vs PC 3 scores 
(c) PC 2 vs PC 3 scores (d) PC 1 loadings (e) PC 2 loadings and (f) PC 3 loadings plots. Scores plots are 
coloured by farm of origin.  
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                       (a)                                            (b) 

 
                       (c)                                            (d) 

 
                       (e)                                            (f) 

Figure S4. Results of PCA of 707 1H NMR spectra of serum obtained from dairy cows in early 
lactation, corrected for Herd using linear regression; (a) PC 1 vs PC 2 scores, (b) PC 1 vs PC 3 scores 
(c) PC 2 vs PC 3 scores (d) PC 1 loadings (e) PC 2 loadings and (f) PC 3 loadings plots. Scores plots are 
coloured by farm of origin.  
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(a) 

 

(b) 

Figure S5. Average 1H NMR spectrum of bovine serum. Colour-coding represents the percentage of 
variation in the signal at each chemical shift intenisty that can be explained by (a) WIM and (b) 
Parity. The δ 6.5 to 8.5 region has been magnified for clarity purposes. 
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(a)              (b) 

 
(c)              (d) 

Figure S6. Results of OPLS regressions of serum BHBA concentration against 1H NMR spectrum of 
bovine serum (n = 707): (a) LV1 vs LV2 scores for uncorrected data (b) CV predicted vs measured 
BHBA (c) LV1 vs LV2 scores for data corrected for all fixed effects (d) CV predicted vs measured 
corrected BHBA ranking. Plots are colored by Herd. 
 
Table S2. Results of ANOVA-simultaneous coponent analysis (ASCA) of uncorrected 1H NMR 
spectra of bovine serum (n = 707), and spectra that have been corrected using linear regression for (1) 
all fixed effects, (2) weeks in milk (WIM), (3) parity, and (4) herd of origin. Effect describes the 
relative influence of each variable (weeks in milk (WIM), Parity and Herd) on each spectral dataset. 
P-value is derived from permutation testing (50 iterations). 
 

 Uncorrected All Fixed Effects WIM Parity Herd 

Variable Effect P-Value Effect P-Value Effect P-Value Effect P-Value Effect P-Value 

WIM 1.37 0.02 0.00 1.00 0.00 0.02 1.55 0.02 1.68 0.02 

Parity 4.10 0.02 0.00 1.00 4.24 0.02 0.00 0.02 3.30 0.02 

Herd 43.99 0.02 0.00 1.00 43.60 0.02 41.72 0.02 0.00 1.00 
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