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Abstract

This study aims to investigate the postbuckling response of functionally graded (FG) nanoplates by

using the nonlocal elasticity theory of Eringen to capture the size effect. In addition, Reddy’s third-

order shear deformation theory is adopted to describe the kinematic relations, while von Kámán’s

assumptions are used to account for the geometrical nonlinearity. In order to calculate the effective

material properties, the Mori-Tanaka scheme is adopted. Governing equations are derived based on

the principle of virtual work. Isogeometric analysis (IGA) is employed as a discretization tool, which

is able to satisfy the C1-continuity demand efficiently. The Newton-Raphson iterative technique with

imperfection is employed to trace the postbuckling paths. Various numerical studies are carried out

to examine the influences of gradient index, nonlocal effect, ratio of compressive loads, boundary

condition, thickness ratio and aspect ratio on the postbuckling behaviour of FG nanoplates.
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1. Introduction

The use of nanostructures in modern technology is increasingly attracting the attention of many

researchers recently owing to their advanced mechanical and electric characteristics [1]. Nanobeams

and nanoplates are frequently adopted as fundamental components in biosensors, atomic force mi-

croscopes, micro-electro-mechanical systems, nano-electro-mechanical systems. Therefore, a com-

prehensive understanding of their structural behaviour is needed to be investigated. In fact, the me-

chanical responses of those small-scale structures are significantly size-dependent as experimentally

verified. In order to investigate the behaviour of nanostructures, three common approaches have been
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used in the literature: atomistic model [2], hybrid atomistic-continuum mechanic model [3], and non-

classical continuum mechanic model [4, 5]. In general, the two former approaches are less popular

in practice due to their highly computational cost and complication. In contrast, the non-classical

continuum mechanic model is widely employed owing to its simplicity. Based on this model, various

theories have been proposed in the literature to capture the size effect in small-scale structures [6].

For nanostructures, the nonlocal elasticity theory [7, 8, 9, 10] is broadly used. According to this

theory, the stress at a point of a continuum is assumed to be dependent not only on the strains at that

point but also on the strains at other points in the body.

In addition to conventional analyses (e.g. static bending, free vibration, buckling), postbuckling

analysis is important for proper design of nanostructures. However, it is seen that there has been only

a small number of studies investigating this problem based on the nonlocal elasticity theory in the

literature [6]. In a comprehensive study, Shen [11] investigated the nonlinear bending, vibration and

postbuckling responses of a stiff thin film resting on an elastic foundation. The author also considered

the thermal effect in this study. However, the solutions were only given for simply supported plates.

The postbuckling analysis of graphene sheets in a polymer environment was addressed in the work

of Naderi and Saidi [12]. The classical plate theory was employed to model the thin graphene sheets

subjected to uniaxial and biaxial compressive loads, while the solutions were obtained by using the

Galerkin method. By employing the first-order shear deformation theory, Ansari and Gholami [13]

examined the buckling and postbuckling behaviour of magneto-electro-thermo nanoplates. In addi-

tion, the general differential quadrature method was adopted in their study to obtain the solutions.

The buckling and postbuckling responses of peizoelectric nanoplates were also reported by Liu et

al. [14]. The authors also adopted the first-order shear deformation theory to describe the kinematic

relations, and the solutions were obtained based on the differential quadrature method. Gholami and

Ansari [15] proposed a unified high-order shear deformation model to investigate the postbuckling

behaviour of rectangular piezoelectric-piezomagnetic nanoplates. Based on the Isogeometric analysis

(IGA) approach, Soleimani et al. [16] studied the postbuckling response of orthotropic single-layered

graphene sheets under in-plane loadings. The nonlocal plate in this study was also modelled based

on the assumptions of first-order shear deformation theory. Overall, it is seen that most of current

studies on postbuckling analysis of nanoplates mainly focused on the size effect of graphene sheets,

thin films or piezoelectic nanoplates.

In recent years, functionally graded materials (FGMs) appears to be an advanced composite ma-

terial whose properties vary smoothly in prescribed directions. They have been increasingly used

in small scale structures due to their favourable characteristics. Their application can be found in
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various components in high-tech devices such as Micro-electromechanical Systems (MEMS) and

Nano-electromechanical Systems (NEMS). FG nanoplates in these devices could be manufactured

based on the multilayer process which combines both chemical vapour deposition and high-growth

rate plasma-enhanced chemical vapour deposition bulk layer [17]. Although the linear and nonlinear

responses of nonlocal FG nanoplates were successfully studied by Natarajan et al. [18], Nguyen et

al. [19] and Phung-Van et al. [20], the investigation on their postbuckling behaviour is still limited.

Therefore, the main objective of this study is to study the postbuckling response of FG nanoplates

based on the nonlocal elasticity theory.

In this study, the Mori-Taknaka scheme [21] is used to calculate the effective material properties

of FGMs. The third-order shear deformation theory of Reddy [22] is employed to eliminate the

use of shear correction factor. Furthermore, the geometrical nonlinearity is accounted based on the

von Kámán’s assumptions. The nonlinear governing equations are derived based on the principle of

virtual work. The system equation is obtained by employing the IGA approach proposed by Hudges et

al. [23] as discretization tool, which is able to satisfy the C1-continuity requirement of interpolation

functions naturally and efficiently [24]. The Newton-Raphson iterative scheme is adopted to trace

the postbuckling paths. Geometrical imperfections are imposed to the initial geometry of the plate

to obtain the bifurcation buckling paths. Several numerical examples are also presented to find out

the influences of gradient index, nonlocal parameter, ratio of in-plane compressive loads, boundary

condition, thickness ratio and aspect ratio on the postbucking response of FG nanoplates.

2. Material descriptions

As described in Fig. 1, a rectangular FGM plate consisting of two distinct materials with their

properties varying continuously through the plate thickness is investigated in this study. The top (z

= h/2) and bottom (z = −h/2) surfaces are prescribed ceramic and metal constituents, respectively.

Volume fractions of ceramic (Vc) and metal (Vm) constituents at an arbitrary point in the plate’s

volume are calculated by

Vc =

(
z

h
+

1

2

)κ
; Vm = 1− Vc (1)

where κ denotes the gradient index.

According to the Mori-Tanaka scheme [21], the effective values of elastic modulus and Poisson’s

ratio are given by

Ee =
9Keµe

3Ke + µe
(2)

νe =
3Ke − 2µe

2 (3Ke + µe)
(3)
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where Ke and µe are the effective bulk and shear modulus, which are defined as follows

Ke −Km

Kc −Km

=
Vc

1 + Vm
Kc−Km

Km+4/3µm

(4)

µe − µm
µc − µm

=
Vc

1 + Vm
µc−µm
µm+f1

(5)

in which f1 = µm (9Km + 8µm)/(6Km + 2µm)

3. Nonlocal post-buckling equations

3.1. Overview of nonlocal elasticity theory

According to the nonlocal elasticity theory of Eringen [7, 8, 9, 10] , the stress at a point x in an

elastic continuum body is not only calculated based on the strain at its point but also based on the

strains at all other points. The nonlocal stress tensor at point x is given by

σ =

∫
V

ζ (|x′ − x| , τ)t (x′) dx′ (6)

where t is the classical macroscopic stress tensor at point x. ζ (|x′ − x| , τ) is the kernel function

describing the nonlocal modulus. τ = e0a/` is a nonlocal parameter describing the nonlocal effect.

Herein, e0 denotes a material constant, a represents an internal characteristic length (e.g. lattice

parameter, granular distance, carbon-carbon bond length for graphene sheets), and ` is an external

characteristic length (e.g. crack length, graphene sheet length, wave length). The classical stress

tensor t relates to the strain tensor according to the Hooke’s law as

t (x) = C (x) : ε (x) (7)

In order to make the integral equation become solvable, Eq. (6) is simplified by applying a linear

differential operatorL = 1−µ∇2 proposed by Eringen [8], where µ = (e0a)2 and∇2 is the Laplacian

operator. Then, Eq. (6) can be rewritten as

(
1− µ∇2

)
σ = C : ε (8)

3.2. Kinematic relations and governing equation

By using Reddy’s third-order shear deformation theory, the displacement field in Cartesian coor-

dinate system is given by
u1

u2

u3

 =


u

v

w

+ f (z)


θx

θy

0

+ g (z)


−∂w

∂x

−∂w
∂y

0

 (9)
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where u, v and w denote the displacement components in x, y and z coordinates, θx and θy are the

angular displacements in the middle surface, and f (z) = z − 4z3/3h2, g (z) = 4z3/3h2

The strain-displacement relations based on von Kámán’s assumptions for large displacements and

moderate rotations are given as follows

εb = ε0 +
1

2
εnl + f (z) ε1 + g (z) ε2 (10a)

εs = f ′ (z)γ1 + (1− g′ (z))γ2 (10b)

where

εb =


εxx

εyy

γxy

 ; ε0 =


∂u
∂x

∂v
∂y

∂u
∂y

+ ∂v
∂x

 ; εnl =


(
∂w
∂x

)2(
∂w
∂y

)2

2∂w
∂x

∂w
∂y

 ; ε1 =


∂θx
∂x

∂θy
∂y

∂θx
∂y

+ ∂θy
∂x

 ; ε2 =


−∂2w

∂x2

−∂2w
∂y2

−2 ∂2w
∂x∂y


(11a)

εs =

 γxz

γyz

 ; γ1 =

 θx

θy

 ;γ2 =

 ∂w
∂x

∂w
∂y

 (11b)

The stress resultants defined based on the nonlocal stresses are given by

(N,M,L) =

h/2∫
−h/2


σxx

σyy

σxy

 (1, f (z) , g (z)) dz (12a)

(T,U) =

h/2∫
−h/2

 σxz

σyz

 (f ′ (z) , 1− g′ (z)) dz (12b)

Then, the constitutive equation expressed in terms of nonlocal stress resultants and strains is given

by (
1− µ∇2

)
σ̂ = D̂ε

(
ε̂+

1

2
ε̂nl

)
(13)

or in matrix form

(
1− µ∇2

)


N

M

L

T

U


=



A P C 0 0

P H F 0 0

C F G 0 0

0 0 0 As Ps

0 0 0 Ps Cs







ε0

ε1

ε2

γ1

γ2


+

1

2



εnl

0

0

0

0




(14)

in which

(A,P,C) =

h/2∫
−h/2

(1, f (z) , g (z)) Qbdz (15a)

5



(H,F,G) =

h/2∫
−h/2

(
(f (z))2, f (z) g (z) , (g (z))2)Qbdz (15b)

(As,Ps,Cs) =

h/2∫
−h/2

(
(f ′ (z))

2
, (f ′ (z)) (1− g′ (z)) , (1− g′ (z))

2
)

Qsdz (15c)

For FGMs, Qb and Qs are given as follows

Qb =
E (z)

1− [ν (z)]2


1 ν (z) 0

ν (z) 1 0

0 0 (1− ν (z))/2

 ; Qs =
E (z)

(1 + ν (z))

 1 0

0 1

 (16)

According to the elasticity theory, the virtual strain gradient and the virtual work of external

distributed traction force and boundary traction force are given as follows

δU =

∫
V

σijδεijdV =

∫
V

δεTσdV (17a)

δWf = −
∫
Ω

f̂iδuidΩ = −
∫
Ω

δuf
T f̂dΩ (17b)

δWt = −
∫
S

t̂iδuidS = −
∫
S

δut
T t̂dS (17c)

where Ω denotes the domain of middle plate, S is the boundary where the traction force t̂ is applied,

f̂ is the surface distributed traction load, ut and uf are the corresponding degrees of freedom for each

loading cases, respectively.

To consider the nonlocal effect, the differential operatorL = 1−µ∇2 is multiplied to the equation

of principle of virtual work δU + δW = 0. In addition, by adopting an assumption that the strains

are small, the governing equation for postbuckling problems of nonlocal plates derived from the

principle of virtual work can be expressed with respect to the initial configuration for the cases of

surface distributed traction force and boundary traction force as follows∫
Ω

δ

(
ε̂+

1

2
εnl

)T
D̂ε

(
ε̂+

1

2
εnl

)
dΩ =

∫
Ω

δuT
(
1− µ∇2

)
f̂dΩ (18)

∫
Ω

δ

(
ε̂+

1

2
εnl

)T
D̂ε

(
ε̂+

1

2
εnl

)
dΩ =

∫
S

(
δuT − µdδu

T

dS2

)
t̂dS (19)
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4. IGA-based finite element formulations

According to the IGA approach, the middle domain Ω of a rectangular plate can be expressed as

a b-spline surface

Ω (x, y) =
n∑
i=1

m∑
j=1

Rp.q
i,j (ξ, η)Bi,j (20)

where Hp.q
i,j (ξ, η) are the 2-dimensional b-spline basis functions and Bi,j is the control net. The

b-spline basis functions are constructed based on a tensor product of two univariate b-spline basis

functions as

Rp,q
i,j (ξ, η) =

n∑
i=1

m∑
j=1

Ni,p (ξ)Mj,q (η) (21)

in which, Ni,p (ξ) andMj,q (η) are the basis functions in ξ and η directions. These two basis functions

are defined based on two knot vectors Ξ = {ξ1, ξ2, ξ3, ..., ξn+p+1} and Ψ = {η1, η2, η3, ..., ηn+q+1}

according to the Cox-de Boor recursion formula as follows. For p = 0

Ni,0 (ξ) =

 1 ξi ≤ ξ < ξi+1

0 otherwise
(22)

and for p ≥ 1

Ni,p =
ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni,p−1 (ξ) (23)

More details of b-spline basis functions, IGA techniques and implementations could be found in

[23, 25].

In this study, the IGA approach is employed to discretize the governing equation presented in Eq.

(19). The displacement variables are approximated by using the b-spline basis function as

u =

ncp∑
c=1

Rcdc (24)

where ncp denotes the number of control points in an element, u =
{
u v θx θy w

}T
, and

d =
{
u v θx θy w

}T
c

is the degrees of freedom associated with a control point.

Substitute Eq. (24) into Eq. (11), the strains are interpolated as follows

ε0

ε1

ε2

γ1

γ2


=

ncp∑
c



B0

B1

B2

B3

B4


c

dc (25a)

εnl =

ncp∑
c

Bnlcdc =

ncp∑
c

ΛBgcdc (25b)
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where

B0 =


∂R
∂x

0 0 0 0

0 ∂R
∂y

0 0 0

∂R
∂y

∂R
∂x

0 0 0

 (26a)

B1 =


0 0 ∂R

∂x
0 0

0 0 0 ∂R
∂y

0

0 0 ∂R
∂y

∂R
∂x

0

 (26b)

B2 =


0 0 0 0 −∂2R

∂x2

0 0 0 0 −∂2R
∂y2

0 0 0 0 −2 ∂2R
∂x∂y

 (26c)

B3 =

 0 0 Rc 0 0

0 0 0 Rc 0

 (26d)

B4 =

 0 0 0 0 ∂R
∂x

0 0 0 0 ∂R
∂y

 (26e)

Λ =


∂w
∂x

0

0 ∂w
∂y

∂w
∂y

∂w
∂x

 (26f)

Bg =

 0 0 0 0 ∂R
∂x

0 0 0 0 ∂R
∂y

 (26g)

In the next step, the system equation is obtained by using Eq. (25) in Eq. (19) as follows

Kd = f (27)

where K is the stiffness matrix, f is the load vector of either surface distributed traction load (f = ff )

or boundary traction load (f = ft).

K =

∫
Ω

(BLT + BNLT )T D̂

(
BL +

1

2
BNL

)
dΩ (28a)

ff =

∫
S

(Bf1 − µBf2)T f̂dS (28b)

ft =

∫
S

(N1 − µN2)T t̂dS (28c)
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where

BL =



B0

B1

B2

B3

B4


; BLT =



BT
0

BT
1

BT
2

BT
3

BT
4


; BNL =



Bnl

0

0

0

0


; BNLT =



BT
nl

0

0

0

0


(29a)

Bf1 =
[

0 0 0 0 R
]

(29b)

Bf2 =
[

0 0 0 0 ∂2R
∂x2

+ ∂2R
∂y2

]
(29c)

N1 =
[
N N 0 0 0

]
(29d)

N2 =
[

∂2N
∂S2

∂2N
∂S2 0 0 0

]
(29e)

where N are 1-dimensional basis functions defined along the boundary S. As can be seen in Eqs.

(26) and (29), the interpolation functions having C1-continuity over the element boundaries should

be given to construct the stiffness matrix and force vector. In the IGA approach, this requirement is

met efficiently and naturally due to the advanced features of b-spline basis functions and the unique

k-refinement procedure [24].

To solve the nonlinear equation as given in Eq. (27), the Newton-Raphson iterative technique

is employed in this study. It should be noted that the bifurcation buckling phenomenon could be

obtained when the postbuckling problem is solved on the basis of geometrically nonlinear analysis,

in which a small initial geometrical imperfection is imposed to the initial geometry of the plate [26].

Herein, the initial imperfection is the fundamental deformed shape obtained from the linear buckling

analysis with the magnitude of imperfection being 0.001h. This value is chosen to be relatively small

so that it dose not affect the postbuckling behaviour significantly and the computational problems can

be avoided. The tangent stiffness matrix of the present model is computed as follows

T =
∂K

∂d
d + K = KL + KNL + Kσ (30)

where

KL =

∫
Ω

BT
LT D̂BLdΩ (31a)

KNL =

∫
Ω

(
BT
LT D̂BNL + BT

NLT D̂BL + BT
NLT D̂BNL

)
dΩ (31b)

Kσ =

∫
Ω

BT
g N̂BgdΩ (31c)

N̂ =

 Nx Nxy

Nxy Ny

 (31d)
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5. Numerical examples

5.1. Verification and convergence studies

To the best of the authors’ knowledge, there is no study on the postbuckling of FG nanoplates.

Therefore, a postbuckling problem of an armchair graphene sheet addressed in the study of Naderi

and Saidi [12] is revisited to verify the reliability and accuracy of the present approach. Material

properties and geometrical information of the armchair graphene sheet are listed as follows: E11 =

1949 GPa, E22 = 1962 GPa, ν12 = 0.201, G12 = 846 GPa, a × b = 4.888×4.855 nm2, and h = 0.156

nm, and the values of nonlocal parameter is e0a = 0.27 nm, which was obtained from the molecular

dynamics simulation [27]. Herein, the shear modulus are assumed to beG13 =G23 =G12. The simply

supported boundary condition (SSSS1) is employed in this example with

w = 0 at y = 0 and y = b, x = 0 and x = a (32)

Fig. 2 compares the postbuckling paths obtained by Naderi and Saidi [12] and present study with

different mesh sizes. Herein, B-spline basis functions with p = q = 3 are employed for a better

convergence rate. As can be seen from Fig. 2, the obtained results from the present approach and

those provided in the referenced study are in good agreement. In addition, it is seen that a mesh

of 12×12 is sufficient to obtain the accurate results, hence this mesh size is used in the remaining

calculations. The difference between the present results and those from previous study in the latter

part of postbukling paths is due to the shear deformation effect, which is not accounted in Naderi and

Saidi [12].

To further verify the ability of the present model, a geometrically nonlinear bending problem of a

FG nanoplate presented by Phung-Van et al. [20] is resolved. The square plate has a length dimension

of a = 10 and a thickness ratio of a/h = 10 nm, it is made of Al/Zn02 where Ec = 151 GPa, Em =

70 GPa, and νc = νm = 0.3. The simply supported boundary condition (SSSS2) of the plate in this

example is given as follows

u = θx = w = 0 at y = 0 and y = b (33a)

v = θy = w = 0 at x = 0 and x = a (33b)

As can be seen in Fig. 3, the results obtained from the present model agree well with those given by

Phung-Van et al. [20]. When the nonlocal parameter µ increases, the nonlocal effect becomes more

considerable and larger deflections are obtained.
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5.2. Parametric investigations and discussions

This subsection is dedicated to figure out the influences of different input information, such as

gradient index κ, nonlocal parameter e0a, ratio of compression loads λ = Ny/Nx, boundary condi-

tions, thickness ratio h/a, and aspect ratio a/b, on the postbuckling response of FG nanoplates. The

ceramic and metal constituents are chosen to be Si3N4 and Al, whereEc = 384.43 GPa,Em = 70 GPa,

and νc = νm = 0.3, respectively. In addition, the length of rectangular nanoplates is assumed to be a

= 17 nm. The remaining dimensions of width and thickness are defined based on the thickness and

aspect ratios. The nonlocal parameter is assumed to be e0a ≤ 2 nm [28]. For convenience purpose, a

normalized quantity is introduced, where N̄x = Nxa
2/Emh

3. Two more boundary conditions, which

are prescribed as follows, are also taken into investigation in this subsection

• CCCC1

θx = θy = w =
∂w

∂y
= 0 at y = 0 and y = b (34a)

θx = θy = w =
∂w

∂x
= 0 at x = 0 and x = a (34b)

• CCCC2

u = θx = θy = w =
∂w

∂y
= 0 at y = 0 and y = b (35a)

v = θx = θy = w =
∂w

∂x
= 0 at x = 0 and x = a (35b)

In the first investigation, the influence of gradient index κ on the postbuckling response is ex-

amined. The square plate (h/a = 0.05) is subjected to uniaxial compressive loads, the nonlocal

parameter in this case is e0a = 0.15 nm, and the simply supported (SSSS2) boundary condition is

considered. As depicted in Fig. 4, the postbuckling paths obtained from different gradient indices are

different to each other. By increasing the gradient index κ, the postbuckling parts are lowered, which

means the plate having greater κ value would deform lager with the same amount of compressive

loads. This phenomenon is easy to understand since the greater the gradient index is, the more metal

constituent the plate has, and a weaker plate is given accordingly. In addition, it is worth noticing that

the bifurcation postbuckling is obtained only when the plate is homogeneous (κ = 0). In other cases

where the material throughout the thickness is graded, the plate deforms as soon as the compressive

loads are applied. This is owing to the coupling stress resultants induced by the difference between

midplane and physical neutral plane.

In Fig. 5, the postbuckling paths obtained from different nonlocal parameters are illustrated. The

plate in this case is assumed to be square, h/a = 0.05, and subjected to uniaxial compressive loads.

In addition, two material models (κ = 0 and κ = 2) are investigated. As can be seen from the figures,
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the load-bearing capacity of nanoplate is reduced with the increment of nonlocal parameter e0a. In

other words, the nonlocal effect tends to reduce the stiffness of the plate in nano-scale when the it

is subjected to in-plane compressive loads. The postbuckling paths obtained from homogeneous and

inhomogeneous plates are distinguishable due to the coupling effect as discussed earlier. In case of

homogeneous plate (κ = 0), the postbuckling paths with e0a = 0 and e0a = 0.1 are almost identical.

However, a difference between those cases can be recognized when the inhomogeneous plate (κ

= 2) is considered. For other cases, it is seen that the effect of nonlocal parameter is not similar

and changes to different degrees when material properties are varied. This is shown by the distance

between post buckling paths in Figs. 5a and 5b.

The influence of ratio of compressive loads λ = Ny/Nx on the postbukling behaviour of FG

nanoplates is depicted in Fig. 6. In general, the buckling load decreases when the ratio λ is elevated

in both cases of homogeneous and inhomogeneous plates (κ = 0 and κ = 2). In addition, it is observed

that the rate of decrease of buckling load reduces with λ. In Fig. 7, the influence of boundary

conditions is illustrated. It is seen that the plates having clamped boundary conditions (CCCC1 and

CCCC2) have much greater buckling loads compared to those with simply supported boundaries.

This is due to the fact that the clamped boundaries are able to prevent the plate from deforming

under initial coupling stress resultants. Having more constrained degrees of freedom, the plates with

additional in-plane constraints (SSSS2, CCCC2) exhibit smaller displacements compared to those

whose all edges are free to move (SSSS1 and CCCC1). The influence of thickness ratio (h/a) is

presented in Fig. 8. When the thickness is relatively small compared to the length of the plate (h/a =

0.01, 0.02, 0.05), the obtained results are almost identical as the shear deformation effect is small and

can be neglected. However, this effect becomes considerable when thicker plates (h/a = 0.1, 0.2) are

investigated as indicated in Fig. 8.

Finally, the influence of aspect ratio (a/b) on the postbuckling response of FG nanoplates is

investigated. In Fig. 9, the postbuckling paths of different rectangular FG nanoplates under the effect

of uniaxial compressive loads Nx are illustrated. It is seen that the aspect ratio a/b has a noticeable

influence on the post buckling response of FG nanoplates. The rise of aspect ratio (a/b) leads to

an increase in buckling load. In other words, when the edges subjected to compressive loads are

shorten, the compressive loads (force/unit of length) need to be increased to make the plate deform

the same amount as the cases having longer edges. It is worth noting that the uniaxial compressive

loads are applied along the edges y = 0, b. Furthermore, it should be noted that when the aspect

ratio (a/b) is changed, the geometrical imperfection imposed to the initial geometry of homogeneous

plates is changed (e.g. when a/b = 0.5, 1, the number of wave-length in the fundamental linear
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buckling shape is 1, the corresponding numbers for the cases of a/b = 1.5, 2 and a/b = 2.5, 3 are

2 and 3, respectively). On the other hand, the postbuckling response of FG plates (κ 6= 0) do not

depend on the initial imperfection as the plates deform immediately when the compressive loads

are imposed. For illustration purpose, the deformed geometries obtained from postbuckling analysis

of homogeneous (κ = 0, bifurcation buckling) and inhomogeneous (κ = 2) plates having SSSS1

boundary conditions are presented with adopted scale factors in Figs. 10 and 11. It is seen that the

deformed geometry of FG plate is different to that of homogeneous plate when a/b = 1.5.

6. Conclusions

In this paper, the postbuckling behaviour of FG nanoplates is investigated based on the IGA

approach. The nonlocal elasticity theory is adopted to capture the size effect. The Mori-Tanaka

scheme is used to evaluate the effective properties of FGMs. The kinematic relations are based

on the third-order shear deformation theory, and von Kámán’s assumptions are used to account for

the geometrical nonlinearity. The governing equations are derived based on the principle of virtual

work. The discretization procedure is implemented on the basis of the IGA approach, where the

b-spline basis functions are used as interpolation functions to satisfy the C1-continuity demand. The

postbuckling paths are traced by using the Newton-Raphson iterative scheme. Initial geometrical

imperfections obtained from linear buckling analysis are used in the iterative scheme to capture the

bifurcation buckling phenomenon of homogeneous plates. The accuracy of the present approach is

verified by comparing the obtained results with those available in the literature. In addition, various

parametric investigations are carried out to study the influences of gradient index, nonlocal parameter,

ratio of compressive loads, boundary condition, thickness ratio and aspect ratio on the postbuckling

response of FG nanoplate. Finally, the paper is closed with some specific remarks as follows:

• Larger postbuckling deformations are obtained with greater gradient indices as the consequence

of the increase of volume fraction of the weaker material in the plate’s volume.

• The nonlocal elasticity theory has a noticeable influence on the postbuckling behaviour of

nanoplates. The increase of nonlocal parameter leads to a reduction of the buckling loads.

• The bifurcation postbuckling phenomenon is always obtained regardless of the material proper-

ties when the clamped boundary conditions are considered, whereas this phenomenon in simply

supported plates is only obtained when a homogeneous material is considered.

• The influence of aspect ratios is worth noticing. Is is observed that the deformed geometries

obtained from homogeneous plates and FG plates are different to each other in some cases.
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Figure 1: Configuration and coordinate system of a rectangular FG nanoplate
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Figure 10: Illustrations of buckling deformed shapes of homogeneous (κ = 0) SSSS1 nanoplates (scale factors are used

for illustration purpose)
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Figure 11: Illustrations of buckling deformed shapes of FG (κ = 2) SSSS1 nanoplates (scale factors are used for illustra-

tion purpose)
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