1	THE PREVALENCE OF RADIOGRAPHIC AND MAGNETIC RESONANCE
2	IMAGING-DEFINED PATELLOFEMORAL OSTEOARTHRITIS AND
3	STRUCTURAL PATHOLOGY: A SYSTEMATIC REVIEW AND META- ANALYSIS
4	¹ Harvi F. Hart, ² Joshua J. Stefanik, ³ Narelle Wyndow, ¹ Zuzana Machotka, ¹ Kay M. Crossley
5	
6	¹ La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health, La Trobe
7	University, Bundoora, Australia
8	² Department of Physical Therapy, Movement & Rehabilitation Sciences, Northeastern
9	University, Boston, Massachusetts, United States
10	³ Division of Physiotherapy, School of Health & Rehabilitation Sciences, The University of
11	Queensland
12	
13	ADDRESS FOR CORRESPONDENCE
	Kay M. Crossley
	La Trobe Sport and Exercise Medicine Research Centre, School of Allied Health,
	College of Science, Health and Engineering
	La Trobe University, Bundoora VIC. 3086 AUSTRALIA
	Tel: +61 3 9479 3902 Fax: +61 3 9479 5768 E-mail: k.crossley@latrobe.edu.au
14	
15	PROSPERO REGISTRATION
16	CRD42016035649
17	
18	KEY WORDS
19	OA, X-ray, MRI, Knee, Trauma
20	Word count: 4702
21	
22	ABSTRACT
23	Background: Patellofemoral osteoarthritis (OA) is more prevalent than previously thought

and contributes to patient's suffering from knee OA. Synthesis of prevalence data can provide
 estimates of the burden of PF OA.

3 Objective: To conduct a systematic review and meta-analysis on the prevalence of
4 patellofemoral OA and structural damage based on radiography and magnetic resonance
5 imaging (MRI) studies in different populations.

Methods: We searched six electronic databases and reference lists of relevant cross-sectional
and observational studies reporting the prevalence of patellofemoral OA. Two independent
reviewers appraised methodological quality. Where possible, data were pooled using the
following categories: radiography, and MRI studies.

10 **Results:** Eighty-five studies that reported prevalence of patellofemoral OA and structural 11 damage were included in this systematic review. Meta-analysis revealed a high prevalence of 12 radiographic patellofemoral OA in knee pain or symptomatic knee OA (43%), radiographic 13 knee OA or at risk of developing OA (48%), and radiographic and symptomatic knee OA 14 (57%) cohorts. The MRI-defined structural patellofemoral damage in knee pain or 15 symptomatic population was 32% and 52% based on bone marrow lesion and cartilage defect, 16 respectively.

17 **Conclusions:** One half of people with knee pain or radiographic OA have patellofemoral 18 involvement. Prevalence of MRI findings was high in symptomatic and asymptomatic 19 population. These pooled data and the variability found can provide evidence for future 20 research addressing risk factors and treatments for patellofemoral OA.

21

22 Trial registration number: PROSPERO systematic review protocol registration number
 23 CRD42016035649

- 24
- 25

1	What	are the new findings?
2	•	Patellofemoral OA is prevalent in individuals in a very wide range of settings -in
3		asymptomatic individuals as well as in patients with knee pain
4	•	The prevalence rates are influenced by different diagnostic criteria
5	•	MRI-defined patellofemoral structural damage criteria may assist in identifying
6		patients at early disease stages
7		
8		
9		
10		
11		
12		
13		
14		
15		
16		
17		
18		
19		
20		
21		
22		
23		
24		
25		

1 **1. INTRODUCTION**

Knee osteoarthritis (OA) is a leading cause of pain and disability worldwide¹. The patellofemoral joint (PF) is commonly affected in symptomatic knee OA² and is a substantial source of symptoms associated with knee OA³. Further to this, the PF is often affected by OA before the tibiofemoral (TF) joint and increases the risk of TF OA development and progression.⁴⁵

7

8 With a recent increase in radiography and magnetic resonance imaging (MRI) based studies focused on PF joint, the evidence on the prevalence of PF OA is expanding rapidly. A 2013 9 10 narrative literature review concluded that the prevalence of radiographic PF OA in individuals' 11 post anterior cruciate ligament and/or meniscus ruptures was approximately 50%.⁶ A recent 12 systematic review described the prevalence of radiographic PF OA in population- based and in cohorts of people with knee pain.⁷ A large number of studies have reported PF OA in different 13 14 populations (e.g., post-traumatic, and healthy individuals), and knowledge of population-15 specific prevalence is relevant for clinicians and researchers. An updated review with inclusion 16 of different study samples (e.g., post-traumatic, occupation-based, high risk of OA, healthy individuals) builds considerably on the previous systematic review⁷ and extends our current 17 18 knowledge of PF OA.

19

Magnetic resonance imaging (MRI) is the modality of choice to assess structural damage in epidemiological studies, to detect early and subtle features of OA (e.g., abnormal cartilage morphology and bone marrow lesions) not seen on radiography.⁸ Thus, the prevalence of PF structural damage using MRI may be higher than the prevalence determined by radiography. Including radiography and MRI based studies in community and specific study populations provide a comprehensive evaluation of the prevalence of PF OA and PF structural damage and extends prior reviews in this area. Thus, the objective of the current study was to perform a
 systematic review and meta-analysis with the aim to determine the prevalence of PF OA using
 radiographs and MRI-defined structural PF damage in a variety of study populations.

4

5 2. METHODS

6 The study protocol was developed in consultation with guidelines provided by the PRISMA 7 (Preferred Reporting Items for Systematic Reviews and Meta-analyses) statement. The 8 protocol was prospectively registered on the PROSPERO International prospective register for 9 systematic reviews website (<u>http://www.crd.york.ac.uk/PROSPERO</u>) (Registration #: 10 CRD42016035649). The reporting of this study followed the PRISMA checklist.

11

12 **2.1 Literature Search Strategy**

13 Using guidelines provided by the Cochrane Collaboration, a comprehensive search strategy 14 was devised from the following electronic databases with no date restrictions: i) MEDLINE 15 via OVID; ii) EMBASE via OVID; iii) CINAHL via EBSCO; iv) Scopus; v) Web of Science; 16 and vi) SPORTDiscus. The primary search strategy included search for original publications. The search strategy was deliberately simplified to ensure inclusion of all relevant papers, with 17 18 all terms searched as free text and key words (where applicable): Concept 1, Patellofemoral 19 (Patello-femoral, PF, PFJ, knee joint); Concept 2, Osteoarthritis (OA, arthritis, degenerative 20 arthritis, bone marrow lesion); and Concept 3, Prevalence (prevalence, morbidity, 21 epidemiology, diagnosis, incidence). All search terms were exploded and scope notes from 22 each database were examined for other possible terms for modification of search strategies. 23 The MEDLINE search strategy was adapted for other databases (Supplementary Table 1). The 24 search strategy was limited to English language and full-text. All potential references were 25 imported into Endnote X7 (Thomson Reuters, Carlsbad, California, USA) and duplicates were removed. Two reviewers (HFH, NW) reviewed all titles returned by the database searches and retrieved suitable abstracts. Where abstracts suggested that papers were potentially suitable, the full-text versions were screened and included in the review if they fulfilled the selection criteria. Reference lists of all publications considered for inclusion were hand-searched recursively and citation tracking was completed using Google Scholar until no additional eligible publications were identified. A third reviewer was consulted in case of disagreements (JJS).

8

9 2.2 Selection Criteria

10 Cross-sectional and longitudinal studies reporting the prevalence or frequency of PF OA or PF 11 structural damage were included. No restrictions were placed on age, sex or method of 12 recruitment. Reviews, case reports and unpublished studies, as well as non-human studies were 13 excluded.

14

15 2.3 Assessment of Methodological Quality and Risk of Bias

16 Two independent reviewers (NW, ZM), who remained blind to authors, affiliations, and the 17 publishing journal, rated the methodological quality of included studies using the Critical Appraisal tool.⁹ The Critical Appraisal tool was developed to appraise prevalence and 18 19 incidence based studies and consists of eight items (maximum score possible 8). Final study 20 ratings for each reviewer were collated and examined for discrepancies. Any inter-rater 21 disagreement was discussed in a consensus meeting, and unresolved items were taken to a third 22 reviewer (HFH) for consensus. Total scores were normalized to a scale ranging from 0 to 2, 23 for each study to assign level of methodological quality. Studies were then classified as high 24 quality (≥ 1.4), moderate quality (1.1 - 1.4) or poor quality (<1.1) based on normalized scores. 10 25

1 2.4 Data Management and Statistical Analysis

2 For the purposes of this systematic review, we defined prevalence as the prevalence of PF OA 3 in community-based studies and the reported frequencies of PF OA in other populations. Data 4 pertaining to population, sample size, sex, age, type of imaging (MRI, radiography), grading 5 criteria, units of analysis (number of participants affected or number of knees affected) and 6 prevalence of radiographic PF OA and MRI-defined PF structural damage (isolated PF OA/PF 7 structural damage; combined PF OA and TF OA/PF and TF structural damage; and unclear, 8 not clearly described whether the prevalence was isolated or combined) were independently 9 extracted and entered into an Excel spreadsheet. If sufficient data were not reported in the 10 published article or supplementary material provided, the corresponding author was contacted 11 to request further data. If multiple studies presented data from one cohort, the study with the 12 most complete data was included. PF OA and MRI-defined PF structural damage prevalence 13 data were reported for: (i) isolated, (ii) combined (PF and TF) and (iii) any (isolated, combined 14 and unclear). Meta-analysis for proportions with random effects model were performed using 15 MedCalc for Windows, Version 16.8 (MedCalc Software, Ostend, Belgium). Heterogeneity tests were also conducted and interpreted as follows: $I^{2} \leq 25\%$, low heterogeneity; $I^{2} = 25$ to 16 \leq 50%, moderate heterogeneity; and I² \geq 75%, high heterogeneity.¹¹ Data were divided into two 17 categories based on imaging technique used: (i) Radiography and (ii) MR imaging 18

19

20 Radiography studies

The Kellgren and Lawrence (KL) grading criteria¹² and Osteoarthritis Research Society International (OARSI) atlas¹³ are used to define radiographic OA in the TF compartments. There is no KL or OARSI atlas definition of PF OA based on radiographs; however, both criterions are often used to quantify the severity of radiographic OA in the PF using the skyline and/or lateral radiograph views. For the purposes of this systematic review and meta-analysis,

1 osteophytes and joint space narrowing were used to define PF OA. If prevalence for multiple 2 radiographic OA features (e.g. prevalence based on osteophytes and joint space narrowing) 3 was reported, then prevalence based on osteophytes was chosen. Data were pooled based on 4 the following study populations: (i) community-based (individuals randomly recruited from 5 community), (ii) knee pain/ symptomatic (individuals recruited based on knee-related 6 symptoms), (iii) radiographic and symptomatic OA (individuals recruited based on symptoms 7 and radiographic OA), (iv) healthy individuals (no pain, injury or OA), (v) radiographic or high 8 risk of OA (individuals recruited based on radiographic OA or risk of developing radiographic 9 OA without regard to knee pain/symptoms), (vi) occupational-based (individuals recruited 10 based on their occupation/sports), and (vii) post-sports-related traumatic (individuals with 11 previous knee-related trauma, such as anterior cruciate ligament injury or reconstruction or 12 meniscal injury). Given that, individuals recruited based on high risk of OA may or may not 13 have had previous trauma; data from individuals with high risk of OA were not included in the 14 post-traumatic category. The occupation-based category included different sporting and 15 occupational activities such as long distance runners, shooters, graphic designers, and monks. 16 To determine the prevalence in individuals exposed to different activities, the data from sports 17 and occupational activities were pooled together. Data were stratified based on intensity of 18 activity (e.g. high: soccer graphic; low: graphic designers) activities. For longitudinal studies, 19 data from the latest time point (rather than baseline) were included. Within the eight study 20 population categories, sensitivity analyses were conducted when > 1 study reported sufficient 21 data for pooling based on disease severity, compartment-specific OA pattern, age and sex. 22 Disease severity was defined as mild, presence of at least mild radiographic PF OA; and 23 definite, presence of definite radiographic PF OA (Supplementary Table 2). Compartment-24 specific OA pattern was defined as: (i) isolated PF OA, (ii) combined PF OA and TF OA, and 25 (iii) any PF OA. Age groups for sensitivity analyses were categorized as: (i) mean age: <50 years, (ii) mean age: ≥50 years. These sensitivity analyses are presented in text for any PF OA,
 and in supplementary material (Supplementary Table 3) for the isolated and combined TF OA
 and PF OA groups. Where possible, medial and lateral PF OA prevalence was described.

4

5 Magnetic resonance imaging studies

6 Currently, there is no accepted definition of MRI-defined PF OA. A definition was proposed by Hunter et al.¹⁴, which included a definite osteophyte and partial or full thickness cartilage 7 8 loss. However, this proposed definition of MRI-defined PF OA has not been further validated. 9 Furthermore, most previous studies do not provide data on osteophytes to enable calculation 10 of PF OA prevalence using this definition. Therefore, for the purposes of this SR we will report 11 MRI-defined structural damage. Data were pooled based on study populations described above 12 (except for occupational-based population) as well as general population (studies that could 13 not be categorized into one of the categories described above). Within each study population 14 category, data were pooled based on cartilage defect and bone marrow lesions (BML) MR 15 features. Authors used the following terms to define cartilage defect: cartilage abnormalities, 16 cartilage defect, full cartilage thickness loss, cartilage pathology and cartilage lesion; and the 17 following terms were used to define BML, marrow abnormities, marrow lesion and bone 18 marrow edema. To allow data pooling where possible other scoring systems were compared to the Whole-Organ Magnetic Resonance Imaging Score (WORMS)¹⁵ and MRI Osteoarthritis 19 Knee Score (MOAKS)¹⁶ based on the explanation of the scoring system provided in the paper. 20 21 Data were stratified based on compartment-specific OA pattern (isolated PF OA, combined PF 22 OA and TF OA, and any PF OA). Where possible, stratified analyses were conducted based on 23 age (mean age: <50 years, ≥ 50 years) and sex. If possible, medial and lateral PF OA prevalence 24 was described. Most longitudinal MR imaging studies provided most complete data at baseline 25 rather than at later time points (dropouts or only odds ratios data for later time points); thus,

- 1 this review included baseline data.
- 2

3 3. RESULTS

4 3.1 Search Strategy, Methodological Quality and Risk of Bias

5 The comprehensive search strategy identified 2681 titles, with the last search conducted on 6 February 25th, 2016. Following removal of duplicate publications and conference proceedings, 7 titles of 1105 publications were evaluated. Thirteen titles were obtained from other resources 8 (Google scholar and hand-searching). The full texts of 144 articles were retrieved, with 117 9 articles meeting the selection criteria. Following removal of studies with duplicate data, 85 studies (63 radiography studies,^{2 17-78} 24 MRI studies^{39 79-101}) were included in this systematic 10 11 review (Table 1 and 2, Figure 1). There was one study that reported data on radiographic PF OA and MRI-defined PF structural damage.³⁵ The methodological quality scores ranged from 12 13 0 to 2 (out of 2) (Supplementary Table 4). There were 15 studies of high quality, 16 were 14 moderate, and 54 were low quality. Most studies scored negatively on items 1 (i.e., study design/sampling method) and 6 (i.e., response rate) and positively on items 4 (i.e., 15 16 measurement criteria) and 8 (i.e., study subjects described) of the critical appraisal tool. A high level of heterogeneity was noted within radiography and MRI studies (I² range 96% to 100%). 17 18 The level of heterogeneity remained high (I² range 70% to 100%), when studies were further 19 sub grouped based on population, OA severity pattern, age and sex. Exclusion of low 20 methodological quality studies did not decrease the heterogeneity levels.

21

22

Table 1: Details of included radiography studies

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ited PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Community-based	population				1	1							
Arfaj 2002	First two patients visiting a clinical invited everyday)	w	40±15	133	KL					81			Definite
		М	40±15	167	KL					88			Definite
Baker Xu 2004	Randomly from community over the age of 60 years	w	68±6	1475	KL	8			26				Definite
		М	69±6	997	KL	9			12				Definite
Braga 2009	African-Americans (>45 years) recruited by probability sampling	W	62±11	283	KL					53			Definite
		М	60±11	147	KL					60			Definite
	Caucasians (>45 years) recruited by probability sampling	w	62±11	799	KL					42			Definite
		М	61±10	728	KL					54			Definite
Cho 2016	Random sample of individuals (>65 years) selected from a longitudinal study	W	72±5	383		3	0	2	28	29	2	15	Definite
		М	71±5	298		5	1	4	8	13	1	7	Definite
Cicuttini 1997	Unrelated women selected from a group participating in twin study of OA	W	59±7	325	Burnett, 1994 (JSN & osteophyte)	13			15				Mild

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ted PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Gross 2012	Offspring (and their spouses) of participants from original Framingham heart study and population-based sample of Framingham community	WM	63±9	985 (1159)	OARSI					8			Definite
Hunter Zhang 2007	Random sample from Health ABC study	WM	74±3	595	OARSI					49			Mild
Lanyon 1998	Random sampling, stratified by age from the lists of two general practitioner	WM	62 (40-80)	452	Altman					13			Definite
Szoeke 2006	Post-menopausal women selected from another population-based study	W	60±3	224	OARSI					22			Mild
Tangtrakulwanich 2012	Individuals (>40 years) without rheumatic diseases using primary care	WM	>40	576	0-3 scale					38			Mild
Healthy individuals		•	•				•	1			1	1	
Englund 2005		WM	56±21	68	OARSI					9			Mild
McAlindon 1992		M	>55	78						5			Mild
Nemale 2005		W WM	>55 68±8	162 10	KL					5 70			Mild Mild
Naredo 2005 Spector 1996		WM	68±8 54±6	215	KL KL					28			Mild
Knee pain or symptom:	atic nonulation	vv	J4±0	213	KL	I	I		<u> </u>	20	I	I	Ivilia
Barret 1990		WM	78 (51-93)	1894 (2197)	Alhback	3.8				18			Mild
Bennett 2007		WM	54±13	39	ACR	1				62			Mild
Davies 2002		WM	>40	174 (206)	Ahlback	9			13				Mild
Duncan 2006		WM	66 (50-93)	777	KL	24			40				Definite

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ted PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Hinman 2014		WM	54±10	224		25	3	11	44				Definite
Kumm 2012	6 years follow-up	WM	51±6	128	Line drawing atlas	19			38				Mild
Lacey 2008		W	50-64	200	KL	19			27				Definite
		М	50-64	158		35			25				Definite
		W	>65	207		21			47				Definite
		М	>65	180		24			62				Definite
McAlindon 1992		М	>55	86	KL					12			Mild
		W	>55	187						26			Mild
McAlindon 1996		WM	81±5	608	Osteophyte /JSN	5			20				Definite
Neame 2004	Right knee	WM	64±9	1729 (1718)						14			Definite
	Left knee	WM		(1723)						14			Definite
Sadat Ali 1996		М	41±7	103 (126)	JSN, osteophytes & varus deformity	45			30				Mild
Thorstensson 2009			45	125	JS width					33			Mild
			(35-54)		<5mm								
Radiographic knee O	A or high risk of knee OA												
Eti 1998	Knee OA	WM	56±11	240 (369)	Altman					34			Unclear
Glass 2014	Knee OA or High risk	W	62±8	1618 (3236)	KL					22			Definite
	Knee OA or High risk	М	62±8	1094 (2188)	KL					18			Definite
Huang 2000	Hand, hip or knee OA	W	64 (29-87)	270	KL					62			Definite
Jones 1993	Knee OA	WM	62 (18-91)	30 (60)	Osteophyte					75			Mild

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ited PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Radiographic and symp	ptomatic OA							<u> </u>					
Cicuttini 2002		М	63±10	44	Osteophyte & JSN					48			Definite
		W	63±10	66	Osteophyte & JSN					38			Definite
Cooper 1994		WM	>55	109	Radiograph Atlas of knee OA	31							Mild
Elahi 2000		WM	66±11	292	OARSI	11							Mild
Ersoz 2003		WM	62±9	20 (40)	KL					88			Mild
Farrokhi 2013		WM	65±9	167	KL					80			Mild
Hinman 2002		WM	68±7	41	ACR					81			Mild
Hunter Niu 2005		W	68±6	1500	KL					35.7			Mild
		М	74±3	595	KL					25.9			Mild
Kerna 2013		WM	45±6	438	Line drawing atlas					48			Mild
Ledingham 1993		WM	65 (34-91)	252	Modified Thomas 1995	24			64				Definite
Messier 2005		WM	74±1	10	KL					90			Mild
Szebenyi 2006			66±10	167 (334)	OARSI					65			Mild
Van der Esch 2014		WM	62±8	298	Osteophyte					86			Mild
Post-traumatic populat	ion				<u> </u>				<u> </u>	L			
Ahn 2012	Post-operative ACLR	WM	29±9	117	IKDC					60			Mild
Barenius 2014	ACLR with patellar graft	WM	39±6	69	KL					32			Definite
	Uninjured contralateral	WM			KL					12			Definite
	Semitendinosus ACLR graft	WM	42±7	65	KL					36			Definite

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ted PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Barenius 2014	Uninjured contralateral	WM	42±7	65	KL					12			Definite
Bourke 2012	Isolated ACL injury with ACLR	WM		118	IKDC					12			Mild
Cohen 2007	ACLR	WM	27 (15-46)	62	Fairbank					74			Mild
Culvenor 2014	ACLR	WM	45±10	36	OARSI	20				48			Mild
Englund 2005	Medial meniscectomy	WM	54±11	250	OARSI				19				Mild
	Lateral meniscectomy	WM	54±11	67	OARSI				27				Mild
Hertel 2005	ACLR -Patellar	WM	42 (22-62)	67	IKDC					19			Mild
Hulet 2015	Arthroscopic partial lateral meniscectomy	WM	57±12	89	IKDC				33				Mild
Jarvela 2001	ACLR with patellar graft	WM	31 (15-61)	100	IKDC					47			Mild
Keays 2007	ACLR with patellar /semitendinosus and gracilis graft	WM	27 (18 - 38)	56					25				Mild
Li 2011	ACLR	WM	26±10	249	KL					11			Mild
Li 2011	Uninjured contralateral	WM	26±10	249	KL					3			Mild
Liden 2008	ACLR with patellar graft	WM	30 (17- 52)	72	Ahlback and Fairbank					14			Mild
	ACLR with hamstring graft	WM	29 (15-59)	41						5			Mild
Lohmander 2004	ACL injury with surgery	W	31 (26-40)	41	OARSI					20			Mild
	ACL injury without surgery	W	31 (26-40)	26						4			Mild
Murray 2012	ACLR with patellar graft	WM		83	IKDC					76			Mild
	Uninjured contralateral	WM		42						59			Mild
Neuman 2009	ACL injury with meniscal injury	WM	43±8	22	OARSI					18			Mild
	ACL injury without meniscal injury	WM	43±8	38	OARSI					3			Mild

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isola	ted PF O	A (%)	Combined (%)	Uncle	ear PF OA	A (%)	Severity
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Neuman 2009	ACLR with meniscal injury	WM	43±8	11	OARSI					55			Mild
	ACLR without meniscal injury	WM	43±8	4	OARSI					25			Mild
	Overall (ACL with or with meniscal or reconstruction)	WM	43±8	75	OARSI				9				Mild
Oiestad 2013	ACLR	WM	71±8	181						26			Mild
Roth 1985	ACLR (non-augmented)	WM		38	Osteophyte size						13	40	Mild
	ACLR (Augmented)	WM		43	Osteophyte size						4	14	Mild
Sajovic 2006	ACLR with semitendinosus and gracilis	WM	24 (14-42)	28	IKDC					7			Mild
	ACLR patellar tendon	WM	27 (16-46)	26	IKDC					12			Mild
Salmon 2006	ACLR - 13 years follow- up	WM	27 (25-28)	43	IKDC					26			Mild
Sward 2013	ACL injured (with or without ACLR) with varus alignment	WM	42±7	36	OARSI				22				Mild
	ACL injured (with or without ACLR) with valgus/neutral	WM	39±6	29	OARSI				7				Mild
Occupation-based	population												
Kujala 1995	Long distance runners	М	60±5	28	KL					11			Definite
	Soccer players	М	57±5	31	KL					16			Definite
	Weight lifters	М	60±5	29	KL					28			Definite
	Shooters	М	61±5	29	KL					3			Definite
Rytter 2009	Floor layers	М	53 (39-68)	134	Modified Ahlback Scale					9			Mild

Author, Year	Additional information	Sex	Age	N	Diagnostic	Isola	ted PF O	A (%)	Combined	Uncl	ear PF OA	A (%)	Severity
	1			(knees)	criteria				(%)				
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral	
Rytter 2009	Graphic designers	М	58	120	Modified					18			Mild
	1		(40-70)		Ahlback								
					Scale								
Spector 1996	Ex-athletes	W	52±6	81	KL					42			Mild
Tangtrakulwanich 2006	Monk		44±18	261	KL	19			33				Mild
Abbreviations are as follo	ows: M, men; W, women; W	/M, both w	omen and	men; OA, of	steoarthritis; PF	⁷ OA, pate	llofemoral	osteoarthri	tis; JSN, joint spa	ace narrow	ing; OAR	SI, osteoa	rthritis
Research Society Interna	tional; ACR, American Coll	lege Rheun	natology; J	KDC, Interr	national Knee I	Document <i>a</i>	tion Com	mittee; ACI	L, anterior cruciat	e ligamen	t; ACLR,	anterior cr	ruciate
ligament reconstruction.	Where possible, age is prese	ented as me	ean ± stand	dard deviation	on or mean (rar	nge). Mild	l severity i	ndicates at	least mild OA se	verity and	definite i	ndicates d	efinite
OA severity (equivalent t	lo KL≥2)												

Table 2: Details of included magnetic resonance imaging studies

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolat	ted PF OA	(%)	Combined (%)	Uncle	ear PF OA	A (%)	Cartilage defect Cartilage defect Cartilage damage Cartilage damage BML Cartilage defect BML Cartilage damage BML Cartilage damage BML Cartilage damage BML Cartilage damage BML Cartilage damage BML	Case definition
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral		
Community-bas	sed population													
Ding 2005	<45years	WM	<45	167	0-4 scale					16			Cartilage defect	≥2
	>45years	WM	≥45	205						38			Cartilage defect	≥2
Gross 2012*	FOA cohort	WM	64±9	985 (1159)	WORMS		50	18					Cartilage damage	≥2
Stefanik 2013	FOA cohort	WM	64±8	970	WORMS	20			44				Cartilage damage	≥2
Wang 2015	TASOAC cohort	WM	62±7	904	WORMS					19			BML	≥1
										40			Cartilage defect	≥2
Healthy individ	uals	<u> </u>			•					<u> </u>				<u> </u>
Sharma 2014	OAI cohort	М	60±9	375	MOAKS	25			33				Cartilage damage	>0
					WORMS	33			18					>0
		W	60±9	474	MOAKS	34			30				Cartilage damage	>0
					WORMS	35			17				BML	>0
Wang 2012		WM	42±7	38	0-4 scale					3			Cartilage defect	≥2
Knee pain or sy	mptomatic popula	ation												
Amin Baker 2009*	BOKS cohort	М	68±9	154	WORMS						81	68	cartilage	≥2
		W	64±9	111	WORMS						91	84	Maximal cartilage morphology	≥2
Amin Goggins 2008*	Heavy lifting [BOKS cohort]	М	69±9	40	WORMS					60			Cartilage morphology	≥2
	Occupational exposures	М	64±9	47	WORMS					72			Cartilage morphology	≥2
	No heavy lifting/ occupational exposures	М	70±9	98	WORMS					47			Cartilage morphology	≥2

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolat	ted PF OA	(%)	Combined (%)	Unclear	PF OA (%	/0)	Feature	Case definition
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral		
Amin Guermazi 2008	BOKS cohort	WM	67±9	265	WORMS					91			Cartilage morphology	≥2
Cai 2015	Anhui osteoarthritis cohort	WM	56±12	174	0-4 scale					82			Cartilage damage	≥2
		WM			0-3 scale					52			BML	≥1
Crema 2014		WM	58±10	163	0-3 scale					13			BML	≥1
Peterfy 2004		WM	61±8	19	WORMS					94			Cartilage abnormality	≥1
										16			BML	≥1
										81			Osteophytes	≥1
Tsavalas 2012	Various knee- related clinical conditions	WM	≤50	315	ICRS					5			Cartilage lesion	≥2
		WM	>50	200	ICRS					33			Cartilage lesion	≥2
Radiographic kn	ee OA or high ris	k of knee	OA											
Gross 2012	MOST cohort	WM	62±8	1381 (1621)	WORMS		69	36					Cartilage damage	≥2
Stefanik Gross 2015* (O&C)	MOST cohort	WM	69±8	1137	WORMS		22	13		63			BML	≥1
Stefanik Gross 2015ł (ACR)	MOST cohort	W	66±8	653 (2594)	WORMS					51			Cartilage damage	≥2
										29			BML	≥1
		М	66±8	400 (1486)	WORMS					43			Cartilage damage	 ≥2
				(1100)						23			BML	≥1
Runhaar 2014		W	56±3	348 (529)	MOAKS	44	35	18					BML	≥1
				348 (467)		47	42	18					Cartilage defect	≥1
				348 (408)		33	27	25					Osteophytes	≥1

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolated	PF OA (%	/0)	Combined (%)	Uncle	ear PF OA	A (%)	Feature	Case definition
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral		
Radiographic an	d symptomatic O	A			•				•				•	
Chan 1991		WM	58	20	0-3 scale	0			75				Cartilage loss	≥1
						0			75				Osteophytes	≥1
Post-traumatic p														
Culvenor 2015	ACLR with or without meniscus repair	WM	30±8	111	MOAKS	12					2	3	BML	≥1
Van Meer 2016	ACL rupture	WM	25±33	143	MOAKS					29			Osteophytes	≥1
Wang 2012	Arthroscopic partial medial meniscectomy (2 years post)	WM	43±5	63	0-4 scale	19							Cartilage defect	≥2
General populati								_				_	-	
Gross 2011	Framingham Heart study offsprings + spouses, and people from Framingham town	WM	64±9	1094	WORMS						58		Cartilage damage	≥2
				1096								42	Cartilage damage	≥2
Hayes 2005	With or without pain or OA	W	46±1	117 (232)	Modified Nayes arthroscopy system					66			Cartilage defect	≥IIA
Kornaat 2005	40-70 years with familial generalized OA	WM	60 (43- 77)	205	KOSS	66							Cartilage defect	≥1
Sowers 2011	Middle-aged women	W	56±5	360 (724)						89			Cartilage defect	
										45			BML	

Author, Year	Additional information	Sex	Age	N (knees)	Diagnostic criteria	Isolated PF OA (%)			Combined (%)	Unclear PF OA (%)			Feature	Case definition
						Overall	Medial	Lateral	PF + TF OA	Overall	Medial	Lateral		
Sowers 2011	Middle-aged women	W	56±5	360 (724)						56			Osteophytes	
Teng 2015	Without no OA or isolated OA	WM	51±10	61	WORMS					46			Cartilage lesion	>1
Abbreviations are as follows: FOA, Framingham Osteoarthritis; TASOAC, Tasmanian Older Adult Cohort; OAI, Osteoarthritis Initiative; BOKS, Boston Knee Osteoarthritis Study; MOST, Multicenter Knee Osteoarthritis; M, men; W, women; WORMS, Whole-organ Magnetic Resonance Imaging Score; MOAKS, MRI Osteoarthritis Knee Score; BML, bone marrow lesion; ICRS, International Cartilage Repair Society; KOSS; Knee Osteoarthritis Scoring System; ACL, Anterior cruciate ligament; ACLR, anterior cruciate ligament reconstructed; OA, osteoarthritis; PF OA, patellofemoral osteoarthritis. Where possible, age is presented as mean ± standard deviation or mean (range). * symbol indicates studies included in subgroup analyses, hpercentage based on regions														

3.2 Prevalence of patellofemoral OA based on radiography

Community-based population

In community-based populations, the overall prevalence of isolated PF OA from four studies^{19 24} ^{26 28} was [mean proportion: (95% confidence interval)] 7% (5 to 10), combined PF OA and TF OA from four studies^{19 24 26 28} was 17% (10 to 26), and any PF OA based on nine studies^{18 19 24 26 28 39 46} ^{54 75} was 38% (28 to 50) (Figure 2 A-C). In the any PF OA group, the prevalence of mild OA severity was 33% (17 to 51) from three studies^{28 46 75} and definite OA severity was 40% (28 to 53) from six studies.^{18 19 24 26 39 54} The prevalence of any PF OA in community-based population was 32% (24 to 42) in those aged 50 years or over from eight studies^{19 24 26 28 39 46 54 75}. Only one study described prevalence of isolated compartment-specific PF OA²⁶, with prevalence of medial PF OA at 0.3% in women and 0.7% in men, and the prevalence of lateral PF OA at 1.6% in women and 3.7% in men. Sensitivity analyses based on sex revealed that the prevalence of any PF OA in women was 41% (31 to 51) from six studies^{18 19 24 26 28 75} and 47% (23 to 71) in men from four studies.^{18 19 24 26}

Knee pain or symptomatic population

Overall prevalence of isolated PF OA was 19% (11 to 29) from eight studies,² ²¹ ³² ⁴² ⁵² ⁵³ ⁵⁹ ⁶⁹ combined PF OA and TF OA was 34% (25 to 43) from seven studies² ³² ⁴² ⁵² ⁵³ ⁵⁹ ⁶⁹ and any PF OA was 43% (32 to 55) from 12 studies² ²¹ ²² ³² ⁴² ⁵² ⁵³ ⁵⁹ ⁶⁰ ⁶⁴ ⁶⁹ ⁷⁷ (Figure 2 D-F). For any PF OA, the prevalence of mild and definite OA severity was 37% (24 to 51) from seven studies² ²¹ ²² ³² ⁵² ⁶⁰ ⁶⁹ and 49% (30 to 67) from six studies,² ⁴² ⁵³ ⁵⁹ ⁶⁴ ⁷⁷ respectively. Age-based prevalence of any PF OA in individuals under 50 years was 54% (16 to 90) from two studies ⁶⁹ ⁷⁷ and in those 50 years or over was 43% (31 to 56) from eight studies.² ²¹ ²² ⁴² ⁵³ ⁵⁹ ⁶⁰ ⁶⁴ Sex-based prevalence of any PF OA

was 46% (23 to 70) in women^{53 60} and 58% (27 to 86) in men.^{53 60 69}

Radiographic and symptomatic knee osteoarthritis

Overall prevalence of isolated PF OA was 20% (11 to 32) from four studies, $^{25 30 33 55}$ combined PF OA and TF OA was 43% (8 to 83) from two studies $^{25 55}$ and any PF OA was 57% (43 to 70) from 13 studies $^{25 27 30 33 35 37 41 45 50 55 61 74 78}$ (Figure 2 G -I). In the any PF OA group, the prevalence of mild severity was 56% (41 to 70) from 12 studies. $^{25 30 33 35 37 41 45 50 55 61 74 78}$ The prevalence in individuals 50 years or over was 58% (42 to 72) from 12 studies $^{25 27 30 33 35 37 41 45 55 61 74 78}$ and the prevalence of any PF OA in women was 36% (33 to 38)^{27 45} and men was 35% (16 to 58) from two studies. $^{27 45}$

Healthy individuals

Data from four studies were included in meta-analyses to determine the prevalence of PF OA in healthy individuals.^{34 60 63 72} Overall prevalence of any PF OA in healthy individuals (no pain, injury or OA) was 17% (6 to 33) (Figure 3A). Sensitivity analyses based on sex could only be performed in women revealing the prevalence of PF OA in healthy women at 15% (1 to 43) from two studies.^{60 72}

Radiographic knee osteoarthritis or at risk of developing osteoarthritis

Overall prevalence of any PF OA in individuals with radiographic OA or at risk of OA was 48% (35 to 61) from four studies^{36 38 43 48} (Figure 3B), with prevalence based on mild and definite OA severity as follows: 54% (17 to 89) from two studies^{36 48} and 45% (30 to 60) from two studies,^{38 43} respectively. In this group, the prevalence of any PF OA in women was 41% (8 to 80) from two studies.^{38 43}

Occupation-based population

Four studies reported occupation-based prevalence of PF OA.^{51 68 72 76} Overall prevalence of any PF OA in individuals in occupations or sports such as long distance running, soccer, shooting, floor layers, graphic designers and monks was 21% (9 to 37) (Figure 3C). For any PF OA, the prevalence based on mild OA severity was 29% (10 to 52) from three studies.^{68 72 76} The prevalence of any PF OA in individuals 50 years and over was 18% (9 to 28) from three studies.^{51 68 72} Sensitivity analyses based on sex revealed the prevalence of any PF OA in men was 14% (9 to 20) from two studies.^{51 68} Analysis could not be performed in women. For any PF OA, the prevalence of any PF OA in high intensity activity population was 19% (11 to 29) from one study⁵¹ and 19% (3 to 45) in low intensity activity population based on three studies.^{51 68 76}

Post-traumatic population

The overall prevalence of isolated PF OA from two studies was 17% (5 to 34) from two studies⁴⁹ 65 (Figure 3D). In the injured knee, the overall of prevalence of any PF OA in post-traumatic population (range: 5 to 22 years) was 27% (19 to 34) from 19 studies^{17 20 23 29 31 34 40 44 47 49 56-58 62 65 $^{66 70 71 73}$ (Figure 3E). For any PF OA, the prevalence of mild OA severity was 26% (18 to 34) from 18 studies.^{17 23 29 31 34 40 44 47 49 56-58 62 65 66 70 71 73} Sensitivity analyses based on age revealed the prevalence of any PF OA was 27% (18 to 36) in individuals under 50 years^{17 20 23 29 31 40 47 49 56-58 65 66 70 71 73} and 26% (17 to 35) in those 50 years or over.^{34 44} In the uninjured knee, overall prevalence of any PF OA was 18% (3 to 42) from three studies,^{20 56 62} with prevalence of mild OA severity at 25% (2 to 87) from two studies.^{56 62}}

3.3 Prevalence of patellofemoral OA based on magnetic resonance imaging

Community-based population

The prevalence of isolated PF structural damage and combined PF and TF structural damage based on cartilage defect were 20% and 44% (respectively) and BML was 18% and 22% (respectively) based on a single study.⁹⁵ The prevalence of any PF structural damage based on cartilage defects was 44% (25 to 65) from three studies^{86 95 99} and BML was 29% (11 to 51) from two studies^{95 99} (Figure 4A-B).

Knee pain or symptomatic population

The prevalence of overall isolated PF structural damage and combined PF and TF structural damage could not be calculated for this study population. The prevalence of any PF structural damage was 52% (9 to 93) based on cartilage defect^{81 82 97} and 32% (3 to 72) based on BML^{82 84} (Figure 4C-D). Data from one study could not be pooled because of WORMS definition used for OA diagnosis (Cartilage damage defined as \geq 1 grade in this study compared to \geq 2 grade used in other studies),⁹⁰ with PF structural damage prevalence of 94%, 16% and 81% based on cartilage defect, BML and osteophytes, respectively. Data stratified based on age revealed that the prevalence of any PF structural damage was 71% (33 to 97) in individuals 50 years or over based on cartilage defect.^{81 82 97}

Radiographic knee osteoarthritis or at risk of developing osteoarthritis

An overall prevalence of isolated PF structural damage, combined PF and TF structural damage and any PF structural damage based on cartilage defect or BML could not be determined for this study population. Two studies reported prevalence of isolated PF structural damage in the medial and lateral PF compartments based on cartilage defect^{39 91} and BML.^{39 101} The prevalence of isolated medial and lateral PF structural damage was 56% (29 to 81) and 27% (11 to 46), respectively^{39 91} based on cartilage defect and 28% (17 to 41) and 15% (11 to 20), respectively³⁹ ¹⁰¹ based on BML (Figure 4E-F). A single study described PF structural damage prevalence based on PF compartment regions (not based on number of individuals or knees)⁹⁴ and reported prevalence of any PF structural damage based on cartilage defect and BML in women (51% and 29%, respectively) and men (43% and 23%, respectively):⁹⁴ No further analyses could be conducted in this study population.

Healthy individuals

The overall prevalence of any PF structural damage based on cartilage defect was 40% (19 to 63)⁹² ¹⁰⁰ (Figure 4G). Since there were only two studies included in this study population, no further analyses could be conducted.

Radiographic and symptomatic knee osteoarthritis

The prevalence of combined PF and TF structural damage was 75% based on cartilage defect and osteophytes from a single study,⁸³ and no further analyses could be conducted.

Post-traumatic population

Two studies reported prevalence based on osteophytes in ACL injured or reconstructed,^{85 98} with the prevalence of any PF structural damage at 29%⁹⁸ and compartment-specific prevalence of medial and lateral PF structural damage at 23% and 7%, respectively.⁸⁵ The prevalence of medial and lateral PF structural damage based on BML were 2% and 3%, respectively.⁸⁵ The prevalence

of any PF structural damage was 36% in an ACL ruptured population based on cartilage defect.⁹⁸ In individuals two years post arthroscopic partial medial meniscectomy the prevalence of isolated PF structural damage was 19% based on cartilage defect.¹⁰⁰

General population

Five studies were included in the general population category.^{87-89 93 96} The cartilage defect based prevalence of any PF structural damage was 49% (36 to 62) from two studies using the WORMS⁸⁷ ⁹⁶ and was 75% (56 to 91) from three studies using the KOSS.^{88 89 93} The prevalence of any PF structural damage based on BML and osteophytes were 45% and 56%, respectively.⁹³

4. DISCUSSION

Summary of findings

This systematic review with meta-analysis synthesized prevalence of PF OA, and included 85 studies. Meta-analysis revealed the prevalence of any radiographic PF OA in knee pain or symptomatic, radiographic TF OA or at risk of developing TF OA, and radiographic and symptomatic knee OA cohorts was 43%, 48% and 57%, respectively. The prevalence of any MRI-defined PF structural damage in knee pain or symptomatic population was 32% and 52% based on BML and cartilage defect, respectively. This systematic review and meta-analysis highlights the high prevalence of PF OA/ PF structural damage in a wide range of study populations using different imaging tools.

One half (43-57%) of people with symptoms and/or established radiographic TF OA had PF OA based on radiography. Similarly, a high prevalence of post-traumatic population exhibited signs of PF OA (~30). With such a high prevalence of PF OA, treatments designed specifically for the PF

compartment may be required in the OA management strategy.^{102 103} Clinicans should assess for symptoms of PF pain or PF OA and treat patients accordingly. The few studies that specifically evaluated interventions such as exercise, physical therapy, taping and bracing to address PF OA⁹⁸ ⁹⁹¹⁰⁴ provide some evidence for their use. While some studies hypothesize that there is a potential continuum of PF pain PF OA;¹⁰⁵ no high-quality evidence has supported the association between PF pain in younger individuals to the development of PF OA.¹⁰⁶ Unfortunately, studies included in the knee pain or symptomatic OA population category did not differentiate between PF pain and generalized knee pain. Therefore, in the current systematic review, we were not able to determine the prevalence of PF OA in a PF pain population.

Healthy and community cohorts are also likely to demonstrate some PF OA, with radiographic PF OA evident in 17% and 38%, respectively. Since most studies in the community-based metaanalysis were conducted in individuals over the age of 50 years, it appears that radiographic PF OA may be a natural accompaniment to aging. The only study with a mean age of \leq 50 years (but a large range 20 to 93 years), described a particularly high PF OA prevalence in women (81%) and men (88%). The authors hypothesized that cultural factors in Saudi Arabia, such as sitting cross-legged, squatting and praying with knees fully flexed on the ground, may contribute to the high prevalance. Exclusion of this data from meta-analysis revealed the prevalence of any PF OA was 32% in the community population.

The prevalence of MRI-defined PF structural damage in knee pain or symptomatic population was 52%, which was similar to the healthy (40%), community (44%) and general population (49%) cohorts. The high prevalence of MRI-defined PF structural damage may reflect the ability of MRI

to detect early changes in the joint that are not visible on radiographs. However, it is unclear whether these findings represent PF OA, as there is no accepted and validated MRI definition of OA. MRI features such as cartilage damage and BMLs can predict incident radiographic OA¹⁰⁷, development of knee pain¹⁰⁸ and future total knee replacement¹⁰⁹. Thus, it is plausible that these MRI findings may represent early stages of the PF OA disease process. Further research is needed to investigate the clinical relevance of MRI-defined PF structural damage.

The current systematic review extends on the results from a prior study.⁷ The previous systematic review reported the radiographic prevalence of PF OA in population- and symptom- based population; whereas, the current review reported prevalence of PF OA in multiple different populations. Thus, an additional 32 studies were included in the meta-analysis. Further to this, the current review included meta-analysis on prevalence of MRI-defined PF structural damage. Furthermore, the current study extends on the findings from the earlier review by categorizing data into multiple study populations and data pooling with sub analysis based on age, sex, compartment-specific OA pattern and OA severity pattern to obtain more accurate estimations of prevalence.

Limitations

This systematic review is not without limitations. Firstly, a very high level of heterogeneity was noted, particularly in the any PF OA group. The inclusion of isolated PF OA, combined PF OA and TF OA, and unclear PF OA (isolated or combined) data in the any PF OA group may explain the high level of heterogeneity. Other potential sources of heterogeneity include differences in diagnostic criteria, populations and case definitions. Secondly, all relevant studies were included

in this systematic review, regardless of methodological quality. Data from 54 low methodological quality studies were included in this review. While this systematic review is subject to bias through the inclusion of low quality studies, the levels of evidence applied to the pooled data take into account quality, quantity and homogeneity of studies. Thirdly, we restricted the search to studies published in English. Inclusion of data from non-English language studies may alter the outcomes. Fourthly, a number of diagnostic criteria were converted to allow data pooling, which may have influenced the results of this systematic review. Fourthly, PF structural damage based on MRI should be interpreted with some caution, as fewer studies contributed to meta-analysis within each study population. Lastly, we recognize that there is no accepted and validated definition of radiographic or MRI defined PF OA. Because of this the prevalence data will largely differ in any given study based on different definitions, which may have influenced the results.

Recommendations

Whilst conducting this systematic review, we identified that prevalence data was not well presented in many studies. We recommend that future studies more clearly describe prevalence data based on OA patterns (e.g. isolated PF OA vs. combined PF OA and TF OA, medial vs. lateral PF OA), OA severity (e.g. none, mild, moderate), and subgroups (e.g. age, sex). Further to this, discrepancies in diagnostic criteria definitions and reporting were noted; therefore, the PF OA definitions should be clearly stated. Better standardization of data presentation in future studies will help to better understand PF OA epidemiology.

Implications for research and practice

PF OA is an important source of symptoms in knee OA, and is strongly associated with disability.⁶⁰

Our systematic review and meta-analysis revealed the prevalence of PF OA is high based on radiography and MRI in community, symptomatic, radiographic knee OA and traumatic knee OA populations. Therefore, well-designed studies are required to evaluate biomechanical, functional and psychological impairments associated with PF OA. Addressing potentially modifiable risk factors for PF OA may reduce the risk of development and progression of PF OA and may have implications for TF disease. This systematic review also revealed a higher prevalence of combined PF OA and TF OA pattern than isolated PF OA; therefore, it is important to explore interventions that target both PF and TF joints.

Conclusions

Synthesis of prevalence data on PF OA and MRI-defined PF structural damage indicates that signs of PF damage are common and should not be ignored in research or clinical practice. In the future MRI might become highly relevant in order to identify patients at early disease stages where the disease process may still reversible and amenable to interventions.

FUNDING

HFH is supported by a National Health and Medical Research Council (NHMRC) Project Grant (GNT1106852). JJS is supported by an Investigator Award from the American College of Rheumatology-Rheumatology Research Foundation.

ACKNOWLEDGEMENTS

No acknowledgements

FIGURE AND TABLE CAPTIONS

Figure 1: Flow chart of the study selection process

Figure 2: Prevalence of PF OA in community, knee pain or symptomatic, and radiographic and symptomatic OA populations

Figure 3: Prevalence of PF OA in healthy individuals, radiographic OA, occupation-based OA, and post-traumatic OA populations

Figure 4: Prevalence of MRI-defined PF structural damage in community, knee pain or symptomatic, radiographic OA and healthy individual populations

REFERENCES

- Cross M, Smith E, Hoy D, et al. The global burden of hip and knee osteoarthritis: estimates from the global burden of disease 2010 study. Ann Rheum Dis 2014;73(7):1323-30.
- Duncan RC, Hay EM, Saklatvala J, et al. Prevalence of radiographic osteoarthritis It all depends on your point of view. Rheumatology 2006;45(6):757-60.
- Duncan R, Peat G, Thomas E, et al. Does isolated patellofemoral osteoarthritis matter?
 Osteoarthritis Cartilage 2009;17(9):1151-55.
- Duncan R, Peat G, Thomas E, et al. Incidence, progression and sequence of development of radiographic knee osteoarthritis in a symptomatic population. Ann Rheumatic Dis 2011;70(11):1944-8.
- Stefanik JJ, Guermazi A, Roemer FW, et al. Changes in patellofemoral and tibiofemoral joint cartilage damage and bone marrow lesions over 7 years: the Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 2016;24(7):1160-6.

- Culvenor AG, Cook JL, Collins NJ, et al. Is patellofemoral joint osteoarthritis an underrecognised outcome of anterior cruciate ligament reconstruction? A narrative literature review. Br J Sports Med 2013;47(2):66-70.
- 7. Kobayashi S, Pappas E, Fransen M, et al. The prevalence of patellofemoral osteoarthritis: a systematic review and meta-analysis. Osteoarthritis Cartilage 2016; 24(10):1697-707.
- 8. Guermazi A, Roemer FW, Burstein D, et al. Why radiography should no longer be considered a surrogate outcome measure for longitudinal assessment of cartilage in knee osteoarthritis. Arthritis Res Ther 2011;13(6):247.
- 9. Loney PL, Chambers LW, Bennett KJ, et al. Critical appraisal of the health research literature: prevalence or incidence of a health problem. Chronic diseases in Canada 1998;19(4):170-6.
- Genaidy AM, Lemasters GK, Lockey J, et al. An epidemiological appraisal instrument a tool for evaluation of epidemiological studies. Ergonomics 2007;50(6):920-60.
- Higgins JPT GSe. Cochrane Handbook for Systematic Reviews of Interventions. The Cochrane Collaboration, 2008. ISBN: 978-0-470-69951-5.
- Kellgren JH, Lawrence JS. Radiological assessment of osteo-arthrosis. Ann Rheum Dis 1957;16(4):494-502.
- Altman RD, Gold GE. Atlas of individual radiographic features in osteoarthritis, revised.
 Osteoarthritis Cartilage;15:A1-A56.
- Hunter DJ, Arden N, Conaghan PG, et al. Definition of osteoarthritis on MRI: results of a Delphi exercise. Osteoarthritis Cartilage 2011;19(8):963-9.
- Peterfy CG, Guermazi A, Zaim S, et al. Whole-Organ Magnetic Resonance Imaging Score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004;12(3):177-90.

- 16. Hunter DJ, Guermazi A, Lo GH, et al. Evolution of semi-quantitative whole joint assessment of knee OA: MOAKS (MRI Osteoarthritis Knee Score). Osteoarthritis Cartilage 2011;**19**(8):990-1002.
- 17. Ahn JH, Kim JG, Wang JH, et al. Long-term results of anterior cruciate ligament reconstruction using bone-patellar tendon-bone: an analysis of the factors affecting the development of osteoarthritis. Arthroscopy 2012;28(8):1114-23.
- Al-Arfaj A, Al-Boukai AA. Prevalence of radiographic knee osteoarthritis in Saudi Arabia. Clinical Rheumatology 2002;21(2):142-5.
- 19. Baker KR, Xu L, Zhang Y, et al. Quadriceps weakness and its relationship to tibiofemoral and patellofemoral knee osteoarthritis in Chinese: the Beijing Osteoarthritis Study. Arthritis Rheum 2004;50(6):1815-21 7p.
- 20. Barenius B, Ponzer S, Shalabi A, et al. Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial. Am J Sports Med 2014;42(5):1049-57.
- 21. Barrett JP, Jr., Rashkoff E, Sirna EC, et al. Correlation of roentgenographic patterns and clinical manifestations of symptomatic idiopathic osteoarthritis of the knee. Clin Orthop Relat Res 1990(253):179-83.
- 22. Bennett AN, Crossley KM, Brukner PD, et al. Predictors of symptomatic response to glucosamine in knee osteoarthritis: an exploratory study. B Br J Sports Medicine 2007;41(7):415-19.
- 23. Bourke HE, Gordon DJ, Salmon LJ, et al. The outcome at 15 years of endoscopic anterior cruciate ligament reconstruction using hamstring tendon autograft for 'isolated' anterior cruciate ligament rupture. J Bone Joint Surg (Br Vol) 2012;94(5):630-7.

- 24. Braga L, Renner JB, Schwartz TA, et al. Differences in radiographic features of knee osteoarthritis in African-Americans and Caucasians: the Johnston County Osteoarthritis Project. Osteoarthritis Cartilage 2009;17(12):1554-61.
- 25. Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. Am J Roentgenol 1991;157(4):799-806.
- 26. Cho HJ, Gn KK, Kang JY, et al. Epidemiological characteristics of patellofemoral osteoarthritis in elderly Koreans and its symptomatic contribution in knee osteoarthritis. Knee 2016;23(1):29-34.
- 27. Cicuttini F, Wluka A, Wang Y, et al. The determinants of change in patella cartilage volume in osteoarthritic knees. J Rheumatol 2002;**29**(12):2615-9.
- 28. Cicuttini FM, Spector T, Baker J. Risk factors for osteoarthritis in the tibiofemoral and patellofemoral joints of the knee. J Rheumatol 1997;24(6):1164-7.
- 29. Cohen M, Amaro JT, Ejnisman B, et al. Anterior cruciate ligament reconstruction after 10 to
 15 years: association between meniscectomy and osteoarthrosis. Arthroscopy
 2007;23(6):629-34.
- 30. Cooper C, McAlindon T, Snow S, et al. Mechanical and constitutional risk-factors for symptomatic knee osteoarthritis- Differences between medial tibiofemoral and patellofemoral disease. J Rheumatol 1994;21(2):307-13.
- 31. Culvenor AG, Lai CCH, Gabbe BJ, et al. Patellofemoral osteoarthritis is prevalent and associated with worse symptoms and function after hamstring tendon autograft ACL reconstruction. Br J Sports Med 2014;48(6):1-6.

- 32. Davies AP, Vince AS, Shepstone L, et al. The radiologic prevalence of patellofemoral osteoarthritis. Clin Orthop Rel Res 2002(402):206-12.
- 33. Elahi S, Cahue S, Felson DT, et al. The association between varus-valgus alignment and patellofemoral osteoarthritis. Arthritis Rheum 2000;**43**(8):1874-80.
- 34. Englund M, Lohmander LS. Patellofemoral osteoarthritis coexistent with tibiofemoral osteoarthritis in a meniscectomy population. Ann Rheum Dis 2005;**64**(12):1721-6.
- 35. Ersoz M, Ergun S. Relationship between knee range of motion and Kellgren-Lawrence radiographic scores in knee osteoarthritis. Am J Phys Med Rehabil 2003;82(2):110-5.
- 36. Eti E, Kouakou HB, Daboiko JC, et al. Epidemiology and features of knee osteoarthritis in the ivory coast. Revue Du Rhumatisme 1998;65(12):766-70.
- 37. Farrokhi S, Piva SR, Gil AB, et al. Association of Severity of Coexisting Patellofemoral Disease With Increased Impairments and Functional Limitations in Patients With Knee Osteoarthritis. Arthritis Care Res 2013;65(4):544-51.
- 38. Glass N, Segal NA, Sluka KA, et al. Examining sex differences in knee pain: the Multicenter Osteoarthritis Study. Osteoarthritis Cartilage 2014;22(8):1100-06.
- 39. Gross KD, Niu J, Stefanik JJ, et al. Breaking the Law of Valgus: the surprising and unexplained prevalence of medial patellofemoral cartilage damage. Ann Rheum Dis 2012;71(11):1827-32.
- 40. Hertel P, Behrend H, Cierpinski T, et al. ACL reconstruction using bone-patellar tendonbone press-fit fixation: 10-year clinical results. Knee Surg Sports Traumatol Arthros 2005;13(4):248-55.

- 41. Hinman RS, Bennell KL, Metcalf BR, et al. Temporal activity of vastus medialis obliquus and vastus lateralis in symptomatic knee osteoarthritis. Am J Phys Med Rehabil 2002;81(9):684-90.
- 42. Hinman RS, Lentzos J, Vicenzino B, et al. Is Patellofemoral Osteoarthritis Common in Middle-Aged People With Chronic Patellofemoral Pain? Arthritis Care Res 2014;66(8):1252-57.
- 43. Huang J, Ushiyama T, Inoue K, et al. Vitamin D receptor gene polymorphisms and osteoarthritis of the hand, hip, and knee: acase-control study in Japan. Rheumatology (Oxford) 2000;**39**(1):79-84.
- 44. Hulet C, Menetrey J, Beaufils P, et al. Clinical and radiographic results of arthroscopic partial lateral meniscectomies in stable knees with a minimum follow up of 20 years. Knee Surg Sports Traumatol Arthros 2015;23(1):225-31.
- 45. Hunter DJ, Niu J, Zhang Y, et al. Knee height, knee pain, and knee osteoarthritis: the Beijing Osteoarthritis Study. Arthritis Rheum 2005;**52**(5):1418-23.
- 46. Hunter DJ, Zhang YQ, Niu JB, et al. Patella malalignment, pain and patellofemoral progression: the Health ABC Study. Osteoarthritis Cartilage 2007;**15**(10):1120-7.
- 47. Jarvela T, Paakkala T, Kannus P, et al. The incidence of patellofemoral osteoarthritis and associated findings 7 years after anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft. Am J Sports Med 2001;**29**(1):18-24.
- 48. Jones AC, Ledingham J, McAlindon T, et al. Radiographic assessment of patellofemoral osteoarthritis. Ann Rheum Dis 1993;**52**(9):655-58.
- 49. Keays SL, Bullock-Saxton JE, Keays AC, et al. A 6-year follow-up of the effect of graft site on strength, stability, range of motion, function, and joint degeneration after anterior

cruciate ligament reconstruction: patellar tendon versus semitendinosus and Gracilis tendon graft. Am J Sports Med 2007;**35**(5):729-39.

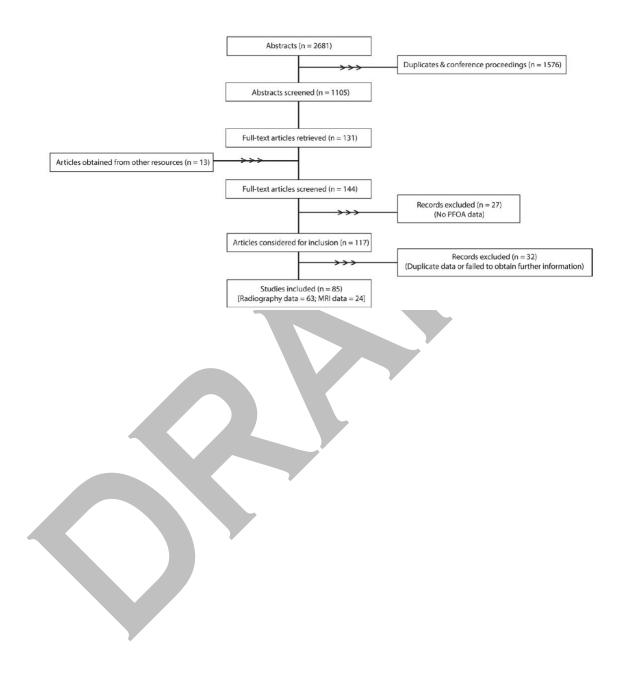
- 50. Kerna I, Kisand K, Tamm AE, et al. Two Single-Nucleotide Polymorphisms in ADAM12 Gene Are Associated with Early and Late Radiographic Knee Osteoarthritis in Estonian Population. Arthritis 2013;**2013**:6.
- 51. Kujala UM, Kettunen J, Paananen H, et al. Knee osteoarthritis in former runners, soccer players, weight lifters, and shooters. Arthritis Rheum 1995;38(4):539-46.
- 52. Kumm J, Tamm A, Lintrop M, et al. The prevalence and progression of radiographic knee osteoarthritis over 6 years in a population-based cohort of middle-aged subjects. Rheumatol In 2012;**32**(11):3545-50.
- 53. Lacey RJ, Thomas E, Duncan RC, et al. Gender difference in symptomatic radiographic knee osteoarthritis in the Knee Clinical Assessment - CAS(K): A prospective study in the general population. BMC Musculoskelet Disord 2008;9:82.
- 54. Lanyon P, O'Reilly S, Jones A, et al. Radiographic assessment of symptomatic knee osteoarthritis in the community: definitions and normal joint space. Ann Rheum Dis 1998;57(10):595-601.
- 55. Ledingham J, Regan M, Jones A, et al. Radiographic patterns and associations of osteoarthritis of the knee in patients referred to hospital. Ann Rheum Dis 1993;52(7):520-6.
- 56. Li RT, Lorenz S, Xu Y, et al. Predictors of radiographic knee osteoarthritis after anterior cruciate ligament reconstruction. Am J Sports Med 2011;39(12):2595-603.
- 57. Liden M, Sernert N, Rostgard-Christensen L, et al. Osteoarthritic changes after anterior cruciate ligament reconstruction using bone-patellar tendon-bone or hamstring tendon

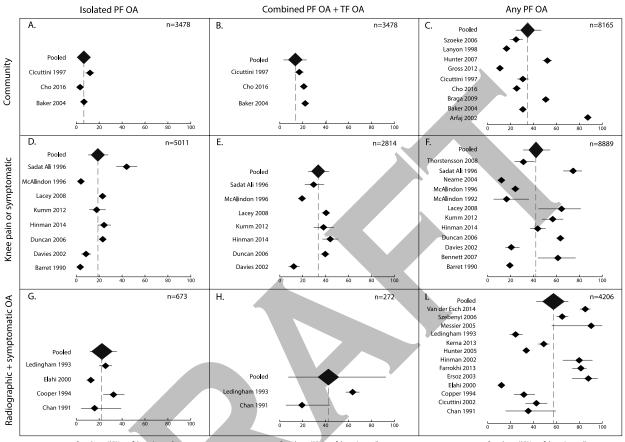
autografts: a retrospective, 7-year radiographic and clinical follow-up study. Arthroscopy 2008;**24**(8):899-908.

- 58. Lohmander LS, Ostenberg A, Englund M, et al. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheum 2004;**50**(10):3145-52.
- 59. McAlindon T, Zhang YQ, Hannan M, et al. Are risk factors for patellofemoral and tibiofemoral knee osteoarthritis different? J Rheumatol 1996;**23**(2):332-37.
- 60. McAlindon TE, Snow S, Cooper C, et al. Radiographic patterns of osteoarthritis of the knee joint in the community: the importance of the patellofemoral joint. Ann Rheum Dis 1992;51(7):844-9.
- 61. Messier SP, DeVita P, Cowan RE, et al. Do older adults with knee osteoarthritis place greater loads on the knee during gait? A preliminary study. Arch Phys Medicine Rehabil 2005;86(4):703-09.
- 62. Murray JR, Lindh AM, Hogan NA, et al. Does anterior cruciate ligament reconstruction lead to degenerative disease?: Thirteen-year results after bone-patellar tendon-bone autograft. Am J Sports Med 2012;40(2):404-13.
- 63. Naredo E, Cabero F, Palop MJ, et al. Ultrasonographic findings in knee osteoarthritis: a comparative study with clinical and radiographic assessment. Osteoarthritis Cartilage 2005;13(7):568-74.
- 64. Neame R, Zhang W, Deighton C, et al. Distribution of radiographic osteoarthritis between the right and left hands, hips, and knees. Arthritis Rheum2004;**50**(5):1487-94.

- 65. Neuman P, Kostogiannis I, Friden T, et al. Patellofemoral osteoarthritis 15 years after anterior cruciate ligament injury--a prospective cohort study. Osteoarthritis Cartilage 2009;17(3):284-90.
- 66. Oiestad BE, Holm I, Engebretsen L, et al. The prevalence of patellofemoral osteoarthritis 12 years after anterior cruciate ligament reconstruction. Knee Surgery, Sports Traumatology, Arthroscopy 2013;21(4):942-9.
- 67. Roth JH, Kennedy JC, Lockstadt H, et al. Polypropylene braid augmented and nonaugmented intraarticular anterior cruciate ligament reconstruction. Am J Sports Med 1985;13(5):321-36.
- 68. Rytter S, Egund N, Jensen LK, et al. Occupational kneeling and radiographic tibiofemoral and patellofemoral osteoarthritis. J Occup Med Toxicol 2009;**4**:19.
- 69. Sadat-Ali M, Al-Gindan Y, Al-Mousa M, et al. Osteoarthritis of the knee among Saudi Arabian security forces personnel. Mil Med 1996;**161**(2):105-7.
- 70. Sajovic M, Vengust V, Komadina R, et al. A prospective, randomized comparison of semitendinosus and gracilis tendon versus patellar tendon autografts for anterior cruciate ligament reconstruction: five-year follow-up. Am J Sports Med 2006;34(12):1933-40 8p.
- 71. Salmon LJ, Russell VJ, Refshauge K, et al. Long-term outcome of endoscopic anterior cruciate ligament reconstruction with patellar tendon autograft: minimum 13-year review. Am J Sports Med 2006;34(5):721-32.
- 72. Spector TD, Harris PA, Hart DJ, et al. Risk of osteoarthritis associated with long-term weight-bearing sports: a radiologic survey of the hips and knees in female ex-athletes and population controls. Arthritis Rheum 1996;**39**(6):988-95.

- 73. Sward P, Friden T, Boegard T, et al. Association between varus alignment and post-traumatic osteoarthritis after anterior cruciate ligament injury. Knee Surg Sports Traumatol Arthrosc 2013;21(9):2040-47.
- 74. Szebenyi B, Hollander AP, Dieppe P, et al. Associations between pain, function, and radiographic features in osteoarthritis of the knee. Arthritis Rheum 2006;54(1):230-35.
- 75. Szoeke C, Dennerstein L, Guthrie J, et al. The relationship between prospectively assessed body weight and physical activity and prevalence of radiological knee osteoarthritis in postmenopausal women. J Rheumatol 2006;**33**(9):1835-40.
- 76. Tangtrakulwanich B, Geater AF, Chongsuvivatwong V. Prevalence, patterns, and risk factors of knee osteoarthritis in Thai monks. J Orthop Sci 2006;11(5):439-45.
- 77. Thorstensson CA, Andersson MLE, Jonsson H, et al. Natural course of knee osteoarthritis in middle-aged subjects with knee pain: 12-Year follow-up using clinical and radiographic criteria. Ann Rheum Dis 2009;68(12):1890-93.
- 78. van der Esch M, Knol DL, Schaffers IC, et al. Osteoarthritis of the knee: multicompartmental or compartmental disease? Rheumatology 2014;**53**(3):540-6.
- 79. Amin S, Baker K, Niu J, et al. Quadriceps strength and the risk of cartilage loss and symptom progression in knee osteoarthritis. Arthritis Rheum 2009;**60**(1):189-98.
- 80. Amin S, Goggins J, Niu J, et al. Occupation-related squatting, kneeling, and heavy lifting and the knee joint: A magnetic resonance imaging-based study in men. J Rheumatol 2008;35(8):1645-49.
- 81. Amin S, Guermazi A, LaValley MP, et al. Complete anterior cruciate ligament tear and the risk for cartilage loss and progression of symptoms in men and women with knee osteoarthritis. Osteoarthritis Cartilage 2008;16(8):897-902.

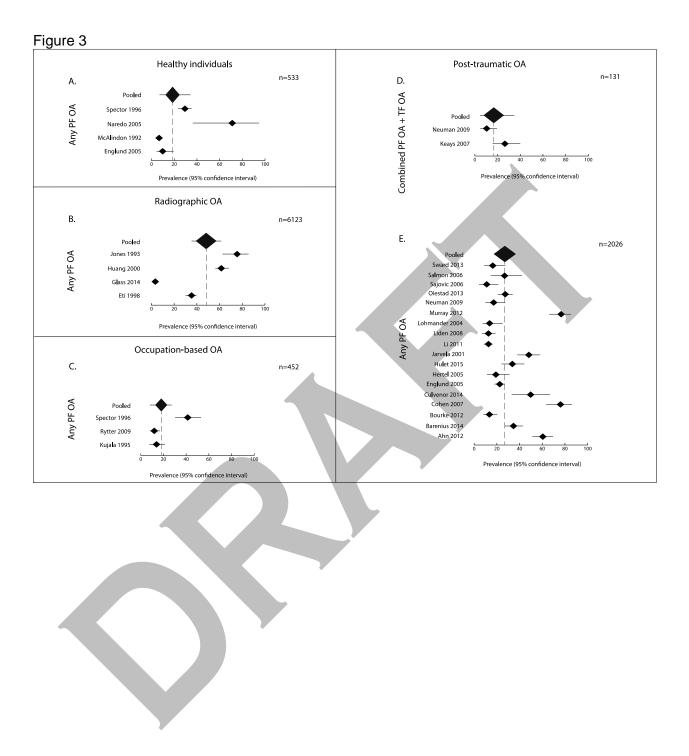

- 82. Cai J, Xu J, Wang K, et al. Association between infrapatellar fat pad volume and knee structural changes in patients with knee osteoarthritis. J Rheumatol 2015;42(10):1878-84.
- 83. Chan WP, Lang P, Stevens MP, et al. Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. Am Jo Roentgenol 1991;157(4):799-806.
- 84. Crema MD, Cibere J, Sayre EC, et al. The relationship between subchondral sclerosis detected with MRI and cartilage loss in a cohort of subjects with knee pain: The knee osteoarthritis progression (KOAP) study. Osteoarthritis Cartilage 2014;22(4):540-46.
- 85. Culvenor AG, Collins NJ, Guermazi A, et al. Early Knee Osteoarthritis Is Evident One Year Following Anterior Cruciate Ligament Reconstruction. Arthritis Rheumatol 2015;67(4):946-55.
- 86. Ding C, Cicuttini F, Scott F, et al. Association between age and knee structural change: a cross sectional MRI based study. Ann Rheum Dis 2005;64(4):549-55.
- 87. Gross KD, Felson DT, Niu J, et al. Association of flat feet with knee pain and cartilage damage in older adults. Arthritis Care Res (Hoboken) 2011;**63**(7):937-44.
- 88. Hayes CW, Jamadar DA, Welch GW, et al. Osteoarthritis of the knee: Comparison of MR imaging findings with radiographic severity measurements and pain in middle-aged women. Radiology 2005;237(3):998-1007.
- 89. Kornaat PR, Watt I, Riyazi N, et al. The relationship between the MRI features of mild osteoarthritis in the patellofemoral and tibiofemoral compartments of the knee. Eur Radiol 2005;15(8):1538-43.
- 90. Peterfy CG, Guermazi A, Zaim S, et al. Whole-organ magnetic resonance imaging score (WORMS) of the knee in osteoarthritis. Osteoarthritis Cartilage 2004;12(3):177-90.

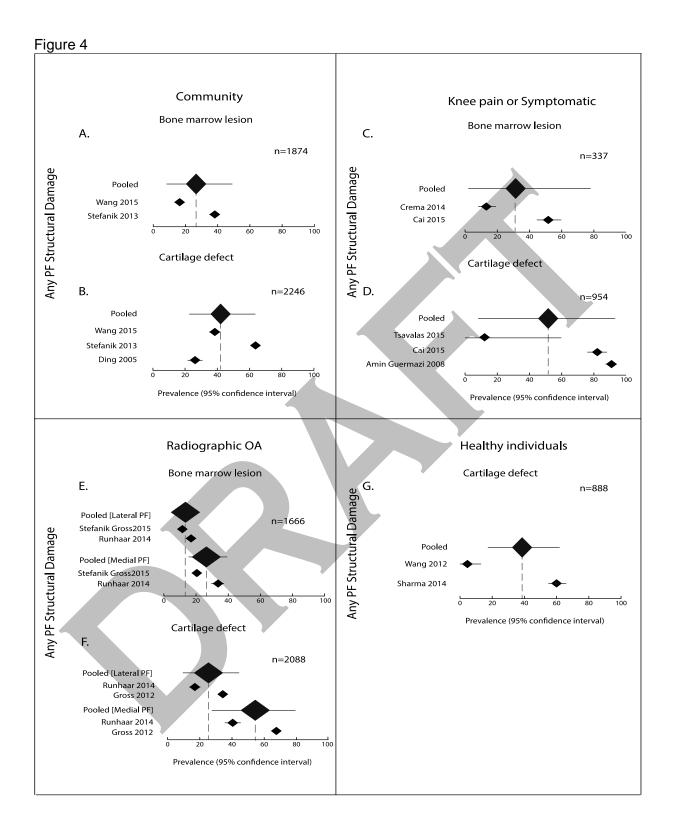

- 91. Runhaar J, Schiphof D, van Meer B, et al. How to define subregional osteoarthritis progression using semi-quantitative MRI Osteoarthritis Knee Score (MOAKS). Osteoarthritis Cartilage 2014;**22**(10):1533-36.
- 92. Sharma L, Chmiel JS, Almagor O, et al. Significance of preradiographic magnetic resonance imaging lesions in persons at increased risk of knee osteoarthritis. Arthritis Rheumatol 2014;66(7):1811-9.
- 93. Sowers M, Karvonen-Gutierrez CA, Jacobson JA, et al. Associations of anatomical measures from MRI with radiographically defined knee osteoarthritis score, pain, and physical functioning. J Bone Joint Surg - Series A 2011;93(3):241-51.
- 94. Stefanik JJ, Gross KD, Guermazi A, et al. The relation of step length to MRI detected structural damage in the patellofemoral joint: The Multicenter Osteoarthritis Study. Arthritis Care Res (Hoboken) 2015; 68(6):776-83.
- 95. Stefanik JJ, Niu J, Gross KD, et al. Using magnetic resonance imaging to determine the compartmental prevalence of knee joint structural damage. Osteoarthritis Cartilage 2013;21(5):695-99.
- 96. Teng HL, Macleod TD, Link TM, et al. Higher Knee Flexion Moment During the Second Half of the Stance Phase of Gait Is Associated With the Progression of Osteoarthritis of the Patellofemoral Joint on Magnetic Resonance Imaging. J Orthop Sports Phys The 2015;45(9):656-64.
- 97. Tsavalas N, Katonis P, Karantanas AH. Knee joint anterior malalignment and patellofemoral osteoarthritis: an MRI study. Euro Radiol 2012;**22**(2):418-28.

- 98. van Meer BL, Oei EH, Meuffels DE, et al. Degenerative Changes in the Knee 2 Years After Anterior Cruciate Ligament Rupture and Related Risk Factors: A Prospective Observational Follow-up Study. Am J Sports Med 2016;44(6):1524-33.
- 99. Wang J, Antony B, Zhu Z, et al. Association of patellar bone marrow lesions with knee pain, patellar cartilage defect and patellar cartilage volume loss in older adults: a cohort study. Osteoarthritis Cartilage 2015;23(8):1330-36.
- 100. Wang Y, Dempsey A, Lloyd D, et al. Patellofemoral and tibiofemoral articular cartilage and subchondral bone health following arthroscopic partial medial meniscectomy. Knee Surg Sports Traumatol Arthrosc 2012;20(5):970-78.
- 101. Stefanik JJ, Gross KD, Guermazi A, et al. The relation of MRI-detected structural damage in the medial and lateral patellofemoral joint to knee pain: the Multicenter and Framingham Osteoarthritis Studies. Osteoarthritis Cartilage 2015;23(4):565-70.
- 102. Crossley KM, Vicenzino B, Lentzos J, et al. Exercise, education, manual-therapy and taping compared to education for patellofemoral osteoarthritis: a blinded, randomised clinical trial. Osteoarthritis Cartilage 2015;23(9):1457-64.
- 103. Callaghan MJ, Parkes MJ. A randomised trial of a brace for patellofemoral osteoarthritis targeting knee pain and bone marrow lesions. Ann Rheum Dis 2015;**74**(6):1164-70.
- 104. Hunter DJ, Harvey W, Gross KD, et al. A Randomized Trial of Patellofemoral Bracing for Treatment of Patellofemoral Osteoarthritis. Osteoarthritis Cartilage 2011;**19**(7):792-800.
- 105. Utting MR, Davies G, Newman JH. Is anterior knee pain a predisposing factor to patellofemoral osteoarthritis? Knee 2005;**12**(5):362-5.

- 106. Thomas MJ, Wood L, Selfe J, et al. Anterior knee pain in younger adults as a precursor to subsequent patellofemoral osteoarthritis: a systematic review. BMC Musculoskelet Disord 2010;11:201.
- 107. Roemer FW, Kwoh CK, Hannon MJ, et al. What comes first? Multitissue involvement leading to radiographic osteoarthritis: magnetic resonance imaging-based trajectory analysis over four years in the osteoarthritis initiative. Arthritis Rheumatol (Hoboken, NJ) 2015;67(8):2085-96.
- 108. Javaid MK, Kiran A, Guermazi A, et al. Individual MRI and radiographic features of knee OA in subjects with unilateral knee pain: Health ABC study. Arthritis Rheum 2012;64(10):3246-55.
- 109. Pelletier JP, Cooper C, Peterfy C, et al. What is the predictive value of MRI for the occurrence of knee replacement surgery in knee osteoarthritis? Ann Rheum Dis 2013;72(10):1594-604.

Figure 1





Prevalence (95% confidence interval)

Prevalence (95% confidence interval)

Prevalence (95% confidence interval)

