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Abstract

This paper presents free vibration of composite beams under axial load using a four-unknown shear and

normal deformation theory. The constitutive equation is reduced from the 3D stress-strain relations

of orthotropic lamina. The governing differential equations of motion are derived using the Hamilton’s

principle. A two-node C1 beam element is developed by using a mixed interpolation with linear and

Hermite-cubic polynomials for unknown variables. Numerical results are computed and compared with

those available in the literature and commercial finite element software (ANSYS and ABAQUS). The

comparison study illustrates the effects of normal strain, lay-ups and Poisson’s ratio on the natural

frequencies and load-frequency curves of composite beams.
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1. Introduction

Due to the attractive properties of strength, stiffness, and lightness, composite structures become

popular in several applications of aerospace, automotive, civil engineering, etc. In particular, com-

posite beams are widely used and thus many beam theories have been proposed to predict their free

vibration and dynamic response. Finite element models originally developed for solid mechanics and

mainly for isotropic beams have been extended to laminated composite ones by many authors and

only some of them are referenced here ([1–6]). More details can be found in recent review by Sayyad

and Ghugal [7]. These models provide reasonably accurate results for the structural response of thin

to moderately thick composite beams. Because of the low shear moduli of composite materials, the

effect of shear deformation is expected to be much more pronounced in composite beams than in the
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homogeneous ones. In order to obtain more accurate results for the free vibration analysis of composite

beams, many investigators have used either the first-order [8, 9] or higher-order beam theories ([10–

19]). However, these mentioned studies do not take into account the effect of normal strain which can

be significant for thick composite beams. This effect can be included when both variations of in-plane

and out-of-plane displacements are assumed to be higher-order through the beam depth. These beam

models are normally called quasi-3D theory. Carrera et al. ([20–22]) proposed a novel unified approach

called Carrera Unified Formulation, in which the effects of shear and normal deformation were auto-

matically included to investigate free vibration of composite beams. These effects were also taken into

account by Matsunaga [23] to analyse vibration and buckling responses of cross-ply simply-supported

beams using Navier solution. Vidal and Polit [24] used sinus finite elements with normal stress for

vibration of multilayered beams. Recently, Mantari and Canales [25, 26] derived the Ritz solution for

vibration and buckling analysis of composite beams based on a generalized quasi-3D theory. It should

be noted that above studies [23–26] do not consider the Poisson effect, which needs to be included to

predict accurately behaviour of composite beams with general lay-ups [27, 28]. Marur and Kant [29]

formulated a higher order beam theory, which included shear and normal strain and derived isopara-

metric 1D finite element for vibration of angle-ply beams. Li et al. [30] investigated the influences

of shear, normal strain and Poisson effect on vibration of simply-supported composite beams using

Navier solution. Apparently, this complicated problem for composite beams with arbitrary lay-ups for

various boundary conditions is under-researched.

This paper, which is extended from previous research [31, 32], presents a free vibration of com-

posite beams under axial load. It is based on a quasi-3D theory, in which in-plane and out-of-plane

displacements are assumed to be third-order and second-order polynomial through the beam depth.

Thus, it has parabolic distribution of the shear strain and includes the normal strain effect. The

constitutive equation is reduced from the 3D stress-strain relationship of an orthotropic lamina. The

governing differential equations of motion are derived using the Hamilton’s principle. A two-node

C1 beam element is develop to solve the problems. Several numerical examples are carried out and

compared with those available in the literature and commercial finite element software (ANSYS and

ABAQUS). The effects of normal strain, lay-ups, Poisson’s ratio and span-to-height ratios on the

natural frequencies and load-frequency curves of composite beams are investigated.
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2. Theoretical Formulation

2.1. Kinetic and constitutive equations

A composite beam with rectangular cross-section b × h and length L is shown in Fig. 1. It is

composed of orthotropic multilayers with fibre angle with respect to the x-axis. The in-plane and out-

plane displacements are assumed to be third-order and second-order polynomial through the beam

depth [31–33]:

U(x, z, t) = u(x, t)− z ∂wb(x, t)

∂x
− 4z3

3h2
∂ws(x, t)

∂x
= u(x, t)− zw′b(x, t)− f(z)w′s(x, t) (1a)

W (x, z, t) = wb(x, t) + ws(x, t) + (1− 4z2

h2
)φz(x, t) = wb(x, t) + ws(x, t) + g(z)φz(x, t) (1b)

where u,wb, ws and φz are four unknown displacements of the mid-plane of the beam.

The axial, normal and shear strains are given by:

εx =
∂U

∂x
= u′ − zw′′b − fw′′s (2a)

εz =
∂W

∂z
= g′φz (2b)

γxz =
∂W

∂x
+
∂U

∂z
= g(w′s + φ′z) (2c)

The stress-strain relationship of a kth orthotropic lamina are given by:
σx

σz

σxz


k

=


Q
∗
11 Q

∗
13 0

Q
∗
13 Q

∗
33 0

0 0 Q
∗
55


k

εx

εz

γxz

 (3)

where

Q
∗
11 = Q11 +

Q
2
16Q22 − 2Q12Q16Q26 +Q

2
12Q66

Q
2
26 −Q22Q66

(4a)

Q
∗
13 = Q13 +

Q16Q22Q36 +Q12Q23Q66 −Q16Q23Q26 −Q12Q26Q36

Q
2
26 −Q22Q66

(4b)

Q
∗
33 = Q33 +

Q
2
36Q22 − 2Q23Q26Q36 +Q

2
23Q66

Q
2
26 −Q22Q66

(4c)

Q
∗
55 = Q55 −

Q
2
45

Q44

(4d)

where Qij are the transformed reduced stiffness constants [34]. It should be noted that if the

Poisson effect is neglected, Q
∗
ij is replaced by Qij in stress-strain relationship.
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2.2. Variational formulation

The variation of the strain energy δU of the system:

δU =

∫ l

0

∫ b

0

[∫ h/2

−h/2
(σxδεx + σxzδγxz + σzg

′δφz)dz

]
dydx

=

∫ l

0

[
(Au′ −Bw′′b −Bsw

′′
s +Xφz)δu

′ − (Bu′ −Dw′′b −Dsw
′′
s + Y φz)δw

′′
b

− (Bsu
′ −Dsw

′′
b −Hw′′s + Ysφz)δw

′′
s +As(w

′
s + φ′z)(δw

′
s + δφ′z)

+ (Xu′ − Y w′′b − Ysw′′s + Zφz)δφz
]
)dx (5)

where

(A,B,Bs, D,Ds, H) =

∫ h/2

−h/2
Q
∗
11(1, z, f, z

2, fz, f2, g′2)bdz (6a)

(X,Y, Ys) =

∫ h/2

−h/2
Q
∗
13g
′(1, z, f)bdz (6b)

As =

∫ h/2

−h/2
Q
∗
55g

2bdz (6c)

Z =

∫ h/2

−h/2
Q
∗
33g
′2bdz (6d)

The variation of the work done δV by the axial load P0:

δV = −
∫ l

0
P0

[
δw′b(w

′
b + w′s) + δw′s(w

′
b + w′s)

]
dx (7)

The variation of the kinetic energy δK of the system:

δK =

∫ l

0

∫ b

0

[∫ h/2

−h/2
ρ(U̇δU̇ + Ẇ δẆ )dz

]
dydx

=

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇb[m0(ẇb + ẇs) +mgφ̇z] + δẇb

′(−m1u̇+m2ẇb
′ +mfzẇs

′)

+ δẇs[m0(ẇb + ẇs) +mgφ̇z] + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′)

+ δφ̇z[mg(ẇb + ẇs) +mg2 φ̇z]
]
dx (8)

where

(m0,m1,m2) =

∫ h/2

−h/2
ρ(1, z, z2)bdz (9a)

(mf ,mfz,mf2) =

∫ h/2

−h/2
ρ(f, fz, f2)bdz (9b)

(mg,mg2) =

∫ h/2

−h/2
ρ(g, g2)bdz (9c)
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The weak form is derived by using Hamilton’s principle:

0 =

∫ t2

t1

(δK − δU − δV)dt

0 =

∫ t2

t1

∫ l

0

[
δu̇(m0u̇−m1ẇb

′ −mf ẇs
′) + δẇb[m0(ẇb + ẇs) +mgφ̇z] + δẇb

′(−m1u̇+m2ẇb
′ +mfzẇs

′)

+ δẇs[m0(ẇb + ẇs) +mgφ̇z] + δẇs
′(−mf u̇+mfzẇb

′ +mf2ẇs
′) + δφ̇z[mg(ẇb + ẇs) +mg2 φ̇z]

+ P0

[
δw′b(w

′
b + w′s) + δw′s(w

′
b + w′s)

]
−Nxδu

′ +M b
xδw

′′
b +M s

xδw
′′
s −Qxzδw

′
s −Rzδφz

]
dxdt (10)

3. Solution procedure

A two-node C1 beam element with six degree-of-freedom per node is developed. A mixed interpo-

lation, which is linear polynomial Ψj for u and φz and Hermite-cubic polynomial ψj for wb and ws is

used. The displacements within an element are expressed as:

u =

2∑
j=1

ujΨj (11a)

wb =
4∑

j=1

wbjψj (11b)

ws =

4∑
j=1

wsjψj (11c)

φz =
2∑

j=1

φzjΨj (11d)

By substituting the above displacements into the weak form, Eq. (10), the finite element model

can be obtained:

([K]− P0[G]− ω2[M ]){∆} = {0} (12)

where

K11
ij =

∫ l

0
AΨ′iΨ

′
jdx; K12

ij = −
∫ l

0
BΨ′iψ

′′
j dx; (13a)

K13
ij = −

∫ l

0
BsΨ

′
iψ
′′
j dx; K14

ij =

∫ l

0
XΨ′iΨjdx (13b)

K22
ij =

∫ l

0
Dψ′′i ψ

′′
j dx; K23

ij =

∫ l

0
Dsψ

′′
i ψ
′′
j dx; K24

ij = −
∫ l

0
Y ψ′′i Ψjdx (13c)

K33
ij =

∫ l

0
(Hψ′′i ψ

′′
j +Asψ

′
iψ
′
j)dx; K34

ij =

∫ l

0
(−Ysψ′′i Ψj +Asψ

′
iΨ
′
j)dx (13d)

K44
ij =

∫ l

0
(ZΨiΨj +AsΨ

′
iΨ
′
j)dx (13e)

5



G22
ij =

∫ l

0
ψ′iψ

′
jdx; G23

ij =

∫ l

0
ψ′iψ

′
jdx; G33

ij =

∫ l

0
ψ′iψ

′
jdx (13f)

M11
ij =

∫ l

0
m0ΨiΨjdx; M12

ij = −
∫ l

0
m1Ψiψ

′
jdx; M13

ij = −
∫ l

0
mfΨiψ

′
jdx (13g)

M22
ij =

∫ l

0
(m0ψiψj +m2ψ

′
iψ
′
j)dx; M23

ij =

∫ l

0
(m0ψiψj +mfzψ

′
iψ
′
j)dx; (13h)

M24
ij =

∫ l

0
mgψiΨjdx; M33

ij =

∫ l

0
(m0ψiψj +mf2ψ′iψ

′
j)dx; M34

ij =

∫ l

0
mgψiΨjdx (13i)

M44
ij =

∫ l

0
mg2ΨiΨjdx (13j)

and {∆} = {u wb ws φz}T is the eigenvector of nodal displacements corresponding to an eigenvalue.

4. Numerical Examples

Several numerical examples are carried out in this section to verify the accuracy of present theory.

The effects of normal strain, lay-ups, Poisson’s ratio and span-to-height ratios (L/h) on the natural

frequencies and load-frequency curves of composite beams are investigated. Various boundary con-

ditions including clamped-free (C-F), simply-supported (S-S) and clamped-clamped (C-C) beams are

considered. Material properties of these examples are given in Table 1. For convenience, the following

non-dimensional parameters are used:

P cr =



PcrL
2

E2bh3
for Material 2, 3 and 6

PcrL
2

E1bh3
for Material 5

(14a)

ω =



ωL2

h

√
ρ

E2
for Material 2, 3 and 6

ωL2

h

√
ρ

E1
for Material 5

(14b)

and the relative error (%):

Error (%) =
Rwith −Rwithout

Rwith
× 100% (15)

where Rwith and Rwithout are the natural frequency obtained with and without the Poisson effect.

Example 1: Symmetric cross-ply [90◦/0◦/0◦/90◦] beams (Material 1, L/h = 2.272 and 22.72) are

considered. The first four natural frequencies and buckling loads are tabulated in Tables 2-6 along with

numerical results of various higher-order beam theories (Exponential Shear Deformation Beam Theory

(ESDBT) [14], Hyperbolic Shear Deformation Beam Theory (HSDBT) [18]) and quasi-3D theory [24]
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(refined sinus model denoted SinRef-7p) as well as two commercial finite element softwares (ABAQUS

[13] and ANSYS [24]). The differences between the results calculated by the present model and

previous studies are very small. Obviously, as the axial load increases, the frequencies decrease. This

happens more quickly when axial load reaches the critical buckling load (Fig. 2). The buckling occurs

around P = 2.92×109N, 6.48×109N and 8.45×109N for C-F, S-S and C-C beams, which correspond

to zero natural frequency.

Example 2: Symmetric cross-ply [0◦/90◦/0◦] and unsymmetric cross-ply [0◦/90◦] beams (Mate-

rial 2 and 3, L/h = 5 and 20) for various boundary conditions are analysed. The fundamental natural

frequencies and critical buckling loads based on high-order beam theory (HBT) from previous research

[35] are also given. The results are compared with Parabolic Shear Deformation Beam Theory (PS-

DBT) ([15, 17]) and quasi-3D theories [24, 36] in Table 7. A good agreement between the present

results and those of previous studies can be seen. Due to normal strain effect, for [0◦/90◦/0◦] lay-up,

the present model generally gives slightly lower results than PSDBT. The effect of axial load on the

natural frequencies is noticeable (Table 8). The frequencies decrease when the axial load changes from

tension to compression.

Example 3: Angle-ply [θ/− θ] and unsymmetric [0◦/θ] beams for various L/h ratios are chosen

(Materials 4 and 5). The natural frequencies of these beams are compared with those based on a quasi-

3D theory [30] and elasticity equations using the state-space-based differential quadrature (SSDQM)

[28] in Tables 9 and 10. It should be noted that both studies [28, 30] considered Poisson effect. Again,

it can be seen that the present results agree well with previous studies especially with quasi-3D theory

[30] and ANSYS. The natural frequencies and buckling loads decrease with the increase of fibre angle.

Comparing the present results with and without the Poisson effect, there is negligible difference when

θ = 0◦ and 90◦. However, as fibre angle changes, a significant difference is observed and the former

results are smaller than latter ones. The relative errors, which are defined in Eq. (15), for two lay-

ups, are plotted in Fig. 3. For L/h = 15, Poisson effect is stronger for angle-ply than unsymmetric

lay-up, which confirm the importance of this effect for analysing composite beams. The maximum

relative error is about 93.80% corresponding to θ = 35◦. As expected, all natural frequencies decrease

when the axial load changes from tension to compression, except some third modes of angle-ply lay-

up corresponding to axial mode (Tables 11 and 12). The first three mode shapes of angle-ply and

unsymmetric beams with θ = 45◦ are presented in Fig. 4. It can be seen that the normal strain effect

is more pronounced for unsymmetric than angle-ply lay-up. All three modes of unsymmetric lay-up

are fourfold coupled mode (axial, bending, shear and stretching components).

Example 4: The validity and accuracy of the present theory is further investigated for sandwich
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beams with soft core made of three layers [0◦/Core/0◦]. The thickness of each face is 0.1h and of

core is 0.8h. The results are compared with those using higher order zigzag theory (HZZT) [37, 38]

in Table 13. It is observed that the solutions of the two approaches are in excellent agreement with

small discrepancy even for L/h=5. The crtical buckling loads are also given in Table 14. They have

not been reported before and could be served as benchmark examples for future references.

5. Conclusions

A two-noded C1 beam element is developed for free vibration of axially loaded composite beams

using a quasi-3D theory. Composite beams with various configurations including boundary conditions,

span-to-height ratio and lay-ups are considered. Effects of shear, normal deformation and Poisson’s

ratio as well as anisotropy coupling should be simultaneously considered for the analysis of composite

beams. Poisson effect is more pronounced for angle-ply than unsymmetric lay-up. The proposed beam

model is found to be simply and efficient for vibration and buckling analysis of composite beams.

6. Acknowledgements

The first author gratefully acknowledges research support fund from Northumbria University. The

first author also would like to thank Professor Ranjan Banerjee at City, University of London for

discussions the results.

7. References

[1] T. Kant, B. S. Manjunath, Refined theories for composite and sandwich beams with C0 finite

elements, Computers and Structures 33 (3) (1989) 755 – 764. doi:10.1016/0045-7949(89)90249-6.

[2] M. V. V. S. Murthy, D. R. Mahapatra, K. Badarinarayana, S. Gopalakrishnan, A refined higher

order finite element for asymmetric composite beams, Composite Structures 67 (1) (2005) 27 –

35. doi:DOI: 10.1016/j.compstruct.2004.01.005.

[3] P. Vidal, O. Polit, A family of sinus finite elements for the analysis of rectangular laminated

beams, Composite Structures 84 (1) (2008) 56 – 72. doi:10.1016/j.compstruct.2007.06.009.

[4] R. M. Aguiar, F. Moleiro, C. M. M. Soares, Assessment of mixed and displacement-based models

for static analysis of composite beams of different cross-sections, Composite Structures 94 (2)

(2012) 601 – 616. doi:10.1016/j.compstruct.2011.08.028.

8



[5] T. P. Vo, H.-T. Thai, Free vibration of axially loaded rectangular composite beams us-

ing refined shear deformation theory, Composite Structures 94 (11) (2012) 3379–3387.

doi:10.1016/j.compstruct.2012.05.012.

[6] V. Kahya, Buckling analysis of laminated composite and sandwich beams by the

finite element method, Composites Part B: Engineering 91 (2016) 126 – 134.

doi:http://dx.doi.org/10.1016/j.compositesb.2016.01.031.

[7] A. S. Sayyad, Y. M. Ghugal, Bending, buckling and free vibration of laminated composite and

sandwich beams: A critical review of literature, Composite Structures 171 (2017) 486 – 504.

doi:http://doi.org/10.1016/j.compstruct.2017.03.053.

[8] J. R. Banerjee, Free vibration of axially loaded composite Timoshenko beams using the dy-

namic stiffness matrix method, Computers and Structures 69 (2) (1998) 197 – 208. doi:DOI:

10.1016/S0045-7949(98)00114-X.

[9] J. R. Banerjee, H. Su, C. Jayatunga, A dynamic stiffness element for free vibration analysis of

composite beams and its application to aircraft wings, Computers and Structures 86 (6) (2008)

573 – 579, civil-Comp Special Issue. doi:DOI: 10.1016/j.compstruc.2007.04.027.

[10] A. A. Khdeir, J. N. Reddy, Free vibration of cross-ply laminated beams with arbitrary

boundary conditions, International Journal of Engineering Science 32 (12) (1994) 1971–1980.

doi:http://dx.doi.org/10.1016/0020-7225(94)90093-0.

[11] A. A. Khdeir, J. N. Reddy, Buckling of cross-ply laminated beams with arbitrary bound-

ary conditions, Composite Structures 37 (1) (1997) 1–3. doi:http://dx.doi.org/10.1016/S0263-

8223(97)00048-2.

[12] T. Kant, S. R. Marur, G. S. Rao, Analytical solution to the dynamic analysis of laminated beams

using higher order refined theory, Composite Structures 40 (1) (1997) 1 – 9. doi:10.1016/S0263-

8223(97)00133-5.

[13] M. Karama, B. A. Harb, S. Mistou, S. Caperaa, Bending, buckling and free vibration of laminated

composite with a transverse shear stress continuity model, Composites Part B: Engineering 29 (3)

(1998) 223 – 234. doi:DOI: 10.1016/S1359-8368(97)00024-3.

[14] M. Karama, K. S. Afaq, S. Mistou, Mechanical behaviour of laminated composite beam by the

new multi-layered laminated composite structures model with transverse shear stress continuity,

9



International Journal of Solids and Structures 40 (6) (2003) 1525 – 1546. doi:10.1016/S0020-

7683(02)00647-9.

[15] M. Aydogdu, Vibration analysis of cross-ply laminated beams with general boundary condi-

tions by Ritz method, International Journal of Mechanical Sciences 47 (11) (2005) 1740 – 1755.

doi:10.1016/j.ijmecsci.2005.06.010.

[16] M. Aydogdu, Free vibration analysis of angle-ply laminated beams with general bound-

ary conditions, Journal of Reinforced Plastics and Composites 25 (15) (2006) 1571–1583.

doi:10.1177/0731684406066752.

[17] M. Aydogdu, Buckling analysis of cross-ply laminated beams with general boundary con-

ditions by Ritz method, Composites Science and Technology 66 (10) (2006) 1248 – 1255.

doi:10.1016/j.compscitech.2005.10.029.

[18] J. Li, C. Shi, X. Kong, X. Li, W. Wu, Free vibration of axially loaded composite beams with

general boundary conditions using hyperbolic shear deformation theory, Composite Structures

97 (0) (2013) 1 – 14. doi:http://dx.doi.org/10.1016/j.compstruct.2012.10.014.

[19] D. Shao, S. Hu, Q. Wang, F. Pang, Free vibration of refined higher-order shear deformation

composite laminated beams with general boundary conditions, Composites Part B: Engineering

108 (2017) 75 – 90. doi:http://dx.doi.org/10.1016/j.compositesb.2016.09.093.

[20] E. Carrera, M. Filippi, E. Zappino, Free vibration analysis of laminated beam by poly-

nomial, trigonometric, exponential and zig-zag theories, Journal of Composite Materials

48 (19) (2014) 2299–2316. arXiv:http://jcm.sagepub.com/content/48/19/2299.full.pdf+html,

doi:10.1177/0021998313497775.

[21] A. Pagani, E. Carrera, M. Boscolo, J. R. Banerjee, Refined dynamic stiffness el-

ements applied to free vibration analysis of generally laminated composite beams

with arbitrary boundary conditions, Composite Structures 110 (0) (2014) 305 – 316.

doi:http://dx.doi.org/10.1016/j.compstruct.2013.12.010.

[22] E. Carrera, A. Pagani, J. R. Banerjee, Linearized buckling analysis of isotropic

and composite beam-columns by Carrera Unified Formulation and dynamic stiffness

method, Mechanics of Advanced Materials and Structures 23 (9) (2016) 1092–1103.

arXiv:http://dx.doi.org/10.1080/15376494.2015.1121524, doi:10.1080/15376494.2015.1121524.

10



[23] H. Matsunaga, Vibration and buckling of multilayered composite beams according to higher

order deformation theories, Journal of Sound and Vibration 246 (1) (2001) 47 – 62.

doi:10.1006/jsvi.2000.3627.

[24] P. Vidal, O. Polit, Vibration of multilayered beams using sinus finite elements with transverse nor-

mal stress, Composite Structures 92 (6) (2010) 1524 – 1534. doi:10.1016/j.compstruct.2009.10.009.

[25] J. L. Mantari, F. G. Canales, Free vibration and buckling of laminated beams via hybrid ritz

solution for various penalized boundary conditions, Composite Structures 152 (2016) 306 – 315.

doi:http://dx.doi.org/10.1016/j.compstruct.2016.05.037.

[26] F. G. Canales, J. L. Mantari, Buckling and free vibration of laminated beams with arbitrary

boundary conditions using a refined HSDT, Composites Part B: Engineering 100 (2016) 136 –

145. doi:http://dx.doi.org/10.1016/j.compositesb.2016.06.024.

[27] A. Bhimaraddi, K. Chandrashekhara, Some observations on the modeling of laminated

composite beams with general lay-ups, Composite Structures 19 (4) (1991) 371 – 380.

doi:http://dx.doi.org/10.1016/0263-8223(91)90082-A.

[28] W. Q. Chen, C. F. Lv, Z. G. Bian, Free vibration analysis of generally laminated beams

via state-space-based differential quadrature, Composite Structures 63 (3-4) (2004) 417 – 425.

doi:10.1016/S0263-8223(03)00190-9.

[29] S. R. Marur, T. Kant, On the angle ply higher order beam vibrations, Computational Mechanics

40 (2007) 25–33, 10.1007/s00466-006-0079-0.

[30] J. Li, Q. Huo, X. Li, X. Kong, W. Wu, Vibration analyses of laminated composite beams using

refined higher-order shear deformation theory, International Journal of Mechanics and Materials

in Design (2013) 1–10doi:10.1007/s10999-013-9229-7.

[31] T. P. Vo, J. R. Banerjee, Free vibration of axially loaded composite beams using a quasi-3d theory,

Proceedings of the Fifteenth International Conference on Civil, Structural and Environmental

Engineering Computing (2015) 108doi:http://dx.doi.org/10.4203/ccp.108.108.

[32] T. P. Vo, H.-T. Thai, T.-K. Nguyen, F. Inam, J. Lee, Static behaviour of functionally graded

sandwich beams using a quasi-3d theory, Composites Part B: Engineering 68 (0) (2015) 59 – 74.

doi:http://dx.doi.org/10.1016/j.compositesb.2014.08.030.

11



[33] J. N. Reddy, A simple higher-order theory for laminated composite plates, Journal of Applied

Mechanics 51 (4) (1984) 745–752. doi:10.1115/1.3167719.

[34] R. M. Jones, Mechanics of Composite Materials, Taylor & Francis, 1999.

[35] T. P. Vo, H.-T. Thai, Vibration and buckling of composite beams using refined shear

deformation theory, International Journal of Mechanical Sciences 62 (1) (2012) 6776.

doi:10.1016/j.ijmecsci.2012.06.001.

[36] J. L. Mantari, F. G. Canales, Finite element formulation of laminated beams with capabil-

ity to model the thickness expansion, Composites Part B: Engineering 101 (2016) 107 – 115.

doi:http://dx.doi.org/10.1016/j.compositesb.2016.06.080.

[37] A. A. Khdeir, O. J. Aldraihem, Free vibration of sandwich beams with soft core, Composite

Structures 154 (2016) 179 – 189. doi:http://dx.doi.org/10.1016/j.compstruct.2016.07.045.

[38] S. Kapuria, P. C. Dumir, N. K. Jain, Assessment of zigzag theory for static loading, buckling,

free and forced response of composite and sandwich beams, Composite Structures 64 (3-4) (2004)

317 – 327. doi:10.1016/j.compstruct.2003.08.013.

12



CAPTIONS OF TABLES

Table 1: Material properties of composite and sandwich beams.

Table 2: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] simply-

supported beam (Material 1, L/h=2.272).

Table 3: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] simply-

supported beam (Material 1, L/h=22.72).

Table 4: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] can-

tilever beam (Material 1, L/h=22.72).

Table 5: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦]

clamped-clamped beam (Material 1, L/h=22.72).

Table 6 The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] clamped-

simply supported beam (Material 1, L/h=22.72).

Table 7: The non-dimensional fundamental frequencies and critical buckling loads of [0◦/90◦/0◦]

and [0◦/90◦] composite beams (Material 2 and 3 with L/h=5 and 20).

Table 8: The non-dimensional natural frequencies of [0◦/90◦/0◦] and [0◦/90◦] composite beams

under axial load (Material 2, L/h=5 and 20).

Table 9: The fundamental frequencies of angle-ply [θ/ − θ] simply-supported beams with lay-up

(Material 4, L/h=5 and 15).

Table 10: The non-dimensional fundamental frequencies of an angle-ply [θ/− θ] and unsymmetric

[0/θ] clamped-clamped beams (Material 5, L/h=5 and 15).

Table 11: The non-dimensional natural frequencies of an angle-ply [θ/−θ] clamped-clamped beam

(Material 5, L/h=5).

Table 12: The non-dimensional natural frequencies of an unsymmetric [0◦/θ] clamped-clamped

beam (Material 5, L/h=5).

Table 13: The non-dimensional natural frequencies of sandwich beams (0.1h/0.8h/0.1h, Material

6, L/h=5, 10 and 20).

Table 14: The critical buckling loads of sandwich beams (0.1h/0.8h/0.1h, Material 6, L/h=5, 10,

20 and 50).

13



Table 1: Material properties of composite and sandwich beams.

Materials MAT 1 [14] MAT 2 [17] MAT 3 [17] MAT 4 [27] MAT 5 [28] MAT 6 [38] (Core) MAT 6 (Faces)

Examples 1 2 3 4

E1 (GPa) 241.5 40 40 181 144.8 0.2208×10−3 131.1

E2 (GPa) 18.98 1 1 10.3 9.65 0.2001×10−3 6.9

E3 (GPa) 18.98 1 1 10.3 9.65 2.76 6.9

G12 (GPa) 5.18 0.5 0.6 7.17 4.14 16.56×10−3 3.588

G13 (GPa) 5.18 0.2 0.6 7.17 4.14 0.5451 3.088

G23 (GPa) 3.45 0.2 0.5 6.21 3.45 0.4554 2.3322

ν12 0.24 0.25 0.25 0.28 0.3 0.99 0.32

ν13 0.24 0.25 0.25 0.35 0.3 3×10−5 0.32

ν23 0.24 0.25 0.25 0.4 0.3 3×10−5 0.49

ρ (kg/m3)) 2015 1 1 1389.23 1389.23 70 1000
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Table 2: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] simply-supported beam

(Material 1, L/h=2.272).

Mode P=0 P=109 N (compression) Pcr (108N)

ANSYS [24] Quasi-3D [24] ESDBT [14] Present ESDBT [14] Present ABAQUS [13] Present

1 82.17 82.36 83.050 83.519 77.00 78.60 76.923 64.7933

2 195.22 196.45 195.501 196.504 184.44 195.05 185.382 83.3773

3 310.07 312.91 317.232 317.909 297.76 317.09 303.071 89.7520

4 424.311 429.43 453.926 451.682 422.44 441.11 435.220 98.4507

Table 3: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] simply-supported beam

(Material 1, L/h=22.72).

Mode P=0 P=107 N (compression) Pcr (107N)

ESDBT [14] ANSYS [24] Quasi-3D [24] Present ESDBT [14] ABAQUS [13] Present ABAQUS [13] Present

1 14.958 14.93 14.96 14.96 10.67 10.68 10.68 2.0381 2.0373

2 57.796 57.67 57.69 57.84 53.87 53.77 53.93 7.6407 7.6567

3 123.396 122.90 122.90 123.59 119.35 118.86 119.58 15.6844 15.6503

4 205.647 204.50 204.59 206.15 201.38 200.19 201.93 25.0822 24.6575

Table 4: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] cantilever beam (Material

1, L/h=22.72).

Mode P=4×106N (tension) P=0 P=4×106N (compression) Pcr (107N)

HSDBT [18] Present HSDBT [18] Present HSDBT [18] Present Present

1 6.95 6.95 5.36 5.37 2.65 2.64 0.5178

2 34.64 34.64 32.57 32.57 30.34 30.34 5.4380

3 88.79 88.79 86.95 86.98 85.06 85.09 13.6591

4 162.00 162.00 160.16 160.31 158.30 158.46 19.3079
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Table 5: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] clamped-clamped beam

(Material 1, L/h=22.72).

Mode P=2×107N (tension) P=0 P=2×107N (compression) Pcr (107N)

HSDBT [18] Present HSDBT [15] Present HSDBT [18] Present Present

1 36.36 36.37 32.54 32.56 28.13 28.15 7.6617

2 90.14 91.38 84.57 85.84 78.56 79.89 14.4530

3 161.57 161.81 155.02 155.30 148.17 148.50 24.6648

4 245.79 248.32 238.39 241.02 230.74 233.48 32.8958

Table 6: The first four natural frequencies and buckling loads of a cross-ply [90◦/0◦/0◦/90◦] clamped-simply supported

beam (Material 1, L/h=22.72).

Mode P=2×107N (tension) P=0 P=2×107N (compression) Pcr (107N)

HSDBT [18] Present HSDBT [15] Present HSDBT [18] Present Present

1 16.47 16.57 22.95 23.04 27.87 27.97 4.0779

2 64.07 64.38 70.97 71.24 77.23 77.49 11.1194

3 131.90 132.48 139.36 139.88 146.43 146.90 19.8446

4 214.34 215.25 222.43 223.25 230.22 230.97 28.9888
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Table 7: The non-dimensional fundamental frequencies and critical buckling loads of [0◦/90◦/0◦] and [0◦/90◦] composite

beams (Material 2 and 3 with L/h=5 and 20).

Lay-ups Reference Material 2 Material 3

Frequencies Buckling loads Frequencies Buckling loads

L/h=5 20 5 20 5 20 5 20

C-F beams

[0◦/90◦/0◦] PSDBT [15, 17] 4.233 6.070 4.708 7.611 - - 3.717 7.408

Quasi-3D (SinRef-7p) [24] 4.189 - - - - - - -

Quasi-3D [36] 4.222 - 4.378 - - - - -

Present (HBT) 4.230 6.062 4.704 7.600 3.660 5.921 3.714 7.397

Present (Quasi-3D) 4.221 6.063 4.362 7.593 3.653 5.922 3.491 7.391

[0◦/90◦] PSDBT 2.384 2.590 1.236 1.349 - - 1.175 1.344

Quasi-3D (SinRef-7p) [24] 2.289 - - - - - - -

Quasi-3D [36] 2.375 - 1.213 - - - - -

Present (HBT) 2.381 2.589 1.234 1.347 2.292 2.580 1.174 1.342

Present (Quasi-3D) 2.391 2.598 1.226 1.356 2.301 2.590 1.166 1.351

S-S beams

[0◦/90◦/0◦] PSDBT [15, 17] 9.207 16.337 8.613 27.084 - - 5.896 24.685

Quasi-3D (SinRef-7p) [24] 9.201 - - - - - - -

Quasi-3D [36] 9.208 - 8.556 - - - - -

Present (HBT) 9.206 16.327 8.609 27.050 7.622 15.590 6.278 24.830

Present (Quasi-3D) 9.208 16.328 8.524 27.073 7.624 15.591 5.856 24.674

[0◦/90◦] PSDBT [15, 17] 6.144 7.218 3.906 5.296 - - 3.376 5.225

Quasi-3D (SinRef-7p) [24] 5.671 - - - - - - -

Quasi-3D [36] 6.109 - 3.939 - - - - -

Present (HBT) 6.058 7.204 3.903 5.330 5.672 7.156 3.373 5.219

Present (Quasi-3D) 6.075 7.228 3.946 5.330 5.684 7.179 3.404 5.257

C-C beams

[0◦/90◦/0◦] PSDBT [15, 17] 11.637 29.926 - - - - - -

Quasi-3D (SinRef-7p) [24] 11.100 - - - - - - -

Quasi-3D [36] 11.499 - 11.306 - - - - -

Present (HBT) 11.601 29.643 11.648 75.257 9.547 26.106 7.809 59.472

Present (Quasi-3D) 11.479 29.639 11.053 75.312 9.474 26.102 7.509 59.463

[0◦/90◦] PSDBT [15, 17] 10.103 15.688 - - - - - -

Quasi-3D (SinRef-7p) [24] 8.743 - - - - - - -

Quasi-3D [36] 9.985 - 8.660 - - - - -

Present (HBT) 10.022 15.650 8.670 19.757 8.741 15.205 6.574 18.801

Present (Quasi-3D) 9.990 15.708 8.502 19.951 8.710 15.258 6.474 18.97417



Table 8: The non-dimensional natural frequencies of [0◦/90◦/0◦] and [0◦/90◦] composite beams under axial load (Material

2, L/h=5 and 20).

Lay-ups L/h P=-0.5Pcr(tension) P=0 P=0.5Pcr (compression)

ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

C-F beams

[0◦/90◦/0◦] 5 4.931 16.083 30.629 4.221 14.359 28.224 3.240 12.270 25.375

20 7.257 33.337 75.420 6.063 31.724 73.740 4.405 30.005 72.018

[0◦/90◦] 5 2.844 11.444 24.418 2.391 10.774 23.685 1.753 10.043 22.903

20 3.125 16.356 42.307 2.598 15.701 41.728 1.875 15.013 41.141

S-S beams

[0◦/90◦/0◦] 5 11.246 24.971 39.646 9.208 21.423 34.945 6.530 16.935 28.876

20 19.997 59.122 105.821 16.328 54.440 100.011 11.546 49.312 93.834

[0◦/90◦] 5 7.425 19.634 24.544 6.075 17.919 24.301 4.304 15.860 24.098

20 8.852 29.522 60.534 7.228 27.730 58.651 5.111 25.813 56.703

C-C beams

[0◦/90◦/0◦] 5 13.833 28.602 44.185 11.479 24.318 38.733 8.336 18.553 31.163

20 35.827 79.478 124.236 29.639 68.933 109.591 21.399 56.225 92.553

[0◦/90◦] 5 12.047 25.786 39.530 9.990 22.191 34.873 7.245 17.546 28.647

20 19.056 46.223 80.253 15.708 41.254 74.331 11.242 35.512 67.868
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Table 9: The fundamental frequencies of angle-ply [θ/− θ] simply-supported beams (Material 4, L/h=5 and 10).

L/h Reference 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

5 Present* 5773.71 5572.33 4951.80 3916.79 2723.52 1996.69 1863.43

Present 5764.75 4329.13 2980.61 2336.17 2032.39 1897.56 1859.47

10 Quasi-3D* [30] 1823.30 1731.70 1470.00 1092.10 721.20 517.60 481.60

Quasi-3D [30] 1819.70 1226.60 793.70 610.00 526.90 490.70 480.50

ANSYS [30] 1823.20 1241.00 803.20 614.94 529.60 492.51 482.17

Present* 1822.52 1730.75 1468.96 1091.43 720.91 517.34 481.36

Present 1818.97 1226.39 793.61 609.90 526.75 490.46 480.30

*Poisson effect is neglected

Table 10: The non-dimensional fundamental of angle-ply [θ/− θ] and unsymmetric [0/θ] clamped-clamped beams (Ma-

terial 5, L/h=5 and 15).

L/h Lay-ups Reference 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

5 [θ/− θ] Present* 2.4505 2.4025 2.2602 2.0133 1.6544 1.3893 1.3510

Present 2.4448 2.0785 1.6668 1.4409 1.3546 1.3428 1.3477

[0◦/θ] Present* 2.4505 2.4266 2.3588 2.2501 2.1075 2.0125 1.9983

Present 2.4448 2.2820 2.1200 2.0343 1.9999 1.9928 1.9935

15 [θ/− θ] SSDQM [28] 4.8575 3.6113 2.3016 1.8145 1.6686 1.6200 1.6237

Present* 4.9122 4.7165 4.1294 3.1993 2.2076 1.6895 1.6276

Present 4.9004 3.2912 2.1832 1.7621 1.6249 1.6117 1.6227

[0◦/θ] SSDQM [28] 4.8575 4.1899 3.3548 2.9814 2.9491 2.8002 2.8012

Present* 4.9122 4.8131 4.4994 3.9415 3.2748 2.9221 2.8805

Present 4.9004 3.9967 3.2489 2.9575 2.8669 2.8615 2.8709

*Poisson effect is neglected
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Table 11: The non-dimensional natural frequencies of an angle-ply [θ/−θ] clamped-clamped composite beam under axial

load (Material 5, L/h=5).

fibre Pcr P = -0.5Pcr (tension) P = 0 (no axial force) P = 0.5Pcr(compression)

angle ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

0◦ 0.5148 2.9517 6.1096 9.3689 2.4448 5.1681 8.0872 1.7720 3.9234 6.3491

15◦ 0.3770 2.5092 5.3110 8.0786 2.0786 4.5305 6.9899 1.5078 3.5284 5.5511

30◦ 0.2413 2.0123 4.4232 5.6171 1.6669 3.8400 5.6171 1.2062 3.1205 5.6171

45◦ 0.1803 1.7413 3.8974 4.4963 1.4412 3.4139 4.4963 1.0401 2.8281 4.4963

60◦ 0.1601 1.6383 3.6825 4.1762 1.3551 3.2355 4.1762 0.9767 2.6972 4.1762

75◦ 0.1585 1.6251 3.6448 4.1950 1.3438 3.2038 4.1950 0.9682 2.6724 4.1950

90◦ 0.1603 1.6317 3.6513 4.2520 1.3492 3.2096 4.2520 0.9720 2.6763 4.2520

Table 12: The non-dimensional natural frequencies of an unsymmetric [0◦/θ] clamped-clamped beam under axial load

(Material 5, L/h=5).

fibre Pcr P = -0.5Pcr (tension) P = 0 (no axial force) P = 0.5Pcr(compression)

angle ω1 ω2 ω3 ω1 ω2 ω3 ω1 ω2 ω3

0◦ 0.5148 2.9517 6.1096 9.3689 2.4448 5.1681 8.0872 1.7720 3.9234 6.3491

15◦ 0.4512 2.7554 5.7638 8.7871 2.2822 4.8958 7.6020 1.6546 3.7622 5.9937

30◦ 0.3887 2.5595 5.4529 8.3033 2.1202 4.6724 7.2702 1.5361 3.6713 5.8814

45◦ 0.3580 2.4564 5.2794 8.0171 2.0346 4.5449 7.0851 1.4729 3.6098 5.8146

60◦ 0.3469 2.4155 5.2006 7.8440 2.0003 4.4845 6.9848 1.4473 3.5732 5.7625

75◦ 0.3456 2.4075 5.1755 7.7068 1.9933 4.4647 6.9329 1.4419 3.5565 5.7279

90◦ 0.3464 2.4087 5.1696 7.5383 1.9942 4.4614 6.9004 1.4424 3.5521 5.7104
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Table 13: The non-dimensional natural frequencies of sandwich beams (0.1h/0.8h/0.1h, Material 6, L/h=5, 10 and 20).

L/h Mode Simply-Supported Clamped-Clamped Clamped-Free

HZZT [38] HZZT [37] Present HZZT [37] Present HZZT [37] Present

5 1 7.823 7.842 8.014 9.257 9.302 3.675 3.722

2 17.274 17.402 17.695 18.890 19.029 11.906 11.982

3 26.903 27.362 27.441 29.607 29.061 22.542 22.543

4 36.937 38.152 37.599 41.178 39.824 32.824 30.343

10 1 12.237 12.249 12.428 16.534 16.814 5.073 5.114

2 31.291 31.366 32.057 33.641 35.285 19.529 19.813

3 50.218 50.441 51.511 52.924 53.521 39.878 40.516

4 69.096 69.607 70.781 72.532 73.256 59.219 60.054

20 1 15.382 15.387 15.477 26.377 26.764 5.790 5.806

2 48.948 48.995 49.711 57.193 60.800 28.745 29.080

3 86.902 87.044 88.774 92.952 94.706 64.737 65.774

4 125.160 125.464 128.228 130.272 133.777 102.922 104.867

Table 14: The critical buckling loads of sandwich beams (0.1h/0.8h/0.1h, Material 6, L/h=5, 10, 20 and 50).

Boundary conditions 5 10 20 50

Simply-Supported 1.669 4.028 6.233 7.363

Clamped-Clamped 2.008 6,676 16.111 26.691

Clamped-Free 0.950 1.548 1.805 1.890
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CAPTIONS OF FIGURES 

Figure 1: Geometry of a laminated composite beam. 

Figure 2: Load-frequency curves of [90
0
/0

0
/0

0
/90

0
] beams with various boundary conditions 

(Material 1, L/h=2.272). 

Figure 3: Relative error (%) between the results with and without the Poisson effect of clamped-

clamped composite beams with [θ/-θ] and [0/θ] lay-up (Material 5, L/h=5 and 15). 

Figure 4: Vibration mode shapes of angle-ply and unsymmetric clamped-clamped composite beams 

under compression (P = 0.5Pcr ) with the fiber angle 45
0 
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Figure 1: Geometry of a laminated composite beam. 
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Figure 2: Load-frequency curves of [90
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] beams with various boundary conditions 

(Material 1, L/h=2.272). 
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Figure 3: Relative error (%) between the results with and without the Poisson effect of clamped-

clamped composite beams with [θ/-θ] and [0/θ] lay-up (Material 5, L/h=5 and 15). 
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a. First mode shape w = 1.0401 ([q/-q] lay-up) 

 
a. First mode shape w = 1.4729 ([0/q] lay-up) 

 
b. Second mode shape w = 2.8281 ([q/-q] lay-up) 

 
b. Second mode shape w = 3.6098 ([0/q] lay-up) 

 
c. Third mode shape w = 4.4963 ([q/-q] lay-up) 

 
c. Third mode shape w = 5.8146 ([0/q] lay-up) 

Figure 4: Vibration mode shapes of angle-ply and unsymmetric clamped-clamped composite beams 

under compression (P = 0.5Pcr ) with the fiber angle 45
0
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