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Abstract

The objective of this study is to develop an effective numerical model within the framework of an iso-

geometric analysis (IGA) to investigate the geometrically nonlinear responses of functionally graded

(FG) microplates subjected to static and dynamic loadings. The size effect is captured based on the

modified strain gradient theory with three length scale parameters. The third-order shear deformation

plate theory is adopted to represent the kinematics of plates, while the geometric nonlinearity is ac-

counted based on the von Kármán assumption. Moreover, the variations of material phrases through

the plate thickness follow the rule of mixture. By using Hamilton’s principle, the governing equation

of motion is derived and then discretized based on the IGA technique, which tailors the non-uniform

rational B-splines (NURBS) basis functions as interpolation functions to fulfil the C2−continuity

requirement. The nonlinear equations are solved by the Newmark’s time integration scheme with

Newton-Raphson iterative procedure. Various examples are also presented to study the influences

of size effect, material variations, boundary conditions and shear deformation on the nonlinear be-

haviour of FG microplates.

Keywords: Isogeometric Analysis; Modified strain gradient theory; Geometrical nonlinearity;

Functionally graded microplate

1. Introduction

In recent years, there has been a considerable increase in research and applications of function-

ally graded materials (FGMs) in various engineering fields. FGMs are categorized as a class of

composite materials [1] since they are constituted from two or more phrases of distinct materials.

Those constituent materials in FGMs are varied intentionally and continuously through a prescribed
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dimension, and hence there is no stress concentration as observed in conventional laminated com-

posites. Ceramic and metal constituents are the most common material phrases from which FGMs

are commonly made. In general, the ceramic constituent has a strong capability to withstand a high-

temperature effect, whereas the metal counterpart is able to exhibit robust mechanical properties due

to its ductility. By combining those constituents with smooth variations of their volume fractions,

the preferable mechanical characteristics of both materials are obtained in a unique structure. Thanks

to this distinguishing feature, it is no doubt that FGMs have also been studied for applications in

cutting-edge devices [2] in whcih microbeams and microplates are fundamental components. In the

mechanical point of view, the behaviour of such microstructures is considerably influenced by the

size effect as indicated in various experimental investigations [3–5]. In addition, it was pointed out

that the classical elasticity theory is incapable of predicting accurately the responses of the small-

scale structures. This is due to the fact that the classical elasticity theory lacks a so-called length

scale parameter, which is used to capture the size effect. To deal with this shortage, a number of non-

classical continuum theories were proposed in the open literature, such as the strain gradient theory

of Mindlin [6], the nonlocal elasticity theory of Eringen [7], the nonlocal strain gradient theory [8],

the modified couple stress theory (MCT) of Yang et al. [9] and the modified strain gradient elasticity

theory (MST) of Lam et al. [10]. The adoption of those theories to study the behaviour of small-scale

structures could be found in various studies on nano/microbeams [11–17] nano/microplates [18–28]

or nanoshells [29–31]. A critical review of recent research on the application of nonclassical contin-

uum theories for predicting the size-dependent behaviour of small-scale structures can be also found

in [32].

Based on the MST, a number of size-dependent models have been developed to predict the re-

sponses of microplates on the basis of various kinematic models, such as classical plate theory [33–

37], first-order shear deformation theory [38–43] and higher-order shear deformation theories [44–

47]. However, these aforementioned works are limited to analytical or semi-analytical methods,

which are only applicable to simple problems with certain geometry and boundary and loading con-

ditions. For example, Wang et al. [33], Sahmani and Ansari [44], Gholami et al. [40], Zhang et

al. [41, 46] and Akgoz and Civalek [47] employed Navier method to derive analytical solutions of

rectangular microplates with simply supported boundary conditions, whilst Mohammadi and Fooladi

Mahani [35] and Mohammadi et al. [36] used Levy method to derive analytical solutions of rect-

angular microplates in which two opposite edges are simply supported and the remaning two edges

can have arbitrary boundary conditions. The behaviour of microplates with various boundary con-

ditions were also studied using semi-analytical methods such as the differential quadrature method
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[38, 39, 42, 43, 45] and the extended Kantorovich method [34, 37]. For the practical problems with

complex geometries, loadings and boundary conditions, the application of analytical methods to solve

such problems is impossible due to the mathematical complexity of the MST plate models. There-

fore, numerical approaches such as finite element method, finite strip method, Ritz method become

the most suitable candidates for solving such problems. However, the adoption of classical and high-

order shear deformation theories would pose an obstacle for the traditional finite element method as

they require a continuity of interpolation functions over the element boundaries. This difficulty is

naturally and efficiently handled by using the IGA technique [48], in which the NURBS basis func-

tions are not only smooth and highly continuous but also able to present exact geometries of some

conical objects [49–52].

Although numerical solutions of the MST models have been recently developed using Chebyshev-

Ritz method [53], the finite strip method [54] and the IGA method [55], these studies were limited

to linear problems (linear bending [55], linear buckling [54] and linear free vibration [53, 54]). In

fact, the behaviour of microplates could undergo large deformations when heavier loads are imposed.

Therefore, the geometrical nonlinearity should be considered in the analyses of microplates. How-

ever, no literature has been reported for the nonlinear analysis of FG micropaltes based on the MST

except a recent study on post-buckling of microplates conducted by Thai et al. [56]. Therefore, the

aim of this paper is to propose an effective numerical approach to predict the geometrically nonlinear

responses of FG microplates based on the MST and the IGA approach. The displacement field is

based on the third-order shear deformation theory of Reddy [57], while the geometrical nonlinearity

is accounted by adopting the von Kármán assumption. Hamilton’s principle is utilized to construct

the weak form of the equation of motion. In addition, the NURBS basis functions are employed as

interpolation functions to satisfy the C2−continuity requirement in the discretization process. The

Newmark’s integration scheme in conjunction with Newton-Rhapson iterative procedure is adopted

for the nonlinear static and dynamic analysis. Verification studies are also performed to prove the ac-

curacy of the present approach. The influences of the size effect, material gradient indices, boundary

conditions and thickness ratios on the nonlinear responses of FG microplates are firstly investigated

through various parametric studies.

2. Plate formulations

2.1. Material properties of FGMs

As described in Fig. 1, the in-plane coordinates x and y are located in the midplane Ω of the

plate having the thickness of h, while the z-axis is normal to the midplane. According to the rule of
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mixture, the variation of material properties throughout the plate thickness is expressed by

P (z) = (Pc − Pm)

(
z

h
+

1

2

)n
+ Pm (1)

where P (z) is a typical material property, such as Young’s modulus E(z), Poisson’s ratio ν(z),

density ρ(z). Pc and Pm represent the properties of ceramic and metal surfaces, respectively, and

the gradient index n is used to describe the profile of material variation. It can be seen that a single

ceramic or metal plate is obtained when the gradient index n is prescribed as 0 or∞.

2.2. Modified strain gradient theory

Based on the MST proposed by Lam et al. [10], the virtual strain energy stored in an elastic body

is expressed as

δU =

∫
V

(
σijδεij + piδςi + τ

(1)
ijkδη

(1)
ijk +ms

ijδχ
s
ij

)
dV (2)

where the classical stress and high-order stresses are given as follows

σij = 2µεij + λεkkδij; pi = 2µl20ςi; τ
(1)
ijk = 2µl21η

(1)
ijk; m

s
ij = 2µl22χ

s
ij (3)

in which l0, l1 and l2 are the material length scale parameters. λ and µ denote the Lamé constants:

λ =
νE(z)

[1 + ν(z)] [1− 2ν(z)]
; µ =

E(z)

2 [1 + ν(z)]
(4)

The classical strain tensor εij and high-order strain gradient tensors, namely the dilatation gradient

tensor ζi, the deviatoric stretch gradient tensor η(1)
ijk and the symmetric part of rotation gradient tensor

χsij , are given as follows

εij =
1

2
(ui,j + uj,i + um,ium,j) ; (5a)

ςi = εmm,i (5b)

η
(1)
ijk = ηsijk −

1

5

(
δijη

s
mmk + δjkη

s
mml + δkiη

s
mmj

)
; ηsijk =

1

3
(ui,jk + uj,ki + uk,ij) (5c)

χsij =
1

4
(eimnun,mj + ejmnun,mi) (5d)

where ui denote the components of displacement vector, δij and eijk are the Kronocker delta and

permutation symbol, respectively.

2.3. Kinematics

The displacement field according to the third-order shear deformation plate theory [57] is ex-

pressed as follows

u1 = u+ f (z) θx − g (z)w,x

u2 = v + f (z) θy − g (z)w,y

u3 = w

(6)
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where (u, v, w) and (θx, θy) are the displacements and rotations of an arbitrary point in the midplane,

and f (z) = z − 4z3/3h2; g (z) = 4z3/3h2.

By substituting Eq. (6) into Eq. (5) and adopting the von Kármán assumption, the strain-

displacement relations are obtained as follows

For the classical strains

ε = ε0 +
1

2
εnl + f (z) ε1 + g (z) ε2 (7a)

γ = f ′ (z)γ1 + (1− g′ (z))γ2 (7b)

For the dilatation gradient strains

ς = ς0 + ςnl + f (z) ς1 + g (z) ς2 (8a)

ςz = f ′ (z) ς3 + g′ (z) ς4 (8b)

For the deviatoric stretch gradient strains

η = η0 + ηnl + f ′′ (z)η1 + f ′ (z)η2 + f (z)η3 + g′′ (z)η4 + g′ (z)η5 + g (z)η6 (9)

For the symmetric part of rotation gradient strains

χ = χ0 + f ′′ (z)χ1 + f ′ (z)χ2 + f (z)χ3 + g′′ (z)χ4 + g′ (z)χ5 (10)

The linear components in above expressions can be found in [55], whilst the additional nonlinear

components are given as follows

ςnl =

 w,xw,xx + w,yw,xy

w,xw,xy + w,yw,yy

 (11a)

ςnl =

 w,xw,xx + w,yw,xy

w,xw,xy + w,yw,yy

 (11b)

ηnl =



2
5
w,xw,xx − 1

5
w,xw,yy − 2

5
w,yw,xy

−2
5
w,xw,xy − 1

5
w,yw,xx + 2

5
w,yw,yy

0

8
15
w,xw,xy + 4

15
w,yw,xx − 1

5
w,yw,yy

0

−1
5
w,xw,xx + 4

15
w,xw,yy + 8

15
w,yw,xy

0

−1
5
w,xw,xx − 1

15
w,xw,yy − 2

15
w,yw,xy

0

− 2
15
w,xw,xy − 1

15
w,yw,xx − 1

5
w,yw,yy



(11c)
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Herein, the prime notation denotes the derivative with respect to z. It is seen that the nonlinear

components are involved in the classical strain tensor, dilatation gradient tensor and deviatoric stretch

gradient tensor. However, there is no nonlinear component in the symmetric part of rotation gradient

tensor. This also signifies the superior feature of the MST over the MCT on the nonlinear analyses of

microstructures.

The constitutive relations are obtained as follows

σ̂ =



Nε

Mε

Lε

Tε

Uε


=



Aε Pε Cε 0 0

Pε Hε Fε 0 0

Cε Fε Gε 0 0

0 0 0 Āε P̄ε

0 0 0 P̄ε C̄ε







ε0

ε1

ε2

ε3

ε4


+

1

2



εnl

0

0

0

0




= D̂ε (ε̂+ ε̂nl) (12a)

p̂ =



Nς

Mς

Lς

Tς

Uς


=



Aς P ς Cς 0 0

P ς Hς F ς 0 0

Cς F ς Gς 0 0

0 0 0 Āς P̄ ς

0 0 0 P̄ ς C̄ς







ς0

ς1

ς2

ς3

ς4


+



ςnl

0

0

0

0




= D̂ς (ς̂ + ς̂nl) (12b)

τ̂ =



Nη

Mη

Lη

Tη

Sη

Uη

Rη



=



Aη P η Cη Qη P̄ η C̄η Q̄η

Pw Hη F η Y η H̄η F̄ η Ȳ η

Cw F η Gη Zη K̄η Ḡη Z̄η

Qw Y η Zη W η Īη J̄η W̄ η

P̄w H̄η K̄η Īη
_

K
η

B̄η Ōη

C̄w F̄ η Ḡη J̄η B̄η
_

I
η

Ēη

Q̄w Ȳ η Z̄η W̄ η Ōη Ēη
_

J
η







η0

η1

η2

η3

η4

η5

η6



+



ηnl

0

0

0

0

0

0




= D̂η (η̂ + η̂nl)

(12c)

m̂ =



Nχ

Mχ

Lχ

Tχ

Sχ

Uχ


=



Aχ P χ Cχ Qχ P̄ χ C̄χ

P χ Hχ F χ Y χ H̄χ F̄ χ

Cχ F χ Gχ Zχ K̄χ Ḡχ

Qχ Y χ Zχ W χ Īχ J̄χ

P̄ χ H̄χ K̄χ Īχ
_

K
χ

B̄χ

C̄χ F̄ χ Ḡχ J̄χ B̄χ
_

I
χ





χ0

χ1

χ2

χ3

χ4

χ5


= D̂χχ̂ (12d)

in which definitions of stress resultants and component of constitutive matrices are presented in de-

tails in [55].
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Based on the small strain assumption, the equation of motion without damping effect obtained

from Hamilton’s principle can be expressed with respect to the initial configuration by∫
Ω

δ

(
ε̂+

1

2
ε̂nl

)T
D̂ε

(
ε̂+

1

2
ε̂nl

)
dΩ +

∫
Ω

δ(ς̂ + ς̂nl)
T D̂ς (ς̂ + ς̂nl) dΩ+

∫
Ω

δ(η̂ + η̂nl)
T D̂ηΓη (η̂ + η̂nl) dΩ +

∫
Ω

δχ̂T D̂χΓχχ̂dΩ +

∫
Ω

δũTm¨̃udΩ =

∫
Ω

qδwdΩ (13)

where ũ =
{

ũ1 ũ2 ũ3

}T
with

ũ1 =


u

v

w

 ; ũ2 =


θx

θy

0

 ; ũ3 =


−w,x
−w,y
0

 (14)

m denotes the mass matrix, which is expressed by

m =


I1 I2 I3

I3 I4 I5

I3 I5 I6

 (15)

where

(I1, I2, I3, I4, I5, I6) =

h/2∫
−h/2

ρe (z)
(
1, f (z) , g (z) , (f (z))2, f (z) g (z) , (g (z))2) dz (16)

Γη and Γχ are diagonal matrices of coefficients as given below

diag (Γη) =
{

1 1 1 3 3 3 6 1 1 1
}

(17a)

diag (Γχ) =
{

1 1 2 1 2 2
}

(17b)

3. Solution procedure

3.1. IGA-based plate model

In this study, the IGA approach is employed to solve MST problems due to its computational effi-

ciency compared to tranditional finite element method [49]. The idea of this approach was proposed

Hughes et al. [48] by using the same basis functions for representing the geometry in Computed-

Aided Design (CAD) models and approximating the physical fields and state variables in the Finite

Element Analysis (FEA). In this method, the B-splines basis function of degree p is constructed based

on a so-called knot vector, which is defined as a set of parameters Ξ = {ξ 1, ξ2, ξ3, ..., ξi, ..., ξn+p+1} , ξi ≤

7



ξi+1 with n denoting the number of generated basis functions [58]. By using the Cox-de Boor for-

mula, the B-spline basis functions Ni,0 (ξ) are recursively generated starting with p = 0

Ni,0 (ξ) =

 1 ξi ≤ ξ < ξi+1

0 otherwise
(18)

and then, for p ≥ 1,

Ni,p =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni,p−1 (ξ) (19)

The B-splines basis functions are C∞−continuous inside a knot span and Cp−k−continuous at the

knots having multiplicity of k. This distinguishing feature makes the B-splines basis functions supe-

rior to the interpolation functions of traditional FEA. An example of the B-splines basis functions is

depicted in Fig. 2.

For 2-D problems, the NURBS basis functions Rp,q
i,j (ξ, η) are constructed from two univariate

B-spline basis functions Ni,p (ξ) and Mj,q (η) according to a tensor product:

Rp,q
i,j (ξ, η) =

Ni,p (ξ)Mi,q (η)wi,j∑n
î=1

∑m
ĵ=1Nî,p (ξ)Mĵ,q (η)wî,ĵ

(20)

where wi > 0 are the weight coefficients.

By employing the NURBS basis functions as the interpolation functions, the displacement vari-

ables are expressed by

ū =
m×n∑
c

Rc (ξ, η) dc (21)

where ū =
[
u v θx θy w

]T
, dc =

[
uc vc θxc θyc wc

]T
is the vector consisting degree

of freedoms corresponding to the control point c, m × n denotes the numbers of control points

associated with an element. By using Eq. (21), the strain tensor and other gradient tensors can be

expressed as follows

ε̂ =
m×n∑
c

Bεcdc =
m×n∑
c



B0
ε

B1
ε

B2
ε

B3
ε

B4
ε


c

dc; ς̂ =
m×n∑
c

Bςcdc =
m×n∑
c



B0
ς

B1
ς

B2
ς

B3
ς

B4
ς


c

dc; (22a)
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η̂ =
m×n∑
c

Bηcdc =
m×n∑
c



B0
η

B1
η

B2
η

B3
η

B4
η

B5
η

B6
η


c

dc; χ̂ =
m×n∑
c

Bχcdc =
m×n∑
c



B0
χ

B1
χ

B2
χ

B3
χ

B4
χ

B5
χ


c

dc (22b)

εnl = Bεnld =
m×n∑
c

ΛεcBgcdc; ςnl = Bςnld =
m×n∑
c

ΛςcBgcdc; ηnl = Bηnld =
m×n∑
c

ΛηcBgcdc

(22c)

in which Bi
ε,B

i
ς ,B

i
η and Bi

χ are the linear strain-displacement matrices given in [55]. Details of

additional nonlinear components are provided in the Appendix.

Substituting Eqs. (22) into Eq. (13), the NURBS-based formulation for the equation of motion is

expressed as

(Kε + Kς + Kη + Kχ) d + Md̈ = f (23)

in which the double dot subscript denotes the second derivative with respect to time. Kε,Kς ,Kη

and Kχ are the stiffness matrices corresponding to the strain tensor εij , the dilatation gradient tensor

ςi, the deviatoric stretch gradient tensor η(1)
ijk and the symmetric part of rotation gradient tensor χsij ,

respectively. M and f denote the global mass matrix and load vector. Expressions for the stiffness

matrices are given by

Kε =

∫
Ω

(
BT
εT D̂Bε +

1

2
BT
εT D̂Bεnl + BT

εnlD̂Bε +
1

2
BT
εnlD̂Bεnl

)
dΩ (24a)

Kς =

∫
Ω

(
BT
ςT D̂ςBς + BT

ςT D̂ςBςnl + BT
ςnlD̂ςBς + BT

ςnlD̂ςB
nl
ς + BT

g N̂ςBgς

)
dΩ (24b)

Kη =

∫
Ω

(
BT
ηTΓηD̂ηBη + BT

ηTΓηD̂ηBηnl + BT
ηnlΓηD̂ηBη + BT

ηnlΓηD̂ηBηnl + BT
g N̂ηBgη

)
dΩ

(24c)

Kχ =

∫
Ω

BT
χD̂χΓχBχddΩ (24d)

In the MST plate models based on the third-order shear deformation theory, the third-order deriva-

tives of basis functions are required to construct the stiffness matrices. As a result, the basis functions

should be C2−continuous. This demand is not a trivial task in the framework of traditional FEA.

However, with the introduction of advanced k− refinement technique [58], the continuity of basis

functions in the IGA approach is easily and naturally elevated. In order to fulfil the C2−continuity

demand, the basis functions with order of p ≥ 3 are adopted in this study.
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3.2. Nonlinear analysis

The Newton-Rapshon iterative scheme is employed herein to obtain the solution of nonlinear

problems [59]. A brief review of the procedure is given as follows. At the ith iteration, the residual

vector R and the global tangent stiffness matrix are calculated as

R
(
d(i)
)

= K
(
d(i)
)
d(i) − f (25a)

KT

(
d(i)
)

=
∂K (d)

∂d

∣∣∣∣
d(i)

+ K
(
d(i)
)

(25b)

where K = Kε+Kς+Kη+Kχ is the global stiffness matrix. After that, the incremental displacement

vector is calculated by

δd(i) = −K−1
T

(
d(i)
)

R
(
d(i)
)

(26)

in which KT is the tangent stiffness matrix given in details in [56]. After the increment displacement

vector δd(i) is computed, the displacement vector at the (i+ 1)th iteration is computed by

d(i+1) = d(i) + δd(i) (27)

The iterative procedure is terminated when the difference measured using Euclidean norm between

the solutions obtained from two consecutive iterations is less than the prescribed tolerance ε:∥∥d(i+1) − d(i)
∥∥

‖d(i+1)‖
≤ ε (28)

For the nonlinear transient analysis of microplates under dynamic loadings, the Newmark’s inte-

gration scheme [60] is adopted in this study. The initial values of displacements d, velocities ḋ and

accelerations d̈ are prescribed to be zeros. Based on the average acceleration scheme with γ = 1/2

and β = 1/4, the increments of displacements, velocities and accelerations between the time step ith

and (i+ 1)th are briefly presented as follows:

∆di = K̂−1∆f̂i (29a)

∆ḋi =
γ

β∆t
∆di −

γ

β
ḋi + ∆t

(
1− γ

2β

)
d̈i (29b)

∆d̈i =
1

β(∆t)2 ∆di −
1

β∆t
ḋi −

1

2β
d̈i (29c)

where K̂ and ∆f̂i are the effective global stiffness matrix and the increment force vector, respec-

tively, and ∆t denotes the time interval, and

K̂ = K +
1

β(∆t)2 M (30a)

∆f̂i = ∆fi + aḋi + bd̈i (30b)
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in which

a =
1

β∆t
M; b =

1

2β
M (31)

For the nonlinear transient analysis, the effective global stiffness matrix K̂ is dependent on the

displacement vector at the current time step, and thus the Newton-Raphson iterative procedure is per-

formed for Eq. (29a) with the effective global stiffness matrix K̂ being replaced by the corresponding

tangent matrix K̂T . A flow chart of the proposed program used for transient analysis is given in Fig.

3.

4. Numerical results and discussion

In this section, numerical studies on the nonlinear static bending and transient linear/nonlinear

responses of FG microplates are conducted. The following material properties of FG microplates

are used henceforward unless otherwise stated: Em = 1.44×109 N/m2, ρm = 1.22×103 kg/m3, Ec =

14.4×109, ρc = 12.2×103 kg/m3 and νc = νm = 0.38, and the length scale parameter is l̄ = 17.6×10−6

m. In addition, it is assumed that all three length scale parameters have identical values l0 = l1 = l2

= l. Different types of boundary conditions for rectangular plates (SSSS1, SSSS3 and CCCC) and

circular plates (Sr and Cr) are considered. Specifications of those boundary conditions are retrieved

from [59, 61] and expressed below:

SSSS1

u = θx = w = 0 at y = 0 and y = b (32a)

v = θy = w = 0 at x = 0 and x = a (32b)

SSSS3

u = v = w = 0 at all edges (33)

CCCC

u = v = θx = θy = w =
∂w

∂x
= 0 at x = 0 and x = a (34a)

u = v = θx = θy = w =
∂w

∂y
= 0 at y = 0 and y = b (34b)

Sr

u = v = w = 0 (35)

Cr

u = v = θx = θy = w =
∂w

∂n
= 0 (36)
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where ∂w
∂n

is the the normal derivative operator. It should be noted that the boundary condition relating

to the derivative ofw is simply treated in the IGA approach by imposing zero values for the transverse

displacement in all control points located on the boundaries and those adjacent to them. As discussed

in Kim and Reddy [61], the boundary conditions concerning to the symmetric part of rotation tensor

should be accounted since they are defined based on the displacement filed. Nevertheless, the effect

of those boundary conditions on the results are not much considerable as observed in the Ref. [61].

4.1. Convergence and verification studies

In Table. 1, the results of displacements w/h obtained from different meshes and polynomial

orders of B-spline basis functions (p = q) are tabulated. The results are presented for both MCT and

MST theories. The microplate in this example is assumed to be square (h = 2l, a = b = 20h, l =

l̄), subjected to a uniformly distributed load q0 = 5.4×106 N/m2, and made from Epoxy, where E

= 1.44×109 N/m2, ν = 0.38, l̄ = 17.6×10−6 m. The MCT model is obtained by setting the length

scale parameters l0 = l1 = 0. In general, the obtained results converge quickly with the increase of

mesh size, and the converged solutions are obtained with a mesh of 16×16 and p = q = 3. Therefore,

this mesh is used in the remaining calculations. Examples of the 16×16 meshes of circular and

rectangular geometries (p = q = 3) are illustrated in Fig. 4.

To verify the accuracy and reliability of the present approach, the nonlinear static bending be-

haviour of square FG microplates based on the MCT is presented. The obtained results are then

compared with those given by Kim and Reddy [61]. Herein, a uniformly distributed load of q0 =

5.4×106 N/m2 is incrementally applied. The results for SSSS1 and CCCC microplates are plotted

in Fig. 5. It is seen that there is a good agreement between the results obtained from the present

approach and those from Ref. [61]. The value of h/l = ∞ herein denotes the classical case where

the size effect is neglected. The results also show that the displacements increase with the increase

of the gradient index. Moreover, the results decrease when the ratio h/l becomes smaller since the

size effect accordingly becomes more considerable. Fig. 6 compares the nonlinear displacements

obtained from the MCT and the MST of a square FG microplate. It can be observed from the results,

the displacements obtained from the MST are smaller than that of the MCT. This is due to the fact that

the MST involves more additional length scale parameters and more nonlinear components compared

to the MCT as mentioned earlier.

In order to prove the reliability of the present approach for the transient analysis, a square or-

thotropic plate 0.25 m in length and 0.05 m in thickness is considered. It is subjected to a uniform

step load with q0 = 106 N/m2. The material properties are given as follows: E1 = 525×109 N/m2, E2

= 525×109 N/m2, G12 = G13 = G23 = 10.5×109 N/m2, ν12 = 0.25 and ρ = 800 kg/m3. The chosen
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time step ∆t is 5×10−6 s. As depicted in Fig. 7, an excellent agreement between the results obtained

from the present approach and those obtained from the finite strip method [62] is archived.

4.2. Parametric study

4.2.1. Nonlinear response of FG microplates under static loadings

In this example, the nonlinear static responses of FG microplates based on the MST are addressed.

A uniformly distributed load having intensity of q0 = 5.4×106 N/m2 is incrementally applied. The

influences of gradient index and size effect on the nonlinear responses of FG microplates are depicted

in Figs. 8 -10. It is obvious to see that the largest displacements are obtained when a pure metal plate

(n =∞) is considered or when the size effect is dismissed (h/l =∞). In addition, the displacements

decrease by reducing the gradient indices and ratios of h/l or increasing the length scale parameter

l. This could be explained that the change of gradient index leads to an increase in the bending

stiffness of the plates as more ceramic phrase in the plate volume is given, while the change in length

scale parameter results in a greater influence of the size effect. Consequently, the smallest results are

obtained when the plate is full ceramic or its sizes are so small that the thickness is equal to or smaller

than the length scale parameter. Furthermore, when the size effect becomes most pronounced, e.g.

h/l = 1 and 2 or when l ≥ l̄, it is seen that the response of the plate is almost linear.

The influence of boundary conditions on the nonlinear bending behaviour of FG microplates is

illustrated in Fig. 11. It can be seen that the results obtained in the case of immovable simply

supported (SSSS3) produces slightly larger results than those in the case of movable counterpart

(SSSS1) when 50 ≤ q̄ ≤ 100 within the current consideration (h/l = 5 and n = 5). However, the

SSSS1 boundary condition produces largest displacements in general, followed by the SSSS3 and

the CCCC boundary conditions. In Fig. 12, the influence of thickness ratios is also presented. The

results obtained from thin to moderately thick plates (a/h = 100 to 20) are not much different to each

others. However, the shear deformation effect is clearly observed when thick plates (a/h = 5-10) are

considered.

The influences of different loading intensities, gradient indices, size effect and thickness ratios

on the stress variations through the plate thickness are illustrated in Figs. 13-16, respectively. In

general, the stress profiles vary in accordance with the distributions of the material phrases, whereby

the smallest stresses are obtained when a full metal plates is considered. Also, the size effect is

observed to play a significant role on the stress results. It is observed that the stresses are reduced

remarkable when the size effect is most considerable (see Fig. 15). By increasing the thickness ratio,

it is obvious to see that the stresses increases as the general stiffness of the plate is reduced (see

Fig. 16). Overall, when the effect of material variations is considered, the larger displacements and
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smaller stresses are obtained with greater gradient indices. In addition, it is interesting to see that

both displacement and stress results are reduced with the increase of size effect.

4.2.2. Nonlinear response of FG microplates under dynamic loadings

In this section, transient responses of FG microplates under dynamic loadings are analysed. These

plates are assumed to be subjected to time-dependent distributed loads, where q = q0 sin
(
πx
a

)
cos
(
πx
b

)
F (t)

for rectangular plates and q = q0F (t) for circular plates, q0 = 2.7×106 N/m2, λ = 105 s−1, ts =

1.5×10−5 s, and the time step4t employed herein is 10−7 s. Time history of F (t) is depicted in Fig.

17.

F (t) =


 1, t ≤ ts

0, t > ts
Step load

e−λt Exponential blast load

(37)

Figs. 18 -20 illustrate the influences of size effect and geometrical nonlinearity on the transient

responses of FG microplates. In general, it can be seen that the linear and nonlinear responses to

dynamic loadings are distinguishable, except the cases when h/l = 1 or l ≥ l̄ where the size effect

becomes most pronounced. The nonlinear response generally produces smaller magnitudes of dis-

placement and periods of motion. In addition, the largest discrepancies between linear and nonlinear

results are observed in the classical case when the size effect is neglected (h/l = ∞). When the

influence of the size effect increases, those differences reduce and dismisses at h/l = 1 or l ≥ l̄. Both

magnitudes of displacement and periods of motion decrease with the increase of the size effect. This

observation could be explained due to the elevation on bending rigidity of the size effect, which is

also discussed in the previous section.

The influences of different gradient indices and geometrical nonlinearity on the dynamic re-

sponses of FG microplate are described in Fig. 21. It is seen that the results obtained form the

linear and nonlinear analyses are completely different to each other. The magnitudes of displace-

ments and periods of motion obtained from the nonlinear analysis always smaller than those of the

linear counterpart, and these differences reduce with the decrease of the gradient index. For both lin-

ear and nonlinear results, larger displacement magnitudes are obtained with greater gradient indices

since the plates become more flexible. The differences between the periods of motions are not clearly

distinguishable in the linear analysis. However, when the nonlinearity is considered, the effect of

gradient index are observable whereby larger periods of motion are obtained with smaller gradient

indices. The differences between linear and nonlinear results could be attributed to the inclusion

of membrane stress in the geometrical stiffness components when the geometrical nonlinearity is

accounted.
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In order to investigate the influence of boundary conditions on the linear and nonlinear responses,

the center displacements of FG microplates with the SSSS1, SSSS3 and CCCC boundary conditions

are presented in Fig. 22. It can be observed that the maximum and minimum values of both magni-

tudes of displacement and periods of motion are obtained in the cases of SSSS1 and CCCC boundary

conditions, respectively. Furthermore, the responses of FG microplates with the SSSS1 and SSSS3

boundary conditions are close to each other in linear analysis. However, when the geometrical non-

linearity is considered, the results obtained from these cases are clearly distinguishable. It is also

observed in Fig. 22 that the geometrically nonlinear responses of simply supported boundary condi-

tions (SSSS1 and SSSS3) are more considerable than that of clamped one (CCCC). The reason of

this phenomenon could be attributed to the fact that clamped boundary condition has more substantial

influence on restraining the plates from stretching under external load than the other boundary types.

Finally, the influence of thickness ratios on the transient responses to dynamic loadings is dis-

cussed. As depicted in Fig. 23, this effect has a significant influence on both linear and nonlinear

responses of FG microplates. The distinctions between the linear and nonlinear results are seen

clearly when the plates are relatively thin. For instance, when a/h = 50, there are some minor fluc-

tuations in each period in the nonlinear responses. In addition, the responses obtained from linear

and nonlinear analyses are completely different in both frequencies and displacement magnitudes.

However, when the plate becomes moderately thick (a/h = 20), the differences between the linear

and nonlinear analyses become less considerable, and they are dismissed when the thick plates are

considered (a/h = 10). This is due to the fact that the influence of geometrical nonlinearity mainly

depends on geometrical stiffness, which plays more important role in thin plates. When it comes to

thick plates, the responses of the plates are significant affected by the shear deformation phenomenon

and the influence of geometrical stiffness becomes insignificant.

5. Conclusions

An IGA-based numerical approach was successfully developed in this study to investigate the

nonlinear responses of FG microplates under static and dynamic loadings. The size effect is ac-

counted based on the MST with three length scale parameters. The third-order shear deformation

theory and von Kármán assumption are adopted to account for the shear deformation effect and geo-

metrical nonlinearity. The rule of mixture is also utilized to represent the material variations through

the plate thickness. By using the NURBS basis functions, the C2−continuity requirement is naturally

satisfied. The Newton-Raphson iterative procedure and the Newmark’s integration scheme are em-

ployed to find the nonlinear and transient solutions. The accuracy of present model is proven in the

verification studies. Furthermore, numerical results are also presented to investigate the influences of
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the size effects, gradient indices, boundary conditions and thickness ratios on the nonlinear behaviour

of FG microplates. Finally, some major conclusions are emphasized as follows:

• The IGA approach has been successfully employed to study the geometrically nonlinear prob-

lems of FG microplates.

• The size-dependant phenomenon in accordance with the MST plays a considerable role on the

geometrically nonlinear responses of microplates. The stiffness of the plates increases remark-

ably, consequently the obtained results for displacements, stresses and periods of motions are

smaller than those obtained form the classical theory.

• The increase of the gradient index produces larger displacements in nonlinear static bending

analysis and smaller periods of motions in the nonlinear transient analysis.

• In the transient analysis, the influences of boundary conditions are seen more obviously when

the geometrical nonlinearity is considered.

• The influence of thickness ratios on the nonlinear responses of FG microplates is significant,

especially for the plates subjected to dynamic loadings.

In conclusion, it can be said that the proposed IGA-based numerical procedure is accurate and

robust computational tool for the nonlinear analysis of FG microplates under static and dynamic

loadings.
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Appendix

Details of additional nonlinear components in the strain-displacement matrices are given by

Bg =

 0 0 0 0 Rc,x

0 0 0 0 Rc,y

 ; Bgς =


0 0 0 0 Rc,xx

0 0 0 0 Rc,yy

0 0 0 0 Rc,xy

 (A-1)
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Bgη =



0 0 0 0 2
5
Rc,xx − 1

5
Rc,yy

0 0 0 0 −1
5
Rc,xx + 2

5
Rc,yy

0 0 0 0 −2
5
Rc,xy

0 0 0 0 −1
5
Rc,xx + 4

15
Rc,yy

0 0 0 0 4
15
Rc,xx − 1

5
Rc,yy

0 0 0 0 8
15
Rc,xy

0 0 0 0 −1
5
Rc,xx − 1

15
Rc,yy

0 0 0 0 − 1
15
Rc,xx − 1

5
Rc,yy

0 0 0 0 − 2
15
Rc,xy



(A-2)

Λε =


w,x 0

0 w,y

w,y w,x

 ; Λς =

 w,xx w,xy

w,xy w,yy

 (A-3)

Λη =



2
5
w,xx − 1

5
w,yy −2

5
w,xy

−2
5
w,xy −1

5
w,xx + 2

5
w,yy

0 0

8
15
w,xy

4
15
w,xx − 1

5
w,yy

0 0

−1
5
w,xx + 4

15
w,yy

8
15
w,xy

0 0

−1
5
w,xx − 1

15
w,yy − 2

15
w,xy

0 0

− 2
15
w,xy − 1

15
w,xx − 1

5
w,yy



(A-4)

The matrices including inplane stress resultants are presented as follows

N̂ε =

 Nx Nxy

Nxy Ny

 ; N̂ς =

 N ς
x 0 N ς

y

0 N ς
y N ς

x

 (A-5)

N̂η =

 Nη
xxx 0 Nη

yyy 3Nη
xyy 0 3Nη

xxy 3Nη
xzz 0 3Nη

yzz

0 Nη
yyy Nη

xxx 0 3Nη
xxy 3Nη

xyy 0 3Nη
yzz 3Nη

xzz

 (A-6)
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Table 1: Center displacements w/h of rectangular epoxy microplates under uniformly distributed load with different

mesh sizes

q̄ = q0a4

Eh4

Theory p-order Mesh 50 100 200 400 600

MCT 3 4×4 0.9234 1.4859 2.1838 3.0332 3.6196

8×8 0.9213 1.4825 2.1799 3.0314 3.6218

12×12 0.9213 1.4826 2.1803 3.0325 3.6240

16×16 0.9213 1.4827 2.1804 3.0327 3.6243

20×20 0.9213 1.4827 2.1804 3.0327 3.6243

4 4×4 0.9221 1.4846 2.1838 3.0361 3.6253

8×8 0.9213 1.4827 2.1803 3.0326 3.6241

12×12 0.9213 1.4827 2.1804 3.0327 3.6243

16×16 0.9213 1.4827 2.1804 3.0327 3.6243

20×20 0.9213 1.4827 2.1804 3.0327 3.6243

MST 3 4×4 0.4926 0.9290 1.6066 2.5016 3.1178

8×8 0.4915 0.9270 1.6027 2.4954 3.1103

12×12 0.4915 0.9270 1.6028 2.4957 3.1109

16×16 0.4915 0.9270 1.6028 2.4958 3.1111

20×20 0.4915 0.9270 1.6028 2.4958 3.1111

4 4×4 0.4918 0.9276 1.6045 2.4996 3.1163

8×8 0.4915 0.9270 1.6029 2.4959 3.1111

12×12 0.4915 0.9270 1.6028 2.4958 3.1111

16×16 0.4915 0.9270 1.6028 2.4958 3.1111

20×20 0.4915 0.9270 1.6028 2.4958 3.1111
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Figure 1: Configurations of rectangular and circular FG microplates
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Figure 3: Flowchart of the proposed program used for transient analysis
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Figure 4: 16×16 meshes of circular and rectangular geometries (p = q = 3)
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Figure 9: Influences of the size effect on the nonlinear static responses of a square SSSS1 FG microplate (n = 5)
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Figure 14: Influences of the gradient indices on the variations of classical stresses through the thickness of a square CCCC
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Figure 15: Influences of the size effects on the variations of classical stresses through the thickness of a square CCCC FG
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Figure 16: Influences of thickness ratios on the variations of classical stresses through the thickness of a square CCCC

FG microplate (n = 0.5, h/l = 5, q = 0.5q0, l = l̄)
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Figure 19: Influences of size effect via ratios of h/l on the linear and nonlinear responses of a circular Cr FG microplate

subjected to dynamic loadings (r = 10h, n = 10, l = l̄)
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Figure 20: Influences of length scale parameters the linear and nonlinear responses of a square SSSS1 FG microplate

subjected to explosive blast load (a/h = 20, n = 5)
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Figure 21: Influences of gradient indices on the linear and nonlinear responses of a square SSSS1 FG microplate subjected

to dynamic loadings (h/l = 5, a/h = 20, l = l̄)
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Figure 22: Influences of boundary conditions on the linear and nonlinear responses of a square FG microplate subjected

to dynamic loadings (n = 0.5, h/l = 5, a/h = 20, l = l̄)
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Figure 23: Influences of thickness ratios on the linear and nonlinear responses of a square CCCC FG microplate subjected

to dynamic loadings (n = 0.5, h/l = 5, l = l̄)
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