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Abstract

This paper presents flexural analysis of composite and sandwich beams using a quasi-3D theory, which

considers simultaneously three effects such as normal and shear deformation as well as anisotropy

coupling. The axial and transverse displacements are assumed to be cubic and parabolic variation

through the beam depth. In order to solve problem, two-node C1 beam elements with six degrees of

freedom per node are developed. Numerical examples are carried out and the results are compared

with those available in literature to validate the accuracy of the present theory. The effects of fibre

angle, lay-up and span-to-height ratio on displacements and stresses are studied. Some new results,

which can be useful for future references, are also given.

Keywords: Composite and sandwich beams; quasi-3D theory; normal and shear deformation ; finite

element method.

1. Introduction

Due to attractive properties in strength, stiffness, and lightness, laminated composite beams be-

come popular and have been used in differerent areas such as aerospace, mechanical and structural

engineering, etc. Various beam theories have been developed for analysis of their structural behaviour.

A review of these theories can be found in recent work of Nguyen et al. [1]. As noted in their review,

higher-order beam theories (HBTs) are considered to be one of the most popular ones since they pre-

dict more accurate than classical beam theory (CBT) and first-order beam theory (FBT) especially

for thick beams. By using HBTs, there are many studies have been done to study static analysis of
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composite beams and only some of them ([2–10]) are referenced here. It should be noted that in these

above papers, only shear deformation effect is included, while normal deformation effect is ignored.

As discussed in Carrera et al. [11], both effects become significant for thick beams. In order to in-

clude them, the axial and transverse displacements of beams are assumed to be higher-order variation

through the depth. These types of theories are namely quasi-3D ones, which are developed by many

authors for static analysis of composite beams. Carrera et al. [11] proposed a novel unified approach

called Carrera Unified Formulation (CUF), which is hierarchical formulation and considers the order

of model as a free parameter. The most novel features of this formulation is that various beam theories

such as CBT, FBT, HBT and quasi-3D theory, can be obtained without ad hoc formulations. This

formulation was applied successfully to bending problem of composite beams [12–16]. Zenkour [17]

derived Navier solutions to investigate deflections and stresses of cross-ply composite beams. Subra-

manian [18] developed two-node C1 beam elements with eight degrees of freedom (DOFs) per node to

study flexural behaviour of simply-supported symmetrically-laminated composite beams. Kant et al.

[19] derived semi-analytical model for bending behaviour of cross-ply composite and sandwich beams

based on solution of two-point boundary value problem governed by ordinary differential equations.

Pawar et al. [20] derived Navier solution for static analysis of cross-ply composite and sandwich beams.

Mantari and Canales ([21, 22]) proposed a hybrid type quasi-3D HBT for the bending analysis of cross-

ply composite beams. It should be noted that in above studies ([17]-[22]), only bending behaviour of

cross-ply or symmetric composite beams is considered. This problem for laminated composite beams

with arbitrary lay-ups is not well-investigated and there is a need for further studies.

This work aims to study flexural analysis of composite beams with arbitrary lay-up and sandwich

beams using a four-unknown shear and normal deformation theory. The axial and transverse dis-

placements are assumed to be cubic and parabolic variation through the beam depth. As a results,

three effects such as normal and shear deformation as well as anisotropy coupling are simultaneously

taken into account. Two-node C1 beam elements with six DOFs/node are developed to calculate

displacements and stresses. Numerical results are compared with those predicted by other theories

to investigate the effects of normal and shear deformation as well as anisotropy coupling on bending

behaviour of composite and sandwich beams.

2. Theoretical formulation

2.1. Kinematics

A laminated composite beam, which is made of many plies of orthotropic materials in different

orientations with respect to the x-axis, is considered (Fig. 1). The axial and transverse displacement
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variations are assumed to be cubic and quadratic functions of the depth [23–26]:

U(x, z, t) = u(x, t)− z ∂wb(x, t)
∂x

− 4z3

3h2
∂ws(x, t)

∂x
= u(x, t)− zw′b(x, t)− f(z)w′s(x, t) (1a)

W (x, z, t) = wb(x, t) + ws(x, t) + (1− 4z2

h2
)wz(x, t) = wb(x, t) + ws(x, t) + g(z)wz(x, t) (1b)

where u,wb, ws and wz are four mid-plane displacements of beam.

The non-zero strains are:

εx =
∂U

∂x
= u′ − zw′′b − fw′′s (2a)

εz =
∂W

∂z
= g′wz (2b)

γxz =
∂W

∂x
+
∂U

∂z
= g(w′s + w′z) (2c)

2.2. Variational Formulation

The variation of the strain energy can be stated as:

δU =

∫ l

0

∫ b

0

[∫ h/2

−h/2
(σxδεx + σxzδγxz + σzg

′δwz)dz

]
dydx

=

∫ l

0

[
Nxδu

′ −M b
xδw

′′
b −M s

xδw
′′
s +Qxz(δw

′
s + δw′z) +Rzδwz

]
)dx (3)

where Nx,M
b
x,M

s
x, Qxz and Rz are the stress resultants, defined as:

Nx =

∫ h/2

−h/2
σxbdz (4a)

M b
x =

∫ h/2

−h/2
σxzbdz (4b)

M s
x =

∫ h/2

−h/2
σxfbdz (4c)

Qxz =

∫ h/2

−h/2
σxzgbdz (4d)

Rz =

∫ h/2

−h/2
σzg
′bdz (4e)

The variation of the potential energy under a transverse load q can be written as

δV = −
∫ l

0
q(δwb + δws + gδwz)dx (5)

By using the principle of total potential energy, the following weak statement is obtained:

0 =

∫ l

0

[
Nxδu

′ −M b
xδw

′′
b −M s

xδw
′′
s +Qxz(δw

′
s + δw′z) +Rzδwz − q(δwb + δws + gδwz)

]
dx (6)

3



2.3. Constitutive Equations

The constitutive equation is reduced from the 3D stress-strain relationship of a kth orthotropic

lamina by setting the stresses σy, σyz and σxy equal to zero:


σx

σz

σxz


k

=


Q
∗
11 Q

∗
13 0

Q
∗
13 Q

∗
33 0

0 0 Q
∗
55


k

εx

εz

γxz

 (7)

where

Q
∗
11 = Q11 +

Q
2
16Q22 − 2Q12Q16Q26 +Q

2
12Q66

Q
2
26 −Q22Q66

(8a)

Q
∗
13 = Q13 +

Q16Q22Q36 +Q12Q23Q66 −Q16Q23Q26 −Q12Q26Q36

Q
2
26 −Q22Q66

(8b)

Q
∗
33 = Q33 +

Q
2
36Q22 − 2Q23Q26Q36 +Q

2
23Q66

Q
2
26 −Q22Q66

(8c)

Q
∗
55 = Q55 −

Q
2
45

Q44

(8d)

where Qij are the transformed reduced stiffness constants [27].

If the shear strain γxy is also ignored or for unidirectional and cross-ply lay-ups, Eqs. (8a)-(8c)

become:

Q
∗
11 = Q11 −

Q
2
12

Q22

(9a)

Q
∗
13 = Q13 −

Q12Q23

Q22

(9b)

Q
∗
33 = Q33 −

Q
2
23

Q22

(9c)

The stress resultants can be expressed in terms of displacements by substituting Eqs. (7) and (2)

into Eq. (4): 

Nx

M b
x

M s
x

Rz

Qxz


=



A B Bs X 0

D Ds Y 0

H Ys 0

Z 0

sym. As





u′

−w′′b
−w′′s
wz

w′s + w′z


(10)

where
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(A,B,Bs, D,Ds, H) =

∫ h/2

−h/2
Q
∗
11(1, z, f, z

2, fz, f2, g′2)bdz (11a)

(X,Y, Ys) =

∫ h/2

−h/2
Q
∗
13g
′(1, z, f)bdz (11b)

As =

∫ h/2

−h/2
Q
∗
55g

2bdz (11c)

Z =

∫ h/2

−h/2
Q
∗
33g
′2bdz (11d)

2.4. Governing Equations

By integrating by parts and collecting the coefficients of δu, δwb, δws and δwz, the governing

equations can be obtained :

N ′x = 0 (12a)

M b
x
′′

+ q = 0 (12b)

M s
x
′′ +Q′xz + q = 0 (12c)

Q′xz −Rz + gq = 0 (12d)

The natural boundary conditions are of the form:

δu : Nx (13a)

δwb : M b
x
′

(13b)

δw′b : M b
x (13c)

δws : M s
x
′ +Qxz (13d)

δw′s : M s
x (13e)

δwz : Qxz (13f)

By substituting Eq. (10) into Eq. (12), the governing equations can be expressed:

Au′′ −Bw′′′b −Bsw′′′s +Xw′z = 0 (14a)

Bu′′′ −Dwivb −Dsw
iv
s + Y w′′z + q = 0 (14b)

Bsu
′′′ −Dsw

iv
b −Hwivs +Asw

′′
s + (As + Ys)w

′′
z + q = 0 (14c)

−Xu′ + Y w′′b + (As + Ys)w
′′
s +Asw

′′
z − Zwz + gq = 0 (14d)
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3. Finite Element Formulation

A two-node C1 beam element with six DOFs/node is developed. Linear polynomial Ψj is used

for u and wz and Hermite-cubic polynomial ψj is used for wb and ws. The displacements within an

element are expressed as:

u =

2∑
j=1

ujΨj (15a)

wb =
4∑
j=1

wbjψj (15b)

ws =

4∑
j=1

wsjψj (15c)

wz =
2∑
j=1

wzjΨj (15d)

Substituting Eqs. (15) into Eq. (6), the finite element model of a typical element can be expressed

as: 
K11 K12 K13 K14

K22 K23 K24

K33 K34

sym. K44





u

wb

ws

wz


=



F1

F2

F3

F4


(16a)

where [K] is the element stiffness matrix, given by:

K11
ij =

∫ l

0
AΨ′iΨ

′
jdx; K12

ij = −
∫ l

0
BΨ′iψ

′′
j dx; (17a)

K13
ij = −

∫ l

0
BsΨ

′
iψ
′′
j dx; K14

ij =

∫ l

0
XΨ′iΨjdx (17b)

K22
ij =

∫ l

0
Dψ′′i ψ

′′
j dx; K23

ij =

∫ l

0
Dsψ

′′
i ψ
′′
j dx; (17c)

K24
ij = −

∫ l

0
Y ψ′′i Ψjdx (17d)

K33
ij =

∫ l

0
(Hψ′′i ψ

′′
j +Asψ

′
iψ
′
j)dx; (17e)

K34
ij =

∫ l

0
(−Ysψ′′i Ψj +Asψ

′
iΨ
′
j)dx (17f)

K44
ij =

∫ l

0
(ZΨiΨj +AsΨ

′
iΨ
′
j)dx (17g)

and [F ] is the element force vector, given by:

F 1
i =

∫ l

0
PxΨidx (18a)
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F 2
i =

∫ l

0
Pzψidx (18b)

F 3
i =

∫ l

0
Pzψidx (18c)

F 4
i =

∫ l

0
gPzΨidx (18d)

4. Numerical Examples

In this section, a number of numerical examples are illustrated to verify the accuracy of the present

study and investigate the displacements and stresses of composite beams with arbitrary lay-up and

sandwich beams with various configurations. These beams with different lay-ups, boundary conditions

(clamped-clamped, cantilever and simply-supported) and span-to-height ratios are considered. Five

types of material set, which relate to each example, are given in Table 1. For convenience, the vertical

displacement and stresses of beams under the uniformly distributed load q are defined below as non-

dimensional terms:

w =
wbhE2h

2102

qL4
(19a)

σx =
bh2

qL2
σx(L/2, h/2) (19b)

σz =
b

q
σx(L/2, h/2) (19c)

σxz =
bh

qL
σxz(0, 0) (19d)

Example 1: Symmetric and anti-symmetric cross-ply composite beams with various boundary

conditions and span-to-height ratios (L/h = 5, 10 and 50) are considered. All laminate are the same

thickness and material properties (MAT 1). The mid-span displacements and stresses are given in

Tables 2 and 3. The present results are compared with those obtained from various authors using

HBTs ([3, 7, 17]) and quasi-3D theories ([17, 21]). It can be seen that the present results agree well

with previous ones for both theories. It should be noted that the results with εz 6= 0 (quasi-3D)

are slightly different from those without it (εz = 0, HBT), especially for thick beam (L/h = 5) and

anti-symmetric cross-ply lay-up. Distributions of normal stress, shear stress and transverse normal

stress through-the-thickness are plotted in Figs. 2-4. It is from transverse normal stress in Fig. 4 that

highlights the importance of normal deformation effect on bending behaviour of composite beam. As

noted before, since HBTs ([3, 7]) ignore this effect, thus transverse normal stress can not be observed.
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Example 2: This example is extended from previous one, symmetric [0◦/θ/0◦] and unsymmetric

[0◦/θ] composite beams are considered. Variations of displacement and stresses respect to the fibre

angle are given in Tables 4 and 5. Third-order beam theory (TBT) solutions from previous study

[24] are also included to show the effect of normal deformation on beams’ displacements. As the fibre

angle increases, all maximum stresses and displacement increase (Figs. 2-6). It is interesting to observe

that normal deformation effect depends not only on span-to-height ratio but also boundary conditions

and lay-ups. For thick beam, it is more pronounced for clamped-clamped boundary conditions and

unsymetric lay-up than others. It can be explained partly from anisotropic coupling terms X,Y and

Ys in Eq. (10). These terms for unsymmetric lay-up are larger than those of symmetric one. As

span-to-height ratio increases (Fig. 6), normal deformation effect becomes negligible, thus the results

from TBT and quasi-3D theory are the same for both lay-ups, as expected.

Example 3: Cross-ply sandwich beams ([0◦/90◦/0◦], MAT 2) with the top and bottom face thick-

ness h1 and core thickness h2, are considered. The deflection and stresses of simply-supported beam

with h2/h1 = 3 and 8 are compared with Zenkour [17] in Tables 6 and 7. It can be seen that the present

results coincide with previous ones. Stresses and displacement distributions through-the-thickness are

plotted in Figs. 7 and 8. As expected, displacement has parabolic distribution with peak point at

the mid-plane. As the thickness ratio (h2/h1) changes from 3 to 8, normal stress and displacement

increase while shear stress decreases. Variations of displacement of simply-supported and clamped-

clamped sandwich beams with respect to h2/h1 for various L/h are plotted in Fig. 9. It is interesting

to see that as h2/h1 increases, their response are different, which depends on boundary conditions

and thin or thick beams. For simply-supported thin beam (L/h=50), displacement monotonically

increases, whereas, for thick ones, it decreases to minimum value at h2/h1=1 and 1.8 for L/h=10 and

5, respectively and then increases.

Example 4: The validity and accuracy of the present theory is further investigated for cross-ply

sandwich beams with soft core, which are made of five layers [0◦/90◦/Core/90◦/0◦] (MAT 3), are

considered. The thickness of each face is 0.05h and of core is 0.8h. The results are compared with

those using higher order zigzag theory [28] in Table 8. It is observed that the solutions of the two

approaches are in excellent agreement although there are small discrepancy in displacement for L/h=5.

The results for clamped-clamped and clamped-free are also presented in Table 9. They have not been

reported before and could be served as benchmark examples for future references.

Example 5: Sandwich beams with soft core made of three layers [0◦/Core/0◦], which have the

same thickness of core and face with example 4, are considered. Two different material sets (MAT

4 and MAT 5) are used to investigate the effect of core stiffness on their displacement and stresses.
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The results are also compared with those from Kant et al. [19] and Pawar et al. [20] and Carrera et

al. [29]. It should be noted that normal and shear deformation effects are included in these studies

with different models. Again, excellent agreement with previous studies can be observed, especially

with those from Pawar et al. [20]. As beam gets thinner, the present results agree well with those of

Carrera et al. [29] for various boundary conditions.

5. Conclusions

A finite element model for flexural behaviour of laminated composite and sandwich beams using a

quasi-3D theory is presented. Composite and sandwich beams with various configurations including

boundary conditions, span-to-height ratio and lay-ups are considered. Numerical results are compared

with those predicted by other theories to show the validity of present model. Normal deformation effect

depends not only on span-to-height ratio but also boundary conditions and lay-ups. For thick beam,

it is more pronounced for clamped-clamped boundary conditions and unsymetric lay-up than others.

Effects of normal and shear deformation as well as anisotropy coupling should be simultaneously

considered to predict accurately displacements and stresses of composite and sandwich beams under

vertical loads.
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Table 1: Material properties of composite and sandwich beams.

Example Material set Material properties

1, 2 MAT 1 [30] E1/E2 = 25, E3 = E2, G12 = G13 = 0.5E2, G23 = 0.2E2,

ν12 = ν13 = ν23 = 0.25

3 MAT 2 [17] Face layer: MAT 1

Core layer: E1/E2 = 1, E3 = E2, G12 = G13 = 1.5E2, G23 = 0.4E2,

ν12 = ν13 = ν23 = 0.25

4 MAT 3 [28] Face layer 1: MAT 1

Face layer 2: E1/E2 = 1, E3 = E2, G12 = G13 = G23 = 0.5E2,

ν12 = ν13 = ν23 = 0.25

Core layer: E1/E2 = 80, E3 = E2, G12 = G13 = G23 = 1.2E2,

ν12 = ν13 = ν23 = 0.25

5 MAT 4 [30] Face layer: E1 = 172.4 GPa, E2 = 6.89 GPa, E3 = E2,

G12 = G13= 3.45 GPa, G23 = 1.378 GPa,

ν12 = ν13 = ν23 = 0.25

Core layer: E1 = E2 = 0.276 GPa, E3 = 3.45 GPa,

G12 = 0.1104 GPa,G23 = G13 = 0.414 GPa, ν12 = ν13 = ν23 = 0.25

5 MAT 5 [31] Face layer: E1 = 131.1 GPa, E2 = 6.9 GPa, E3 = E2,

G12 = 3.588 GPa, G13 = 2.3322 GPa, G23 = 3.088 GPa,

ν12 = ν13 = 0.32, ν23 = 0.49

Core layer: E1 = 0.2208 MPa, E2 =0.2001 MPa, E3 = 0.2760 MPa,

G12 = 16.56 MPa, G13 = 545.1 MPa, G23 =455.4 MPa,

ν12 =0.99, ν13 = ν23 = 3× 10−4
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Table 2: Mid-span displacements of [0◦/90◦/0◦] and [0◦/90◦] beams under a uniformly distributed load (MAT 1).

Theory Reference Symmetric ([0◦/90◦/0◦]) Anti-symmetric ([0◦/90◦])

L/h = 5 10 50 L/h = 5 10 50

a. Cantilever beams

HBT Khdeir and Reddy [3] 6.8240 3.4550 2.2510 15.2790 12.3430 11.3370

(εz = 0) Murthy et al. [7] 6.8360 3.4660 2.2620 15.3340 12.3980 11.3920

Present 6.8304 3.4607 2.2568 15.3050 12.3690 11.3630

Quasi-3D Mantari and Canales [21] - 3.4592 - - 12.4750 -

(εz 6= 0) Present 6.8541 3.4605 2.2565 15.1540 12.2440 11.2580

b. Simply-supported beams

HBT Khdeir and Reddy [3] 2.4120 1.0960 0.6650 4.7770 3.6880 3.3360

(εz = 0) Zenkour [17] 2.4141 1.0800 0.6650 4.7879 3.6973 3.3447

Present 2.4141 1.0980 0.6662 4.7845 3.6958 3.3437

Quasi-3D Mantari and Canales [21] - 1.0960 - - 3.7312 -

(εz 6= 0) Zenkour [17] 2.4049 1.0966 0.6662 4.8278 3.7628 3.4149

Present 2.4049 1.0965 0.6661 4.7346 3.6626 3.3147

c. Clamped-clamped beams

HBT Khdeir and Reddy [3] 1.5370 0.5320 0.1470 1.9220 1.0050 0.6790

(εz = 0) Present 1.5378 0.5320 0.1473 1.9227 1.0062 0.6796

Quasi-3D Mantari and Canales [21] - 0.5324 - - 1.0101 -

(εz 6= 0) Present 1.5487 0.5332 0.1472 1.9193 0.9983 0.6733
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Table 3: Normal and shear stresses of [0◦/90◦/0◦] and [0◦/90◦] simply-supported beams under a uniformly distributed

load (MAT 1).

Theory Reference Symmetric ([0◦/90◦/0◦]) Anti-symmetric ([0◦/90◦])

L/h = 5 10 50 L/h = 5 10 50

a. Normal stress (σx)

HBT Zenkour [17] 1.0669 0.8500 0.7805 0.2362 0.2343 0.2336

(εz = 0) Present 1.0670 0.8503 0.7809 0.2361 0.2342 0.2336

Quasi-3D Zenkour [17] 1.0732 0.8506 0.7806 0.2276 0.2246 0.2236

(εz 6= 0) Mantari and Canales [21] - 0.8501 - - 0.2227 -

Present 1.0670 0.8502 0.7809 0.2428 0.2375 0.2358

b. Shear stress (σxz)

HBT Zenkour [17] 0.4057 0.4311 0.4514 0.9211 0.9572 0.9860

(εz = 0) Present 0.4057 0.4311 0.4518 0.9187 0.9484 0.8445

Quasi-3D Zenkour [17] 0.4013 0.4289 0.4509 0.9038 0.9469 0.9814

(εz 6= 0) Mantari and Canales [21] - - - - 0.9503 -

Present 0.4017 0.4295 0.4518 0.9117 0.9474 0.8481
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Table 4: Mid-span displacements of [0◦/θ/0◦] and [0◦/θ] beams under a uniformly distributed load.

L/h Lay-ups 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

a. Cantilever beams

5 [0◦/θ] 5.2774 8.0005 11.6830 13.8390 14.8020 15.1080 15.1540

[0◦/θ]* 5.2774 5.7513 8.2970 12.6470 14.6960 15.1070 15.1540

[0◦/θ/0◦] 5.2774 5.4898 5.8804 6.2879 6.6029 6.7919 6.8541

[0◦/θ/0◦]* 5.2774 5.4539 5.8684 6.2862 6.6028 6.7919 6.8541

10 [0◦/θ] 2.9663 5.5712 9.1499 11.1650 12.0020 12.2260 12.2440

[0◦/θ]* 2.9663 3.3073 5.6046 9.8908 11.8840 12.2250 12.2440

[0◦/θ/0◦] 2.9663 3.0653 3.1828 3.2992 3.3889 3.4428 3.4605

[0◦/θ/0◦]* 2.9663 3.0272 3.1706 3.2976 3.3888 3.4428 3.4605

50 [0◦/θ] 2.1602 4.7429 8.2916 10.2600 11.0540 11.2500 11.2580

[0◦/θ]* 2.1602 2.4579 4.6816 8.9536 10.9310 11.2490 11.2580

[0◦/θ/0◦] 2.1602 2.2228 2.2405 2.2483 2.2531 2.2557 2.2565

[0◦/θ/0◦]* 2.1602 2.1796 2.2264 2.2464 2.2529 2.2557 2.2565

b. Simply-supported beams

5 [0◦/θ] 1.7930 2.5763 3.6634 4.3135 4.6135 4.7162 4.7346

[0◦/θ]* 1.7930 1.9397 2.6920 3.9683 4.5821 4.7160 4.7346

[0◦/θ/0◦] 1.7930 1.8626 2.0140 2.1762 2.3030 2.3796 2.4049

[0◦/θ/0◦]* 1.7930 1.8591 2.0132 2.1761 2.3030 2.3796 2.4049

10 [0◦/θ] 0.9222 1.6861 2.7403 3.3370 3.5871 3.6562 3.6626

[0◦/θ]* 0.9222 1.0240 1.7012 2.9619 3.5519 3.6558 3.6626

[0◦/θ/0◦] 0.9222 0.9529 0.9946 1.0370 1.0700 1.0900 1.0965

[0◦/θ/0◦]* 0.9222 0.9429 0.9915 1.0366 1.0700 1.0900 1.0965

50 [0◦/θ] 0.6370 1.3966 2.4406 3.0200 3.2540 3.3121 3.3147

[0◦/θ]* 0.6370 0.7245 1.3787 2.6352 3.2176 3.3118 3.3147

[0◦/θ/0◦] 0.6370 0.6554 0.6608 0.6634 0.6650 0.6658 0.6661

[0◦/θ/0◦]* 0.6370 0.6427 0.6567 0.6628 0.6649 0.6658 0.6661

c. Clamped-clamped beams

5 [0◦/θ] 1.0998 1.3165 1.5755 1.7547 1.8575 1.9060 1.9193

[0◦/θ]* 1.0998 1.1741 1.4172 1.7050 1.8536 1.9059 1.9193

[0◦/θ/0◦] 1.0998 1.1537 1.2670 1.3856 1.4766 1.5309 1.5487

[0◦/θ/0◦]* 1.0998 1.1490 1.2649 1.3852 1.4765 1.5309 1.5487

10 [0◦/θ] 0.3968 0.5584 0.7783 0.9107 0.9726 0.9943 0.9983

[0◦/θ]* 0.3968 0.4286 0.5849 0.8425 0.9665 0.9942 0.9983

[0◦/θ/0◦] 0.3968 0.4130 0.4469 0.4828 0.5108 0.5277 0.5332

[0◦/θ/0◦]* 0.3968 0.4116 0.4464 0.4828 0.5108 0.5277 0.5332

50 [0◦/θ] 0.1367 0.2887 0.4974 0.6137 0.6608 0.6727 0.6733

[0◦/θ]* 0.1367 0.1547 0.2861 0.5372 0.6537 0.6726 0.6733

[0◦/θ/0◦] 0.1367 0.1408 0.1431 0.1449 0.1462 0.1470 0.1472

[0◦/θ/0◦]* 0.1367 0.1383 0.1423 0.1448 0.1462 0.1470 0.1472

*: γxy is neglected
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Table 5: Normal and shear stresses of [0◦/θ/0◦] and [0◦/θ] simply-supported beams under a uniformly distributed load

(MAT 1).

L/h Lay-ups 0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦

a. Normal stress (σx)

5 [0◦/θ] 0.9498 0.5724 0.3746 0.2852 0.2510 0.2429 0.2428

[0◦/θ]* 0.9498 0.8623 0.5781 0.3429 0.2561 0.2430 0.2428

[0◦/θ/0◦] 0.9498 0.9731 1.0010 1.0280 1.0500 1.0630 1.0670

[0◦/θ/0◦]* 0.9498 0.9648 0.9986 1.0280 1.0500 1.0630 1.0670

10 [0◦/θ] 0.8002 0.5415 0.3661 0.2802 0.2464 0.2379 0.2375

[0◦/θ]* 0.8002 0.7443 0.5451 0.3368 0.2517 0.2380 0.2375

[0◦/θ/0◦] 0.8002 0.8222 0.8326 0.8403 0.8459 0.8491 0.8502

[0◦/θ/0◦]* 0.8002 0.8086 0.8284 0.8398 0.8458 0.8491 0.8502

50 [0◦/θ] 0.7523 0.5315 0.3633 0.2785 0.2449 0.2363 0.2358

[0◦/θ]* 0.7523 0.7066 0.5345 0.3348 0.2502 0.2364 0.2358

[0◦/θ/0◦] 0.7523 0.7739 0.7788 0.7801 0.7806 0.7808 0.7809

[0◦/θ/0◦]* 0.7523 0.7587 0.7739 0.7795 0.7806 0.7808 0.7809

b. Shear stress (σxz)

5 [0◦/θ] 0.6679 0.7050 0.7598 0.8208 0.8703 0.9012 0.9117

[0◦/θ]* 0.6679 0.7024 0.7759 0.8283 0.8710 0.9012 0.9117

[0◦/θ/0◦] 0.6679 0.6395 0.5729 0.5016 0.4462 0.4128 0.4017

[0◦/θ/0◦]* 0.6679 0.6392 0.5727 0.5016 0.4461 0.4128 0.4017

10 [0◦/θ] 0.7100 0.7394 0.7913 0.8528 0.9039 0.9363 0.9474

[0◦/θ]* 0.7100 0.7451 0.8157 0.8632 0.9049 0.9363 0.9474

[0◦/θ/0◦] 0.7100 0.6783 0.6088 0.5344 0.4762 0.4411 0.4295

[0◦/θ/0◦]* 0.7100 0.6798 0.6091 0.5344 0.4762 0.4411 0.4295

50 [0◦/θ] 0.7434 0.7443 0.7434 0.7718 0.8085 0.8372 0.8481

[0◦/θ]* 0.7434 0.7782 0.8247 0.8046 0.8117 0.8372 0.8481

[0◦/θ/0◦] 0.7434 0.7090 0.6373 0.5605 0.5003 0.4638 0.4518

[0◦/θ/0◦]* 0.7434 0.7119 0.6381 0.5606 0.5003 0.4638 0.4518

*: γxy is neglected
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Table 6: Mid-span displacements of [0◦/90◦/0◦] (h2/h1 = 3 and h2/h1 = 8) sandwich beams under a uniformly distributed

load (MAT 2).

Theory Reference h2/h1 = 3 h2/h1 = 8

L/h = 5 10 50 L/h = 5 10 50

a. Cantilever beams

HBT (εz = 0) Present 3.8148 2.9717 2.6927 5.1619 4.4281 4.1892

Quasi-3D (εz 6= 0) Present 3.8188 2.9704 2.6923 5.1577 4.4250 4.1882

b. Simply-supported beams

HBT (εz = 0) Zenkour [17] 1.1853 0.8879 0.7925 1.5661 1.3135 1.2325

Present 1.1853 0.8879 0.7925 1.5661 1.3135 1.2325

Quasi-3D (εz 6= 0) Zenkour [17] 1.1751 0.8863 0.7924 1.5538 1.3114 1.2325

Present 1.1751 0.8863 0.7924 1.5538 1.3114 1.2325

c. Clamped-clamped beams

HBT (εz = 0) Present 0.5257 0.2534 0.1616 0.5257 0.2534 0.1616

Quasi-3D (εz 6= 0) Present 0.5257 0.2533 0.1616 0.5257 0.2533 0.1616
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Table 7: Normal and shear stresses of [0◦/90◦/0◦] (h2/h1 = 3 and h2/h1 = 8) simply-supported beams under a uniformly

distributed load (MAT 2).

Theory Reference h2/h1 = 3 h2/h1 = 8

L/h = 5 10 50 L/h = 5 10 50

a. Normal stress (σx)

HBT (εz = 0) Zenkour [17] 0.9980 0.9592 0.9467 1.5044 1.4823 1.4753

Present 0.9984 0.9596 0.9471 1.5050 1.4830 1.4760

Quasi-3D (εz 6= 0) Zenkour [17] 1.0027 0.9603 0.9468 1.5140 1.4850 1.4754

Present 0.9961 0.9590 0.9497 1.4990 1.4810 1.4760

b. Shear stress (σxz)

HBT (εz = 0) Zenkour [17] 0.7495 0.7641 0.7755 0.6779 0.6852 0.6906

Present 0.7495 0.7644 0.7771 0.6781 0.6860 0.6922

Quasi-3D (εz 6= 0) Zenkour [17] 0.7309 0.7548 0.7740 0.6633 0.6780 0.6897

Present 0.7373 0.7619 0.7713 0.6735 0.6846 0.6917
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Table 8: Displacements and stresses of [0◦/90◦/C/90◦/0◦] simply-supported beams under a uniformly distributed load

(MAT 3, u = u(0,h/2)E2
hq

, σxz = σxz(0,0)
q

, σx = σx(L/2,h/2)
q

).

L/h w u σxz σx

Ref. [28] Present Ref. [28] Present Ref. [28] Present Ref. [28] Present

5 9.824 9.454 5.053 5.113 2.654 2.788 69.820 71.490

10 3.791 3.730 31.010 31.250 5.641 6.083 225.773 227.100

20 2.242 2.233 227.600 228.700 11.617 12.670 847.181 849.600

50 1.806 1.809 3463.000 3476.000 29.556 32.450 5198.722 5207.000

22



Table 9: Displacements and stresses of [0◦/90◦/C/90◦/0◦] clamped-clamped and cantilever beams under a uniformly

distributed load (MAT 3, σxz = σxz(0,0)
q

, σx = σx(L/2,h/2)
q

).

L/h Clamped-clamped beams Cantilever beams

w σxz σx w σxz σx

5 6.045 0.271 36.770 25.362 0.513 32.460

10 2.070 0.304 88.960 11.342 0.344 187.700

20 0.814 0.127 296.600 7.317 0.485 809.600

50 0.424 0.368 1750.000 6.114 2.802 5163.000
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Table 10: Mid-span displacements of [0◦/Core/0◦] sandwich beams under a uniformly distributed load (MAT 4 and MAT

5).

Reference MAT 4 MAT 5

L/h=4 5 10 20 L/h=4 5 10 20

a. Cantilever beams

Present 34.2960 2.4034 9.5253 5.6716 30.8400 22.1110 9.9764 6.8098

Carrera et al. [29] (ED2) 35.3330 - 9.6870 5.7068 - - - -

b. Simply-supported beams

Present 12.4380 8.4671 3.0906 1.7317 10.7560 7.5196 3.1534 2.0528

Pawar et al. [20] (Quasi-3D) - - 3.0905 1.7318 - 7.5196 3.1534 -

Kant et al. [19] 13.7505 - 3.3300 1.7935 - - - -

Carrera et al. [29] (ED2) 13.1730 - 3.1448 1.7430 - - - -

c. Clamped-clamped beams

Present 9.5444 6.4653 1.9385 0.6926 8.2816 5.5851 1.7275 0.6941

Carrera et al. [29] (ED2) 9.9008 - 1.9950 0.7033 - - - -
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Table 11: Normal and shear stresses of [0◦/Core/0◦] simply-supported sandwich beams under a uniformly distributed

load (MAT 4 and 5).

Reference σx σxz

L/h=4 5 10 L/h=4 5 10

a. Sandwich 1 (MAT 4)

Present 2.4390 2.1140 1.6800 0.5453 0.5572 0.5808

Kant et al. [19] 2.6032 - 1.7290 0.5703 - 0.5240

b. Sandwich 2 (MAT 5)

Present 2.0970 1.8960 1.6270 0.5916 0.6022 0.6236

Pawar et al. [20] - 1.8896 1.6309 - 0.5090 0.5312
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