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Machine learning property prediction for organic photovoltaic
devices
Nastaran Meftahi 1✉, Mykhailo Klymenko1, Andrew J. Christofferson 2, Udo Bach 3, David A. Winkler 4,5,6,7 and
Salvy P. Russo 1✉

Organic photovoltaic (OPV) materials are promising candidates for cheap, printable solar cells. However, there are a very large
number of potential donors and acceptors, making selection of the best materials difficult. Here, we show that machine-learning
approaches can leverage computationally expensive DFT calculations to estimate important OPV materials properties quickly and
accurately. We generate quantitative relationships between simple and interpretable chemical signature and one-hot descriptors
and OPV power conversion efficiency (PCE), open circuit potential (Voc), short circuit density (Jsc), highest occupied molecular orbital
(HOMO) energy, lowest unoccupied molecular orbital (LUMO) energy, and the HOMO–LUMO gap. The most robust and predictive
models could predict PCE (computed by DFT) with a standard error of ±0.5 for percentage PCE for both the training and test set.
This model is useful for pre-screening potential donor and acceptor materials for OPV applications, accelerating design of these
devices for green energy applications.
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INTRODUCTION
Worrying increases in anthropomorphic greenhouse gas emissions
have driven a strong expansion of research into discovery, design,
and optimization of materials for energy applications. Organic
photovoltaic (OPV) materials are of great interest because of their
potential to generate cheap, printable semiconductor devices that
convert light into electrical energy. They promise sustainable
sources of clean energy if their efficiencies and stabilities can be
improved. Organic solar cell manufacture is intrinsically a simple
and low-cost process, and devices can be lightweight and
flexible1,2. However, the relationships between materials proper-
ties, device configuration, and performance are complex and often
poorly understood. Given the potentially vast number of materials
and device configurations possible exhaustive experimentation,
even using high throughput methods, cannot guarantee finding
the highest performing materials.
The power conversion efficiency (PCE, % incident light energy

converted to electricity) is one of the most crucial properties for
OPV solar cells. Density functional theory (DFT) can calculate
several important properties of photovoltaic materials that affect
PCE:3 Voc (open circuit potential), Jsc (short circuit density), energy
of the donor highest occupied molecular orbital (HOMO), energy
of the acceptor lowest unoccupied molecular orbital (LUMO), and
the HOMO–LUMO gap, but this requires extensive computational
resources and time. Many physiochemical phenomena relating to
light absorption in solar cells, such as the exciton formation4 and
migration5 process, charge transport6 and recombination, need to
be considered7,8.
Machine learning (ML) can potentially model the complex

relationships between materials, device properties, and OPV
performance, given sufficient data, allowing efficient leveraging
of expensive and time-consuming experiments and quantum

chemical calculations. Carefully chosen, a relatively small number
of DFT calculations, validated by experiments, can train ML models
that predict relevant OPV properties for materials not yet
synthesized. Apart from the availability of sufficient and reliable
training data, the most important element of ML models is
the choice of descriptors, mathematical representations of the
structural and physicochemical properties of the donors and
acceptors used in the OPV devices. Clearly, device construction
parameters are also relevant and can be included in the models if
they are available. Different ML algorithms often give similar
quality models for a given set of descriptors, whereas a given ML
algorithm trained on different types of descriptors can generate
models of highly variable quality9. Many types of molecular
descriptors are available, including topological, electronic, geome-
trical, molecular fragment, and quantum chemical, among others.
ML approaches have been a popular choice for predicting

photovoltaic properties10. For example, Padula and co-workers
modeled the photovoltaic properties of 249 organic
donor–acceptors pairs to using k-NN (k-nearest neighbor)11

regression and kernel ridge regression12,13 methods trained on a
combination of electronic and structural parameters14. Sahu et al.
used random forest (RF)15,16, gradient boosting (GB)17, and deep
neural networks (DNN) to model PCE for 280 small OPV molecules
using 13 microscopic properties of as descriptors to train the
models. The models predicted PCE for 30 molecules in a test set
with modest R2 values of 0.44, 0.50, 0.46, 0.61, and 0.62 for linear
regression, k-NN, neural network, RF, GB models, respectively18.
Root-mean-square error (RMSE) values, a robust estimate of model
quality19, ranged from 1.07% PCE for GB to 1.34% PCE for linear
regression. Note: as PCE is the percentage conversion of light
energy, in this paper when we refer to standard error or RMSE
values we mean the uncertainty in this property (e.g. 10.6 ± 0.5%),
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not the percentage error in this property (e.g. 100 × 0.5/10.6).
Pereira and co-workers20 also generated ML models for the energy
of the HOMO and LUMO of OPV materials. They used a dataset of
111,725 molecules, fingerprint and modified distance descriptors,
and RF15,16, support vector machine21, and a standard feedforward
neural network to perform feature selection and property
modeling. They found that the RF algorithm trained on modified
distance descriptors generated the best predictions for HOMO and
LUMO for an external test set of 9989 compounds, with R2 values
of 0.89 and 0.93 and RMSE of 0.21 and 0.23 eV for the HOMO and
LUMO energies, respectively. The HOMO–LUMO gap could be
predicted with an R2 of 0.91 and RMSE of 0.30 eV.
Although ML methods can model OPV properties well, one of

the main problems is that the models are opaque, and the
descriptors used to train them arcane. It is hard to extract
information from the models that is useful for designing improved
OPV materials. Here we show how efficient and chemically
interpretable descriptors that can be computed quickly and do
not require additional experimental measurements or resource-
intensive DFT calculations can predict important OPV properties
with good accuracy.

RESULTS AND DISCUSSION
Model development
Here, we used the Harvard Photovoltaic Dataset (HOPV15)
dataset22 that includes data from quantum chemical calculations
and that calculated by the Scharber model plus experimental
properties collected from literature23. The Scharber model uses a
single parameter, the computed HOMO–LUMO gap, in which Voc
is assumed to be the HOMO–LUMO gap minus a band offset, Jsc is
assumed to be 0.65 of the current resulting from absorbing all
incident photons above the HOMO–LUMO gap, and FF is set 0.65
(ref. 24).
Our aim is to demonstrate that simple, interpretable molecular

descriptors and ML methods can model and predict important
OPV properties. While it is clearly ideal to model experimentally
measured properties directly, there are many variables that can
affect the OPV performance metrics, for example, the device
design; processing conditions; dopants, dyes, solvents, and other
additives; and others. Thus, measured OPV properties can vary
from experiment to experiment and between labs. Data points
from different sources can be inconsistent and affect reproduci-
bility, constituting a relatively large source of error. Our goal in this
work was to show that ML methods in general, and signatures
specifically, are well suited to modeling and predicting a wide
range of OPV properties. Therefore, we used the reproducible
large dataset of photovoltaic properties calculated by a range of
DFT methods in HOPV15. Clearly, these methods can be usefully
applied to experimental data collected under conditions where all

relevant information and device characteristics are carefully
controlled, once the results are available in sufficient quantity to
train ML models. Generally, there is not a good correlation
between experimental and raw DFT calculated values25. DFT
calculations occasionally calculate physically unrealistic negative
values for PCE, and these uncorrected computed values PCE do
not correlate well with the experimental values. However, Lopez
et al.26 showed that calibration of PCE values in the HOPV15
dataset can significantly improve the correlation between experi-
mental and Scharber PCEs (Fig. 1).
As our goal was to generate models with good predictive

performance that are chemically interpretable, we employed
molecular signature descriptors. These represent chemical frag-
ments in the donor and acceptor molecules. The “Methods”
section describes the signature descriptors fully. We generated
models for PCE, Voc, Jsc, HOMO energy, LUMO energy, and the
HOMO–LUMO gap for the 344 compounds in the dataset. We
initially generated multiple linear regression models using an
expectation maximization algorithm with a Laplacian prior27 to
select a sparse subset of descriptors. These linear models generally
exhibited low test set predictivities, with R2 values ≤0.2.
Consequently, we modeled these properties using the well-
proven nonlinear BRANNLP (Bayesian Regularized Artificial Neural
Network with Laplacian prior)28,29 method.
Clearly, OPV devices comprise donor and acceptor materials,

and ML models must encode the properties of both. We employed
three modeling strategies (Supplementary Methods) with increas-
ing complexity in how the acceptor material was encoded. The
first and simplest strategy generated separate OPV properties
models for each type of acceptor (Supplementary Table 2). The
second strategy accounted for different acceptors using a simple
“1-hot” indicator variable. Here the different acceptors were
encoded in the model as 1 if present and 0 if absent (Appendix B,
Supplementary Information). This captures essential differences
between the acceptors, the most relevant being the acceptor
LUMO energies. Thirdly, we generated models for the six OPV
properties in which donor and acceptors were encoded using
signature descriptors (Supplementary Table 3). We aimed to make
the best predictions for materials and, if possible, to interpret the
models in terms of molecular functionality in the donor and
acceptor materials structures.
All three modeling strategies predicted PCE, Voc, Jsc, HOMO,

LUMO, and HOMO–LUMO gap with moderate to good efficacy.
The PCE models were always robust and predictive, with R2 > 0.64
for training set and >0.58 for test set prediction. Exceptions were
the HOMO energy and Voc prediction for the PC61BM acceptor
subset, the Jsc prediction for the TiO2 subset, and the Voc
prediction for the total dataset with acceptors encoded by
signature descriptors (Supplementary Tables 2 and 3). In the
latter case, it is likely that the Voc model is overfitted given that
that it employs 90 effective parameters in the neural network.

Fig. 1 Effects of calibration on HOMO–LUMO gap and PCE. The distributions for a HOMO–LUMO gap and b PCE are presented as a
histogram and a kernel density estimate from the difference between a baseline and a calibration. The band gap also shows the general
statistics of the distribution. Reprinted with permission from ref. 26. Copyright 2017, with permission from Elsevier.
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The best models were generated by the second strategy,
trained on 344 donor–acceptors pairs, with donors encoded by
signature descriptors and acceptors captured by 1-hot binary
vectors. We summarize the results of this study below, and the
results of modeling OPV properties using strategies 1 and 3 in the
Supplementary Material. For strategy 2 models, the dataset was
divided into a training set of 276 donor–acceptor pairs and a test
set of 68 donor–acceptor pairs by k-means clustering. The
BRANNLP nonlinear modeling and variable selection method
was used to generate the QSPR models. Table 1 summarizes the
performance of these models.
Figure 2 illustrates the performance of the BRANNLP models for

the six OPV properties. The majority of models predicting Voc, Jsc,
HOMO, LUMO, and HOMO–LUMO gap resulted in R2 for the
training and test sets greater than 0.5, which indicates that all
these models are sufficiently predictable to provide useful
estimates for these properties.

Model validation
It is essential to validate models to determine their predictive
power, robustness, and reliability. We assessed this in three ways:
predicting properties of a test set partitioned from the dataset and
never used in training; randomly scrambling the property values
and rebuilding the models (y-scrambling); de novo prediction of
OPV properties of materials from the literature not used in the
modeling study. Model predictivity was assessed by the R2 statistic
and the standard error of estimation or prediction for training and
test set30,31. The ability of the ML models to recapitulate the
properties of materials in the test set partitioned from the dataset
is summarized in Table 1.
In y-scrambling, we randomly distributed the property values

and generated ML models using this randomized data31. Low R2

values for the training set and test set compared to the initial
model shows that these models are not chance correlations nor
overfitted32. We conducted three y-scrambling tests for each
model as shown in Table 2. The R2 values were near zero for the
ML models trained on these data, showing that the primary
models, whose predictions are presented in Table 1, are robust,
reliable, and predictive.
We also used another external test set to assess model

predictivity32. After generating the OPV property models and
validating using the test sets partitioned from the data and by y-
scrambling, we returned to the literature to find additional donor
and acceptor materials whose properties could be predicted by
the ML models. It is preferable that the DFT method that calculate
the properties in external validation set is the same as that used
for the dataset used to train the models. Our external validation

dataset comprised eight donors and one acceptor (PC61BM)
whose OPV properties were reported in the literature33. The
HOMO, LUMO, and HOMO–LUMO gap energies were calculated
by the same B3LYP/def2-SVP functional and basis set employed in
the HOPV15 dataset. Table 3 shows the statistics for the line of
best fit (trend) between the reported and predicted frontier orbital
properties.
Table 4 shows the predicted absolute values for the HOMO,

LUMO, and HOMO–LUMO gap energies compared to the reported
values. The RMSE values for these predictions for the external test
set were 0.19, 0.43, and 0.41 eV respectively. These results show
that the models have useful abilities to predict at least the frontier
orbital energies of materials, provided that are within or close to
the domains of applicability of the models used to predict these
properties. This proof of concept test of the ability of this type of
descriptor and machine-learning method suggests that when
larger training sets are available, it will be possible to predict
important OPV properties of a larger range of materials.

Descriptor analysis
Machine-learning models, including artificial neural networks, can
be hard to interpret in terms of the chemistries needed to improve
the OPV properties34,35. Often the problem is due to the use of
arcane descriptors rather than the modeling algorithm per se. This
was the motivation to assess the ability of chemically interpretable
signature descriptors to model OPV properties.
To this end, we performed analysis on the most relevant

descriptors used to build the ML models based on strategy 2.
Supplementary Table 4 shows the molecular structures of the
most relevant descriptors selected by the BRANNLP method for
each of the six OPV properties. In general, for the six properties
modeled, there needs to be a balance between electron-
withdrawing and donating functional groups, hydrophilicity and
hydrophobicity, and conjugation length.
The OPV properties are not completely independent, some

are significantly correlated, as reflected in the ML models.
PCE is related to Voc, Jsc, fill factor (FF), and the input power (Pin)
by Eq. (1).

PCE ¼ 100 ´
Voc ´ FF ´ Jsc

Pin
: (1)

The device efficiency PCE in the Scharber and related models is
related to Voc (Eq. 1), which is a function of the HOMO–LUMO gap.
Frontier orbital energies are generally raised by electron-donating
substituents and lowered by electron-withdrawing substitu-
ents36,37. The gap is influenced by the presence of strong
electron-withdrawing substituents, such as nitro, trifluoromethyl,
sulfone, nitrile, and methylene malononitrile (one of the strongest
electron-withdrawing functional groups) moieties which lower the
energy of the HOMO and LUMO and by electron-donating
functional groups such as amine that raise the energy of the
frontier orbitals. Thus, HOMO–LUMO gap can be raised or lowered
by these substituents and is usually less influenced by these
substituent effects. The key molecular fragments identified by
sparse feature selection for the Voc, HOMO, LUMO, and gap
models are largely consistent with this theory and experimental
observations. HOMO energies were also modulated by F and S
substitution in the polyene chain. Hydrophilic groups such as
carboxylic acid and N–O–N also modulated the PCE, as did
fragments with extended conjugated double bonds such as
polyenes, especially those with heteroatoms (O, N) embedded
functionality. The most important functional groups for Jsc were
hydrophilic moieties such as carboxylic acid and amines, and
polyenes with sulfur substitution. Figure 3 shows an example of
effective fragments on PCE. Additional examples to illustrate the
rest of the relevant descriptors for each OPV properties that we
described above are shown in Supplementary Fig. 1.

Table 1. Performance of BRANNLP models in predicting OPV
properties.

Property Ndesc Neff Training set Test set

R2 SEE R2 SEP

PCE (%) 59 61 0.72 0.50 0.78 0.48

Voc (V) 26 28 0.65 0.16 0.58 0.16

Jsc (mA cm−²) 39 40 0.57 18 0.60 22

HOMO (eV) 49 55 0.87 0.004 0.49 0.007

LUMO (eV) 90 101 0.94 0.003 0.67 0.008

Gap (eV) 37 40 0.83 0.007 0.65 0.010

Neff is the number of effective parameters (weights) and Ndesc is the final
number of signature descriptors in the models. SEE is the standard error of
estimation and SEP is the standard error of prediction. The neural network
contained two hidden layer neurons.
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In summary, we have shown that chemically interpretable
chemical fragment-based descriptors can be used to train ML
models that predict six key properties of OPV devices. Our
approach leverages resource-intensive DFT calculations into larger
regions of materials space, allowing fast and accurate estimates of

these important photovoltaic properties for a relatively large
number of donor and acceptor materials that may not yet be
synthesized. Our study used a synergistic combination of efficient
and chemically interpretable descriptors, sparse feature selection,
and self-optimizing Bayesian regularized neural networks. The
most relevant descriptors for each model provide guidance for
materials chemists as to how to synthesize materials with
improved OPV properties, or to mine them from larger databases
of real or virtual materials. The ML models predicted PCE, Voc, Jsc,
HOMO, LUMO, and HOMO–LUMO gap using simple signature
descriptors that encode the molecular properties of the molecules
with good efficacy. Although some individual models had
relatively low prediction accuracies for the test set, a consensus
of all models for each property could identify a statistically robust
model for each of the six OPV properties. This work demonstrated
the importance of using nonlinear ML methods to map molecular
descriptors to important OPV properties, and the value of
signature descriptors in building robust, chemically interpretable,
and predictive models of these properties. When using these
models to screen large libraries of candidate OPV materials prior
to synthesis, care must be taken to ensure such libraries lie near
the domain of applicability of the models. Clearly, the quality of
predictions in this study is dependent of the size, diversity, and
accuracy of the underlying dataset. The ML algorithms we have
developed in this study can be applied to any dataset of OPV
structures and in future work we intend to extend the scope of
this work to include large and more accurate computed and
experimental datasets.

Fig. 2 Prediction of six OPV properties for the training set and test set using the BRANNLP method and signature descriptors for the
donors and 1-hot descriptors for the acceptors. a PCE, b Voc, c Jsc, d HOMO energy, e LUMO energy, f HOMO–LUMO gap. Training set
predictions are in black and test set predictions in orange. Data on the performance of these models are shown in Table 1.

Table 2. Statistics of three rounds of Y-scrambling for the models
presented in Table 1.

R2 training set R2 test set

PCE (%) 0.081 ± 0.004 0.020 ± 0.018

Voc (V) 0.055 ± 0.023 0.008 ± 0.004

Jsc (mA cm−²) 0.118 ± 0.038 0.043 ± 0.034

HOMO (eV) 0.118 ± 0.025 0.004 ± 0.002

LUMO (eV) 0.082 ± 0.016 0.013 ± 0.003

Gap (eV) 0.079 ± 0.027 0.042 ± 0.054

Table 3. Performance of the models trained using HOPV15 data in
predicting the HOMO, LUMO, and HOMO–LUMO gap values of the
external validation set (trend line fit).

Property R2 SEP (eV)

HOMO 0.66 0.05

LUMO 0.77 0.10

HOMO–LUMO gap 0.53 0.08
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METHODS
Dataset
Being data-driven methods, machine-learning methods are critically
dependent on the amount and quality of training data. As QSPR models
are only valid within their domain of applicability, a large, diverse dataset
with a wide range of properties can generate models with a better
generalization ability38. Clearly, all objects in the dataset must be measured
under same condition and be reproducible and accurate. The closer the
distribution of training data is to a normal distribution, the more accurate
the models generated from it are likely to be30. In this study, we employed
the Harvard Photovoltaic Dataset (HOPV15, https://www.nature.com/
articles/sdata201686#Tab1)22, one of the largest and most diverse datasets
available in literature for OPV properties, to train QSPR models. This dataset
was compiled from 350 small molecule and polymer electron donors and
acceptors, and includes experimental properties collected from literature
plus data from quantum chemical calculations and the Scharber model23.
The calculated properties include the values of open circuit potential (Voc),
short circuit density (Jsc), and PCE, which were derived from the model
given by Scharber, whereas HOMO energy, LUMO energy of donor, and the
HOMO–LUMO gap where calculating using ab initio (Hybrid DFT) methods.
Lopez et al.22 generated all possible conformers of each donor materials in
the HOPV15 dataset and used various DFT functionals combined with
def2-SVP, and the Scharber model to calculate the OPV properties. In this
dataset, four different DFT functionals (B3LYP, BP86, M06-2X, and PBE0)
were used in the quantum chemical calculations. The property values were
averaged over all conformers as there was negligible dependence of
properties on conformation. We compared the properties calculated by
these methods and found that B3LYP, BP86, and PBE0 generated very
similar values, while M06-2X dramatically overestimated the HOMO–LUMO
gap and consequently predicted PCEs of ~0. Our QSPR models used the
values of PCE, Voc, and Jsc calculated using the Scharber model and HOMO,
LUMO, and HOMO–LUMO gap using the B3LYP39,40 DFT functional
combined with the def2-SVP41 basis set. While it is well known that the
B3LYP functional overestimates electron delocalization, reasonable repro-
duction of experimental HOMO–LUMO gaps for conjugated systems is still
possible42. Moreover, the errors tend to be systematic, and trends based
on relative values can still be meaningful. We chose B3LYP in order to be
consistent with previous studies, but calibration to experimental results
has been shown to remove the dependence on the specific functional
chosen for DFT calculations25,26. The advantage of using calculated
properties over the experimental ones is that we are confident that these
properties are measured with the same method, while the experimental
data could have been measured under different conditions. The chemical
names of electron acceptors, their SMILES (simplified molecular input line
entry system) strings for donors, and values of OPV properties for each pair
of donor and acceptors are listed in Appendix A of the Supplementary
Information. We removed three donors due to the lack of information
about the acceptors used in the PV device (compounds number 18, 82, and
273 in Appendix A) and another three donors because of duplications
(compounds number 73, 204, and 334 in Appendix A). Table 5 presents the
range of reported properties. A k-means clustering algorithm was used to
divide the datasets for each property into a training set (80% of the
dataset) used to train the model and a test set (20% of the dataset) used to
evaluate the prediction accuracies of the model. This was done to ensure

the test set lay within the domain of applicability of the model, and to
allow others to reproduce the results we report here.

Molecular descriptors
An important aim of this project was to use molecular descriptors to
describe the donors and acceptors that are both efficient and chemically
interpretable. In models used for virtual screening of potentially
unsynthesized materials, the use of experimentally determined electronic
properties or those derived from computationally expensive DFT calcula-
tions as descriptors would be costly and time-consuming, as the
descriptors for each new molecule of interest would have to be
determined individually. On the other hand, signature descriptors can be
generated for thousands of candidate materials in a matter of minutes,
using freely available software. We used signature descriptors in this study
to generate interpretable and predictive models of OPV properties because
they are better able to guide synthesis towards improved materials than
the arcane descriptors commonly used. As well as generating good
models, they are also easier to visualize and provide better guidance as to
what functionality in the molecules contributes to, or degrades, properties.
Signature descriptors, shown to be effective in other areas of property
prediction, are based on the connection path of atoms in the molecule.
They provide a systematic calculation system that can describe the
“neighborhood” of atoms in a molecule. To understand the concept of
signatures, it is important to define the molecular graphs which represent
a molecule based on atoms and bonds. Atoms are defined by a set of atom
types, which could be provided either from the periodic table or a
molecular force field. In molecular graphs, every atom will be assigned an
atom type by a function, where atom type considers the possible covalent
bonds of each atom. The signature of an atom is a subgraph of molecular
graph in a shape of a tree that contains all atoms and all bonds within a
specified distance. That is, the signature descriptor of a given atom is the
connected path of atoms of a specified length, l. This effectively dissects
molecules into an ensemble of fragments, creating a fingerprint whose
elements indicate the number of each type of fragment exists in each
molecule that is characteristic of the material43–45. Figure 4 demonstrates
how signature descriptors can be computed from chemical structures. In
this project, we applied the MolSig program46 to compute the signature
descriptors. We used the Open Babel package47 to convert the SMILES
strings, which encode the 2D structure of molecules as a string of
characters, to Cartesian coordinates of atomic positions in.mol file format.
The signature descriptors were generated for path lengths 0–4. These
descriptors were then collected, sorted based on size, and any with less
than two examples were removed. A total pool of 695 acceptors and donor
materials descriptors was generated. We then used the variable selection
method to choose the most relevant molecular features for each OPV
properties. By mapping back the most relevant signature descriptors onto
prototype molecules in the dataset, we can provide important guidance for
material scientists to synthesize new materials or improve existing ones.
The most relevant signature descriptors for each property are provided in
Supplementary Table 4.

Feature selection
The signature descriptor method can generate fingerprints containing a
very large number of fragment elements. While large pools of descriptors

Table 4. Reported, predicted, and error values of HOMO, LUMO, and HOMO–LUMO gap energies of the external test set.

Donor HOMO LUMO Gap

Reported Predicted Error Reported Predicted Error Reported Predicted Error

1a −5.75 −6.05 0.30 −3.21 −2.68 −0.53 2.54 2.85 −0.31

1b −6.07 −6.15 0.08 −3.84 −3.57 −0.27 2.23 2.90 −0.67

2a −5.79 −6.14 0.35 −3.29 −2.80 −0.48 2.50 2.80 −0.30

2b −6.10 −6.24 0.14 −3.89 −3.67 −0.22 2.21 2.85 −0.64

3a −6.02 −6.13 0.11 −2.78 −2.33 −0.45 3.24 2.79 0.45

3b −6.25 −6.23 −0.02 −3.39 −3.45 0.06 2.86 2.85 0.01

4a −6.19 −6.23 0.04 −3.15 −2.79 −0.36 3.04 2.77 0.27

4b −6.44 −6.23 −0.21 −3.74 −3.05 −0.69 2.70 2.81 −0.11
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for materials are very useful, great care must be taken to choose a subset
of the most relevant descriptors to avoid overfitting models. Overfitted
models predict the training set very well but have little predictive power
for new data. To aid interpreting models and to avoid overfitting them, it is
essential to reduce the dimensionality of the descriptors. Careless selection
of subsets of descriptors from a larger pool can also lead to chance
correlations48. We employed very sparse feature selection methods based
on L1 regression and Bayesian regularized neural networks with sparse
(Laplacian) prior to achieve very efficient selection of the most relevant
descriptors for each OPV property modeled. These methods have been
shown in many studies to yield parsimonious subsets of description in a
context-dependent way that provide models derived from them with
excellent predictive power.

Nonlinear property modeling
Neural networks are universal approximators49 that can model any linear
or nonlinear and continuous relationships given sufficient training data.
However, they have some drawbacks such as overfitting (too many
adjustable parameters relative to the number of training data) and
overtraining (memorizing training data better but generalizing worse) that
generate models with low predictability. ANN (Artificial Neural Network)
models are also said to be difficult to interpret, although this is as much to
do with interpretable descriptors as the ML method used50. Burden and
Winkler51 showed that Bayesian regularization of standard backpropaga-
tion neural networks can overcome many of the disadvantages of ANN
used to model molecules or materials. The BRANNGP method50,52

(Bayesian Regularized Artificial Neural Network with Gaussian Prior) was
shown to generate robust models of diverse ranges of molecules and

properties. BRANNGP can effectively prune less relevant weights from
networks (making the models effectively invariant to the number of
hidden layer nodes), providing instead an estimation of number of
effective parameters28. When the Gaussian prior is replaced by a sparsity-
inducing Laplacian prior Bayesian the resulting neural network (BRANNLP)
can also prune less relevant descriptors and well as less relevant weights.
Thus, a Bayesian regularized neural network with a Laplacian prior is a
feedforward, fully connected neural network that uses Bayesian regular-
ization to optimize the sparsity of models, that is, to find the right balance
between model complexity (variance) and simplicity (bias)28. This sparse
feature selection method is based on L1 regression, similar to the LASSO
method53,54. This neural network method has been shown to generate
robust and optimally sparse models of diverse materials properties55–58.
Here we have used BRANNLP implemented in the CSIRO-Biomodeller
package59–61 to predict the properties photovoltaic and electronic
properties of compounds. These networks generate predictions of the
training and test set properties that are relatively insensitive to the number
of nodes in the hidden layer, with the effective parameters in the models
being relatively constant as the number of hidden layer nodes increase
above a minimum. These networks rarely need more than 2–3 nodes in the
hidden layer to model most materials properties. Two hidden layer nodes
were used in this study. Our shallow neural networks consist of input
(descriptors), hidden (computation), and output layers and are fully
connected9. The input and output nodes use linear transfer functions, and
the hidden layer node sigmoidal functions. The data are mean centered
and normalized prior to modeling. A Levenberg–Marquardt algorithm is
used for backpropagation. In contrast, deep learning methods use a very
large number of hidden layer nodes and non-differentiable transfer
functions (e.g. ReLU) and weight dropout to avoid overfitting62,63. The
universal approximation theorem states that shallow neural networks (like
the BRANNLP network here) generate models of similar predictive
accuracies to DNN given the same training data. Comparative modeling
of large dataset of drugs by shallow and DNN algorithms showed that the
predictability of models is indeed similar9.
To evaluate the performance of the models, the R2 statistic and the

standard error of estimation (SEE) and standard error of prediction (SEP) for
training set and test set, respectively, were calculated. R2 is the square
correlation coefficient between the predicted and measured values of data
points in training set and test set. SEE and SEP represent the root-mean-
square error between the predicted and measured values of data points,
adjusted for degrees of freedom, in the training and test set,
respectively27,28. SEE and SEP are more robust measures of model quality
than R2 values19.

Fig. 3 Examples of most relevant descriptors for PCE. a Examples of most relevant descriptors for PCE. b An example donor molecule with
the descriptors circled. Additional examples of effective descriptors for PCE and other OPV properties are provided in Supplementary Fig. 1.

Table 5. The ranges of the OPV properties calculated at the B3LYP/
def2-SVP level of theory.

Minimum Maximum Range

PCE (%) −0.285 5.722 6.007

Voc (V) −0.119 2.033 2.152

Jsc (mA cm−²) 0 186.4 186.4

HOMO (eV) −0.224 −0.165 0.059

LUMO (eV) −0.149 −0.013 0.136

Gap (eV) 0.056 0.215 0.281
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DATA AVAILABILITY
Additional data not found in the text and Supplementary Information is available
from the corresponding authors upon reasonable request.

CODE AVAILABILITY
Bayesian regularized neural network and LASSO53,54 (a similar sparse feature
selection method to the one we used) have become available in R, MATLAB, and
other statistical packages. For example, in 2016, Okut published a book chapter
explaining the Bayesian regularized neural networks with a MATLAB code for
application of this algorithm64. Also, recently Rodriguez and Gianola released the
latest version of BRNN package, based on R program and CRAN repository. In this
package Bayesian regularization for feedforward neural network is implemented to
build machine-learning models65. Our in-house ML package that implements the
BRANNLP algorithm is useful for generating sparse models that generalize well and
are hard to overtrain or overfit. To ensure accessibility, we repeated the PCE model
prediction study using a public-domain conventional ANN. We used TensorFlow
(Google) to build this machine-learning algorithm. We reproduced the PCE model
using a two-layer perceptron feedforward artificial neural network (code and the
input files are available on GitHub: https://github.com/Nas796/Machine-learning-for-
photovoltaic-material-property-prediction). This ANN model predicted the properties
of the training and test set data with R2 values of 0.83 and 0.72, respectively. The
statistics of the same model generated by the BRANNLP methods had R2 of 0.72 and
0.78 for prediction of the training and test set properties respectively. The results are
quite similar for both modeling methods, again illustrating that the choice of
descriptors is more important than the type of modeling algorithm.
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