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Abstract 

This paper presents the flexural behaviour of two directional functionally graded (2D-FG) 

microbeams subjected to uniformly distributed load with various boundary conditions. A four-

unknown shear and normal deformation theory or quasi-3D one is employed based on the 

modified couple stress theory, Ritz method and finite element formulation. The material 

properties are assumed to vary through the thickness and longitudinal axis and follow the 

power-law distribution. Firstly, the static deformations of conventional FG microbeams are 

investigated to verify the developed finite element code. For the convergence studies, a simply 

supported FG microbeam is considered by employing various number of elements in the 

problem domain, aspect ratios, material length scale parameters and gradient indexes. The 

verification of the developed code is established and then extensive studies are performed for 

various boundary conditions. Secondly, since there is no reported data regarding to the analysis 

of 2D-FG microbeams, verification studies are performed for 2D-FG beams with different 

aspect ratios and gradient indexes. The effects of the normal and shear deformations as well as 

and material length scale parameters on the flexural behaviour of the 2D-FG microbeams are 

investigated. Finally, some new results for deflections of conventional FG and 2D-FG 

microbeams for various boundary conditions are introduced for the first time and can be used 

as reference for future studies. 

 

Keywords: 2D Functionally Graded Microbeam, Finite Element Method, Quasi-3D Theory, 

Modified Couple Stress Theory. 

1. Introduction 
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In most of the research and development activities, one of the biggest problems of engineers is 

the selection of the proper material which can satisfy all the technical and economical 

requirements. A group of Japanese scientists introduced a novel material called as Functionally 

Graded Material (FGM) in 1984 for the manufacturing of a thermal barrier to withstand very 

high surface temperature and work in severe operating conditions [1]. FGMs can be classified 

as advanced materials whose material properties vary continuously in the desired directions. 

The advantages of using these materials over the conventional composites are avoiding the 

stress concentration, cracking and interface problems. FGMs have been using in many 

engineering areas such as military, aerospace, nuclear energy, biomedical, and electrical 

engineering for nano/micro devices. Researchers have been developed different theories and 

methods of analysis to predict and understand precisely their behaviours especially in very 

small scales. Due to its computational efficiency, the non-classical continuum approach has 

been used widely to analyse the size dependent behaviour of small scale structures. Yang et al. 

[2] proposed the modified couple stress theory (MCST) by modifying the classical couple stress 

theory [3-6] and more importantly only one material length scale parameter is required. This 

theory has been used by the many researchers to analyse the bending, vibration and buckling 

behaviours of isotropic, laminated composite and conventional FG beams based on various 

theories such as Euler-Bernoulli beam theory,  first-order beam theory (FBT), higher-order 

beam theory (HBT) as well as shear and normal beam theory or quasi-3D one [7-43]. More 

details about size-dependent models including the MCST, non-local elasticity [44-51] and 

strain gradient [52-54] can be found in recent works of Romano et al. [55] and Thai et al. [56].   

The conventional FGMs may not be effective for aerospace craft and shuttles in the severe 

operation conditions since the distribution of temperature and stress in these structures varies 

in two or three directions [57]. Therefore, 2D-FG beams whose material properties vary in two 

directions are proposed. Goupee and Vel [58] optimise the first three natural frequencies of 2D-

FG beams using the element free Galerkin method. Elasticity solutions for static bending and 

thermal deformation of 2D-FG beams are derived by Lu et al. [59] using the combination of 

state space approach and differential quadrature method. Zhao et al. [60] study bending and 

vibration analysis of 2D-FG beams by using a symplectic elasticity solution. Simsek [61-62] 

investigates free, and forced vibration as well as buckling of Timoshenko 2D-FG beams, whose 

material properties follow the power-law distribution. Karamanli [63] presents the static 

behaviour of 2D-FG beams by using various theories. The coupled thermo-mechanical response 

of 2D-FG beams is studied by Nazargah [64] via finite element method (FEM). Pydah and Batra 
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[65] derive an analytical solution for deflections of the 2D-FG circular beams. Karamanli [66] 

studies the flexure behaviour of the 2D-FG sandwich beams by using a quasi-3D theory and a 

meshless method. Some recents contributions dealing with the Saint-Venant beams can also be 

found in [67-69]. Regarding to the studies based on the non-local classical methods, the 

bending, vibration and buckling problems of 2D-FG nanobeams are analysed by Nejad et al. 

[70-72]. Shafiei and Kazemi [73] present the buckling behaviour of 2D-FG porous tapered 

Euler Bernoulli micro/nano beams. By using the FBT, the vibration of imperfect 2D-FG 

micro/nano beams is investigated by Shafiei et al. [74]. Recently, the vibration behaviour of 

2D-FG microbeams with arbitrary boundary conditions is presented by Trinh et al. [75] using 

the HBT and quasi-3D theory based on the MCST. According to the best of the authors’ 

knowledge, there is no study dealing with the flexural behaviour of the 2D-FG microbeams 

with various boundary conditions using a quasi-3D theory. This complicated problem is solved 

here for the first time by FEM, which is also the main novelty of current paper. Numerical 

examples are presented for various aspect ratios, gradient indexes and material length scale 

parameters to investigate the flexural behaviours of the conventional FG and 2D-FG 

microbeams with arbitrary boundary conditions. 

 

2. Theory and Formulation 

2.1 Two Directional Functionally Graded (2D-FG) Microbeams  

A 2D-FG microbeam with rectangular section (bxh), length (L), and its bending plane as x-z is 

illustrated in Fig. 1. It should be noted that only microbeams under uniaxial flexure are 

considered in this study. The material properties vary both longitudinal and thickness 

directions. The rule of mixture is used to estimate the Young’s moduli E and Poisson’s ratio 𝜈:  

 

Figure 1 Right Here 

 

                                           𝐸(𝑥, 𝑧) = 𝐸1𝑉1(𝑥, 𝑧) + 𝐸2𝑉2(𝑥, 𝑧)                                                        (1𝑎) 

                                       𝜈(𝑥, 𝑧) = 𝜈1𝑉1(𝑥, 𝑧) + 𝐸2𝜈2(𝑥, 𝑧)                                                             (1𝑏) 

 

Where 𝐸1 and 𝐸2 are Young’s moduli, 𝜈1 and 𝜈2 are Poisson’s ratio, 𝑉1 and 𝑉2 are volume 

fractions of two constituents. According to the power-law rule, the relation of 𝑉1 and 𝑉2 can be 

given 
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                                                              𝑉1(𝑥, 𝑧) + 𝑉2(𝑥, 𝑧) = 1                                                            (2) 

where 

                                                     𝑉1(𝑥, 𝑧) = (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

                                                  (3) 

here 𝑝𝑥 and 𝑝𝑧 are the gradient or power-law indexes in x- and z-direction.  

By using Eqs. (1)-(3), Young’s moduli E and Poisson’s ratio 𝜈 can be found by as follows: 

                                          𝐸(𝑥, 𝑧) = (𝐸1 − 𝐸2) (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

+ 𝐸2                               (4𝑎) 

                                            𝜈(𝑥, 𝑧) = (𝜈1 − 𝜈2) (1 −
𝑥

2𝐿
)
𝑝𝑥
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

+ 𝜈2                               (4𝑏) 

2.2 Modified Couple Stress Theory (MCST) 

According to the MCST, the strain energy (𝒰) of a deformed isotropic linear elastic body 

occupying a volume 𝑉 can be written as follows [1]: 

                                          𝒰 =  
1

2
∫(𝜎𝑖𝑗𝜀𝑖𝑗 +𝑚𝑖𝑗𝜒𝑖𝑗)𝑑

𝑉

𝑉,      𝑖, 𝑗 = 1,2,3                                       (5) 

where 𝜎𝑖𝑗 is the stress tensor, 𝜀𝑖𝑗 is the strain tensor, 𝑚𝑖𝑗 is the deviatoric part of the symmetric 

couple stress tensor and 𝜒𝑖𝑗 is the symmetric curvature tensor. The components of 𝜒𝑖𝑗 are given 

by: 

                                                     𝜒𝑖𝑗 =
1

2
(
𝜕𝜃𝑖
𝜕𝑥𝑗

+
𝜕𝜃𝑗

𝜕𝑥𝑖
)                  𝑖, 𝑗 = 1,2,3                                    (6) 

where 𝜃𝑖 is the components of the rotation vector related to the displacement field (𝑢1, 𝑢2, 𝑢3) 

as: 

                                                  𝜃𝑖 =
1

2
𝑒𝑖𝑗𝑘𝑢𝑘,𝑗              𝑖, 𝑗, 𝑘 = 1,2,3                                               (7𝑐) 

where 𝑒𝑖𝑗𝑘 is the permutation symbol. 

2.3 Kinematics and Constitutive Relations 

The effects of shear and normal deformations are included in the displacement field below 

[43, 60, 63, 69]: 

𝑢1(𝑥, 𝑧, 𝑡) = 𝑈(𝑥, 𝑧, 𝑡) = 𝑢(𝑥, 𝑡) − 𝑧
𝜕𝑤𝑏(𝑥, 𝑡)

𝜕𝑥
−
4𝑧3

3ℎ2
𝜕𝑤𝑠(𝑥, 𝑡)

𝜕𝑥
 

                                           = 𝑢(𝑥, 𝑡) − 𝑧𝑤𝑏
′ (𝑥, 𝑡) − 𝑓(𝑧)𝑤𝑠

′(𝑥, 𝑡)                                           (8𝑎) 

      𝑢3(𝑥, 𝑧, 𝑡) = 𝑊(𝑥, 𝑧, 𝑡) = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + (1 −
4𝑧2

ℎ2
)𝑤𝑧(𝑥, 𝑡) 
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                                           = 𝑤𝑏(𝑥, 𝑡) + 𝑤𝑠(𝑥, 𝑡) + 𝑔(𝑧)𝑤𝑧(𝑥, 𝑡)                                          (8𝑏) 

where 𝑢,𝑤𝑏 , 𝑤𝑠 and 𝑤𝑧 are the mid-plane displacements of the axial, bending, shear and 

thickness stretching components. The prime notation is used to represent the derivative of the 

displacements with respect to x.   

The nonzero strains can be written as: 

                                                   𝜀𝑥 =
𝜕𝑈

𝜕𝑥
= 𝑢′ − 𝑧𝑤𝑏

′′ − 𝑓(𝑧)𝑤𝑠
′′                                                  (9𝑎) 

                                                   𝜀𝑧 =
𝜕𝑊

𝜕𝑧
= 𝑔′(𝑧)𝑤𝑧                                                                       (9𝑏) 

                                                 𝛾𝑥𝑧 =
𝜕𝑊

𝜕𝑥
+
𝜕𝑈

𝜕𝑧
= 𝑔(𝑧)( 𝑤𝑠

′ + 𝑤𝑧
′)                                              (9𝑐) 

The rotation vector can be obtained by using Eqs. (7) and (8): 

𝜃𝑦 =
1

2
(
𝜕𝑈

𝜕𝑧
−
𝜕𝑊

𝜕𝑥
) = −𝑤𝑏

′ −
1

2
(1 + 𝑓′)𝑤𝑠

′ −
1

2
𝑔𝑤𝑧

′                                                                   (10𝑎)                                                            

𝜃𝑥 = 0, 𝜃𝑧 = 0                                                                                                                                  (10𝑏) 

By using Eq. (10), the components of the symmetric curvature tensor can be written as: 

                            𝜒𝑥𝑦 =
1

2
(
𝜕𝜃𝑥
𝜕𝑦

+
𝜕𝜃𝑦

𝜕𝑥
) =

1

2
[−𝑤𝑏

′′ −
1

2
(1 + 𝑓′)𝑤𝑠

′′ −
1

2
𝑔𝑤𝑧

′′]                    (11𝑎) 

                            𝜒𝑦𝑧 =
1

2
(
𝜕𝜃𝑧
𝜕𝑦

+
𝜕𝜃𝑦

𝜕𝑧
) =

1

4
(−𝑓′′𝑤𝑠

′ − 𝑔′𝑤𝑧
′)                                                  (11𝑏) 

                            𝜒𝑥𝑥 = 𝜒𝑦𝑦 = 𝜒𝑧𝑧 = 𝜒𝑥𝑧 =  0                                                                              (11𝑐) 

The following linear elastic constitutive relations for 2D-FG microbeams can be written:  

                   {

𝜎𝑥
𝜎𝑧
𝜎𝑥𝑧

} =
𝐸(𝑥, 𝑧)

1 − 𝜈2(𝑥, 𝑧)
[

1 𝜈(𝑥, 𝑧) 0
𝜈(𝑥, 𝑧) 1 0

0 0
1 − 𝜈(𝑥, 𝑧)

2

] {

𝜀𝑥
𝜀𝑧
𝛾𝑥𝑧
}                               (12𝑎) 

                                             {
𝑚𝑥𝑦

𝑚𝑦𝑧
} =

𝐸(𝑥, 𝑧)ℓ2

1 + 𝜈(𝑥, 𝑧)
{
𝜒𝑥𝑦
𝜒𝑦𝑧

}                                                                (12𝑏) 

where ℓ is the material length scale parameter [1], which can be determined from microscale 

experiments (i.e., microtorsion or microbending tests) [43, 54].   

2.4 Variational Formulation 

The strain energy of a 2D-FG microbeam can be written based on the displacement field given 

above as: 
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                   𝒰 =  
1

2
∫(𝜎𝑥𝜀𝑥 + 𝜎𝑧𝜀𝑧 + 𝜎𝑥𝑧𝛾𝑥𝑧 + 2𝑚𝑥𝑦𝜒𝑥𝑦 + 2𝑚𝑦𝑧𝜒𝑦𝑧)𝑑𝑉

𝑉

                              (13) 

The following form of the strain energy can be written by substituting Eq. (12) into Eq. (13): 

         𝒰 =
1

2
∫ [

𝐸

1 − 𝜈2
(𝜀𝑥𝜀𝑥 + 2𝜈𝜀𝑥𝜀𝑧 + 𝜀𝑧𝜀𝑧 +

1 − 𝜈

2
𝛾𝑥𝑧𝛾𝑥𝑧) +

𝐸ℓ2

1 + 𝜈
(2𝜒𝑥𝑦𝜒𝑥𝑦 + 2𝜒𝑦𝑧𝜒𝑦𝑧)] 𝑑𝑉

𝑉

        (14) 

where 

𝜀𝑥𝜀𝑥 = (
𝑑𝑢

𝑑𝑥
)
2

+ 𝑧2 (
𝑑2𝑤𝑏
𝑑𝑥2

)

2

+ 𝑓2 (
𝑑2𝑤𝑠
𝑑𝑥2

)

2

− 2𝑧 (
𝑑𝑢

𝑑𝑥
) (
𝑑2𝑤𝑏
𝑑𝑥2

)                             

− 2𝑓 (
𝑑𝑢

𝑑𝑥
) (
𝑑2𝑤𝑠
𝑑𝑥2

) + 2𝑓𝑧 (
𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑠
𝑑𝑥2

)                                                  (15𝑎) 

𝜀𝑥𝜀𝑧 = (
𝑑𝑔

𝑑𝑧
) (
𝑑𝑢

𝑑𝑥
)𝑤𝑧 − (

𝑑𝑔

𝑑𝑧
) 𝑧 (

𝑑2𝑤𝑏
𝑑𝑥2

)𝑤𝑧 − (
𝑑𝑔

𝑑𝑧
)𝑓 (

𝑑2𝑤𝑠
𝑑𝑥2

)𝑤𝑧                                       (15𝑏) 

𝜀𝑧𝜀𝑧 = (
𝑑𝑔

𝑑𝑧
)
2

𝑤𝑧
2                                                                                                                                (15𝑐)  

𝛾𝑥𝑧𝛾𝑥𝑧 = 𝑔
2 (
𝑑𝑤𝑠
𝑑𝑥

)
2

+ 𝑔2 (
𝑑𝑤𝑧
𝑑𝑥

)
2

+ 2𝑔2 (
𝑑𝑤𝑠
𝑑𝑥

) (
𝑑𝑤𝑧
𝑑𝑥

)                                                         (15𝑑) 

𝜒𝑥𝑦𝜒𝑥𝑦 =
1

4
[(
𝑑2𝑤𝑏
𝑑𝑥2

)

2

+
1

4
(1 +

𝑑𝑓

𝑑𝑧
)
2

(
𝑑2𝑤𝑠
𝑑𝑥2

)

2

+
1

4
𝑔2 (

𝑑2𝑤𝑧
𝑑𝑥2

)

2

+ (1 +
𝑑𝑓

𝑑𝑧
) (
𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑠
𝑑𝑥2

) + 𝑔 (
𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑧
𝑑𝑥2

)

+
1

2
(1 +

𝑑𝑓

𝑑𝑧
)𝑔 (

𝑑2𝑤𝑠
𝑑𝑥2

)(
𝑑2𝑤𝑧
𝑑𝑥2

)]                                                                     (15𝑒) 

𝜒𝑦𝑧𝜒𝑦𝑧 =
1

16
[(
𝑑2𝑓

𝑑𝑧2
)

2

(
𝑑𝑤𝑠
𝑑𝑥

)
2

+ (
𝑑𝑔

𝑑𝑧
)
2

(
𝑑𝑤𝑧
𝑑𝑥

)
2

+ 2(
𝑑2𝑓

𝑑𝑧2
)(
𝑑𝑔

𝑑𝑧
) (
𝑑𝑤𝑠
𝑑𝑥

) (
𝑑𝑤𝑧
𝑑𝑥

)]          (15𝑓) 

It is convenient to introduce the stiffness coefficients as follows: 

(𝐴, 𝐵, 𝐵𝑠, 𝐷, 𝐷𝑠, 𝐻, 𝑍) = 𝑏∫
(𝐸1 − 𝐸2)

1 − 𝜈2
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2, 𝑔′2)𝑑𝑧               (16𝑎)
+ℎ/2

−ℎ/2

 

(𝐴1, 𝐵1, 𝐵𝑠1, 𝐷1, 𝐷𝑠1, 𝐻1, 𝑍1) = 𝑏∫
𝐸2

1 − 𝜈2
(1, 𝑧, 𝑓, 𝑧2, 𝑓𝑧, 𝑓2, 𝑔′2)𝑑𝑧                            (16𝑏)

+ℎ/2

−ℎ/2

 

        𝐴𝑠 = 𝑏∫
(𝐸1 − 𝐸2)

2(1 + 𝜈)
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

𝑔2𝑑𝑧                                                                             (16𝑐)
+ℎ/2

−ℎ/2

 

       𝐴𝑠1 = 𝑏∫
𝐸2

2(1 + 𝜈)
𝑔2𝑑𝑧                                                                                                 (16𝑑)

+ℎ/2

−ℎ/2
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  (𝑋, 𝑌, 𝑌𝑠) = 𝑏∫
(𝐸1 − 𝐸2)𝜈

1 − 𝜈2
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

𝑔′(1, 𝑧, 𝑓)𝑑𝑧                                                       (16𝑒)
+ℎ/2

−ℎ/2

 

  (𝑋1, 𝑌1, 𝑌𝑠1) = 𝑏∫
𝐸2𝜈

1 − 𝜈2
𝑔′(1, 𝑧, 𝑓)𝑑𝑧                                                                              (16𝑓)

+ℎ/2

−ℎ/2

 

 

(𝐴𝑛, 𝐵𝑛, 𝐶𝑛, 𝐷𝑛, 𝐹𝑛, 𝐻𝑛, 𝑋𝑛, 𝑌𝑛, 𝑍𝑛) 

= 𝑏∫
(𝐸1 − 𝐸2)ℓ

2

1 + 𝜈
(
1

2
+
𝑧

ℎ
)
𝑝𝑧

[1, (1 + 𝑓′), (1 + 𝑓′)2, 𝑔, 𝑔2, (1 + 𝑓′)𝑔, (𝑓′′)2, (𝑔′)2, 𝑓′′𝑔′]𝑑𝑧             (16𝑔)
+ℎ/2

−ℎ/2

 

(𝐴𝑛1, 𝐵𝑛1, 𝐶𝑛1, 𝐷𝑛1, 𝐹𝑛1, 𝐻𝑛1, 𝑋𝑛1, 𝑌𝑛1, 𝑍𝑛1) 

= 𝑏∫
𝐸2ℓ

2

1 + 𝜈
[1, (1 + 𝑓′), (1 + 𝑓′)2, 𝑔, 𝑔2, (1 + 𝑓′)𝑔, (𝑓′′)2, (𝑔′)2, 𝑓′′𝑔′]𝑑𝑧              (16ℎ)

+ℎ/2

−ℎ/2

 

The potential energy by the uniformly distributed load q(x) is given by 

                                      𝒱 = ∫ 𝑞[𝑤
𝑏
+𝑤𝑠 + 𝑔(𝑧)𝑤𝑧]𝑑𝑥

𝐿
2

−
𝐿
2

                                                         (17) 

Using Eqs. (14) to (17), the total potential energy (Π) can be written in the form of: 

                                                                         Π = 𝒰 +  𝒱                                                                        

Π =
1

2
∫[{𝐴 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐴1} (

𝑑𝑢

𝑑𝑥
)
2

+ {𝐷 (1 −
𝑥

2𝐿
)
𝑝𝑥
+𝐷1} (

𝑑2𝑤𝑏
𝑑𝑥2

)

2𝐿

0

 

+ {𝐻 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐻1} (

𝑑2𝑤𝑠
𝑑𝑥2

)

2

+ 2 {𝐷𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐷𝑠1} (

𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑠
𝑑𝑥2

) 

−2 {𝐵 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐵1} (

𝑑𝑢

𝑑𝑥
) (
𝑑2𝑤𝑏
𝑑𝑥2

) − 2 {𝐵𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐵𝑠1} (

𝑑𝑢

𝑑𝑥
) (
𝑑2𝑤𝑠
𝑑𝑥2

) 

+2 {𝑋 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑋1} (

𝑑𝑢

𝑑𝑥
)𝑤𝑧 − 2 {𝑌 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑌1} (

𝑑2𝑤𝑏
𝑑𝑥2

)𝑤𝑧 

−2 {𝑌𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑌𝑠1} (

𝑑2𝑤𝑠
𝑑𝑥2

)𝑤𝑧 + {𝑍 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑍1}𝑤𝑧

2 

+{𝐴𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑠1} {(

𝑑𝑤𝑠
𝑑𝑥

)
2

+ (
𝑑𝑤𝑧
𝑑𝑥

)
2

+ 2(
𝑑𝑤𝑠
𝑑𝑥

) (
𝑑𝑤𝑧
𝑑𝑥

)} 

+
1

2
{𝐴𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑛1} (

𝑑2𝑤𝑏
𝑑𝑥2

)

2

+
1

8
{𝐶𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐶𝑛1} (

𝑑2𝑤𝑠
𝑑𝑥2

)

2

 

+
1

8
{𝐹𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐹𝑛1} (

𝑑2𝑤𝑧
𝑑𝑥2

)

2

+
1

2
{𝐵𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐵𝑛1} (

𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑠
𝑑𝑥2

) 
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+
1

2
{𝐷𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐷𝑛1} (

𝑑2𝑤𝑏
𝑑𝑥2

)(
𝑑2𝑤𝑧
𝑑𝑥2

) +
1

4
{𝐻𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐻𝑛1} (

𝑑2𝑤𝑠
𝑑𝑥2

)(
𝑑2𝑤𝑧
𝑑𝑥2

) 

+
1

8
{𝑋𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑋𝑛1} (

𝑑𝑤𝑠
𝑑𝑥

)
2

+
1

8
{𝑌𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑌𝑛1} (

𝑑𝑤𝑧
𝑑𝑥

)
2

 

        +
1

4
{𝑍𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑍𝑛1} (

𝑑𝑤𝑠
𝑑𝑥

) (
𝑑𝑤𝑧
𝑑𝑥

) + 2𝑞(𝑤𝑏+𝑤𝑠)] 𝑑𝑥                                    (18) 

 

2.5 Finite Element Formulation 

A two-node C1 beam element with seven degrees of freedom is developed. According to the 

variational statement given in Eq. (18), the axial displacement 𝑢 must be only once 

differentiable and is expressed over each element by a linear polynomial 𝜓𝑗 whereas the 

bending, shear and thickness stretching components, 𝑤𝑏 , 𝑤𝑠 and 𝑤𝑧, must be twice 

differentiable and are expressed by a Hermite-cubic polynomial 𝜑𝑗. The displacement functions 

𝑢(x), 𝑤𝑏(𝑥), 𝑤𝑠(𝑥) and 𝑤𝑧(𝑥) within an element are presented as: 

                                                                𝑢(𝑥) =∑𝑢𝑗𝜓𝑗(𝑥),

2

𝑗=1

                                                                        (19𝑎) 

                                                               𝑤𝑏(𝑥) =∑𝑤𝑏𝑗𝜑𝑗(𝑥),

4

𝑗=1

                                                                    (19𝑏) 

                                                               𝑤𝑠(𝑥) =∑𝑤𝑠𝑗𝜑𝑗(𝑥),

4

𝑗=1

                                                                    (19𝑐) 

                                                              𝑤𝑧(𝑥) =∑𝑤𝑧𝑗𝜑𝑗(𝑥),

4

𝑗=1

                                                                     (19𝑑) 

Substituting Eq. (19) into Eq. (18) and then using the principle of the minimum potential energy 

given by Eq. (20), the system of equations to be solved for unknown variables are obtained. 

                                        
𝜕Π

𝜕𝑢𝑗
= 0,     

𝜕Π

𝜕𝑤𝑏𝑗
= 0,    

𝜕Π

𝜕𝑤𝑠𝑗
= 0,    

𝜕Π

𝜕𝑤𝑧𝑗
= 0                                     (20)  

The system of equations can be expressed as the finite element model of a typical element: 

                                                                        [𝐾]{Δ} = {𝐹}                                                               (21𝑎) 

                                    

[
 
 
 
 
[𝐾11]  

[𝐾12]
𝑇

[𝐾13]
𝑇

[𝐾14]
𝑇

[𝐾12]

[𝐾22]

  [𝐾23]
𝑇

  [𝐾24]
𝑇

[𝐾13]

[𝐾23]

[𝐾33]

    [𝐾34]
𝑇  

[𝐾14]

[𝐾24]

[𝐾34]

[𝐾44]]
 
 
 
 

{
 

 
{𝑈}
{𝑊𝑏}

{𝑊𝑠}

{𝑊𝑧}}
 

 
=

{
 

 
{0}
{𝐹2}

{𝐹3}

{𝐹4}}
 

 
                                     (21𝑏) 
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where {Δ} is the nodal displacements, [𝐾] and {𝐹} are the element stiffness matrix and the 

element force vector respectively. [𝐾] and {𝐹} can be given by: 

                                             𝐾11(𝑖, 𝑗) = ∫ [𝐴 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐴1]

𝑙

0

𝜓𝑖,𝑥𝜓𝑗,𝑥𝑑𝑥,                             (22𝑎) 

                                          𝐾12(𝑖, 𝑗) = −∫[𝐵 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐵1]

𝑙

0

𝜓𝑖,𝑥𝜑𝑗,𝑥𝑥𝑑𝑥,                          (22𝑏) 

                                       𝐾13(𝑖, 𝑗) = −∫[𝐵𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐵𝑠1]

𝑙

0

𝜓𝑖,𝑥𝜑𝑗,𝑥𝑥𝑑𝑥,                          (22𝑐) 

                                       𝐾14(𝑖, 𝑗) = ∫ [𝑋 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑋1]

𝑙

−0

𝜓𝑖,𝑥𝜑𝑗𝑑𝑥,                                     (22𝑑) 

𝐾22(𝑖, 𝑗) = ∫ [𝐷 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐷1 +

1

2
{𝐴𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥                   (22𝑒) 

𝐾23(𝑖, 𝑗) = ∫ [𝐷𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐷𝑠1 +

1

4
{𝐵𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐵𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥                (22𝑓) 

𝐾24(𝑖, 𝑗) = −∫[𝑌 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑌1]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗𝑑𝑥

+
1

4
∫ [𝐷𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐷𝑛1]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥                                                       (22𝑔) 

𝐾33(𝑖, 𝑗) = ∫ [𝐻 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐻1 +

1

8
{𝐶𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐶𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥

+ ∫[𝐴𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑠1 +

1

8
{𝑋𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑋𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝜑𝑗,𝑥𝑑𝑥         (22ℎ) 
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𝐾34(𝑖, 𝑗) = −∫ [𝑌𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑌𝑠1]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗𝑑𝑥

+ ∫[𝐴𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑠1 +

1

8
{𝑍𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑍𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝜑𝑗,𝑥𝑑𝑥

+
1

8
∫ [𝐻𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐻𝑛1]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥                                                        (22𝑖) 

𝐾44(𝑖, 𝑗) = ∫ [𝑍 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝑍1]

𝑙

0

𝜑𝑖𝜑𝑗𝑑𝑥

+ ∫[𝐴𝑠 (1 −
𝑥

2𝐿
)
𝑝𝑥
+ 𝐴𝑠1 +

1

8
{𝑌𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝑌𝑛1}]

𝑙

0

𝜑𝑖,𝑥𝜑𝑗,𝑥𝑑𝑥

+
1

8
∫ [𝐹𝑛 (1 −

𝑥

2𝐿
)
𝑝𝑥
+ 𝐹𝑛1]

𝑙

0

𝜑𝑖,𝑥𝑥𝜑𝑗,𝑥𝑥𝑑𝑥                                                           (22𝑗) 

                                                                   𝐹2(𝑖) = −∫𝑞𝜑𝑖

𝑙

0

𝑑𝑥                                                       (22𝑘) 

                                                                   𝐹3(𝑖) = −∫𝑞𝜑𝑖

𝑙

0

𝑑𝑥                                                         (22𝑙) 

                                                                 𝐹4(𝑖) = −∫𝑞𝑔𝜑𝑖

𝑙

0

𝑑𝑥                                                      (22𝑚) 

It should be worth noting that the x which is given in the equations above must be modified 

according to the location of each element in the problem domain.  

3. Numerical Results 

 

In this section, a number of numerical examples are presented for various aspect ratios, gradient 

indexes and material length scale parameters to investigate the flexural behaviours of the 

conventional FG and 2D-FG microbeams with arbitrary boundary conditions, namely simply-

supported (SS), clamped-clamped (CC) and clamped-free (CF). The kinematic boundary 

conditions are given in Table 1. The material length scale parameter is set to ℓ = 15𝜇𝑚 

throughout examples [36]. The height and width of the microbeam are equal to each other (b=h).  
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Unless otherwise stated, the material properties of the two constitutes are given as ceramic 

(Al2O3): 𝐸1 = 380 GPa and 𝜈1 = 0.3 and metal (Aluminum) 𝐸2 = 70 GPa and 𝜈2 = 0.3   

 For convenience, dimensionless transverse displacements of the beams are defined as: 

                                        𝑤̅ =
100𝐸2𝑏ℎ

3

𝑞0𝐿4
𝑊(𝐿/2, 𝑧) for SS and CC beams                           (23𝑎) 

                                        𝑤̅ =
100𝐸2𝑏ℎ

3

𝑞0𝐿4
𝑊(𝐿, 𝑧) for CF beam                                                 (23𝑏) 

and their dimensionless axial, normal and shear stresses are given by: 

                                                                     𝜎𝑥 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥(𝑥, 𝑧)                                                          (24𝑎) 

                                                                    𝜎𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑧(𝑥, 𝑧)                                                           (24𝑏) 

                                                                   𝜎𝑥𝑧 =
𝑏ℎ

𝑞0𝐿
𝜎𝑥𝑧(𝑥, 𝑧)                                                       (24𝑐) 

3.1 Flexural analysis of FG microbeams 

This section is dedicated to study the static deformations of the conventional FG microbeams. 

All the equations needed for this part can be obtained by setting 𝑝𝑥 = 0 in Eq. (22). To validate 

the developed FEM code, simply supported FG microbeams under uniformly distributed load 

are studied. The following material properties are used: ceramic (SiC): 𝐸1 = 427 GPa and 𝜈1 =

0.17 and metal (Aluminum) 𝐸2 = 70 GPa and 𝜈2 = 0.3. The computed results are compared 

with those from a previous study [43], which was performed with the present quasi-3D theory 

and Navier solution based on the MCST. Different number of elements (6, 10, 20, 30 and 40) 

are employed to test the convergence of the develop code based on the mid-span deflections. 

Numerical results are obtained for various thickness to material length scales, gradient indexes 

and aspect ratios. As it is seen from Table 2, the obtained results show excellent agreement with 

those from the previous study. It is clear that the numerical results computed by employing 20 

elements are satisfactory and thus this number of elements is used from now on to carry out the 

extensive analysis of the FG microbeams.  

The deflections of FG microbeams for various boundary conditions are presented in Tables 3 

and 4. It should be noted that results of macrobeams (ℎ/ℓ = ∞) are also given to compare with 

previous results [76] using the same theory. It can be seen that the present results agree well 

with previous ones for macrobeams. As expected, an increment on the aspect ratio increases 

the deflections. It is explicit that the deflections increase as the gradient indexes and the 
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thickness to material length scale increase. Due to the strong size effect, the lowest deflections 

are always obtained when ℎ/ℓ = 1. This is due to the fact that the strong size effect changes 

the mechanical properties of the microbeams and produces an increase on their stiffness.  

The variation of the axial, normal and shear stresses of CF FG microbeams are plotted in Fig. 

2 for various gradient indexes and two thickness to material length scales, ℎ/ℓ = 1 and  ℎ/ℓ =

8. It should be noted that the maximum axial and normal stresses increase when the gradient 

index increases. The axial stress is tension on the bottom of the beam. However, the maximum 

axial stress which is at the top of the beam is compression. As it is expected, the zero traction 

boundary conditions are satisfied by using the present quasi-3D theory. Because of the strong 

size effect, all stresses for ℎ/ℓ = 1 are lower than those for ℎ/ℓ = 8. For  ℎ/ℓ = 1, the 

maximum shear stress is obtained when 𝑝𝑧 = 1, however, and for ℎ/ℓ = 8 it is observed when 

𝑝𝑧 = 2.  

 

 

 

Figure 2 Right Here 

 

 

      

3.2 Flexural analysis of 2D-FG microbeams 

Since there is no data in the literature for the deflections of 2D FG microbeams, verification 

studies are carried out for simply supported 2D-FG beams under uniformly distributed load. 

The numerical calculations are obtained by setting 𝑝𝑧 as 1. The results are given in Table 5 

along with those obtained from previous study [66]. An excellent agreement with the previous 

results can be observed.  The mid-span deflections of the SS and CC 2D-FG microbeams and 

the tip deflections of CF 2D-FG microbeams are presented in Tables 6-9. It is clear that the 

results decrease as the aspect ratio increases. One may easily notice that they increase for all 

type of end conditions while the gradient indexes increase. It is seen that the increment in the 

deflections with respect to variation of the gradient index in the x-direction is larger than that 

in the z-direction for all type of end conditions. It is found that the deflections increase as ℎ/ℓ 
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increases. It is clear that the strong size effect significantly affects the transverse deflections. 

This indicates that with the inclusion of couple stress, rigidity of the 2D-FG microbeam is 

increasing. Some new results for deflections of 2D-FG microbeams in Tables 6-9 can be used 

as reference for future studies. 

The variations of the axial, normal and shear stresses through the thickness with respect to 

various ℎ/ℓ are plotted in Fig. 3  by setting L/h= 5, pz=1 and px=1. It is clear that the maximum 

stresses increase as the thickness to material length scale increases. The size effect vanishes 

when ℎ/ℓ ≥ 20. The axial and normal stresses are tensile at the surface of the microbeam. The 

shear stress values are zero for both surfaces of the beam.  

 

 

 

Figure 3 Right Here 

 

 

 

The variation of the axial, normal and shear stresses of the CC 2D-FG microbeams is plotted in 

Figs. 4 to 6 to show the effects of the gradient indexes in both directions and the thickness to 

material length scale parameters. According to these figures, as the gradient index in the z-

direction increases the maximum stresses increase. On the other hand, the maximum axial and 

normal stress decreases while the gradient index in the x-direction increases. It is explicit that 

the effect of the gradient index in the z-direction on the axial and normal stresses is more than 

the gradient index in the x-direction. Due to the strong small size effect, the effect of the both 

gradient indexes on the axial and normal stresses is more significant for lower ℎ/ℓ  than higher 

one. It is found that as the gradient index in the z-direction increases, the maximum 

dimensionless shear stress decreases (Fig. 6). Besides, the variation of the gradient index in the 

x-direction has different effect on the shear stress which depends on the thickness to material 

length scale. It is observed that the maximum shear stress value is obtained with the gradient 

index in the x-direction as 5.  
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Figure 4 Right Here 

 

 

 

Figure 5 Right Here 

 

 

 

Figure 6 Right Here 

 

 

 

Finally, the variation of the tip deflections of the CF 2D-FG microbeams can be seen in Fig. 7 

with respect to the thickness to material length scale parameters and gradient indexes. It is clear 

that the dimensionless tip deflection increases as the gradient indexes increase. Moreover, it is 

found that the effect of the gradient index in the z-direction is more pronounced than the 

gradient index in the x-direction for 𝑝𝑧 ≤ 5. However, for higher values of the gradient indexes, 

the effect of 𝑝𝑥 becomes more significant than 𝑝𝑧. It is worth noting that strong small size effect 

decreases the effect of the gradient indexes on the tip deflections of the CF 2D-FG microbeams.  

 

 

 

 

Figure 7 Right Here 

 

 

 

 

4. Conclusion 

The modified couple stress theory is employed for the flexural behaviour analysis of both 

conventional FG and 2D-FG microbeams based on the Ritz method and finite element 

formulation. A quasi-3D theory, which includes both normal and shear deformation, is used to 

study the deflections, axial, normal and shear stresses. The material properties are assumed to 
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vary through the thickness and longitudinal axis and follow the power-law distribution. The 

effects of the normal, shear deformations, boundary conditions, aspect ratios, gradient indexes 

and thickness to material length scale parameter on deflections, axial, normal and shear stresses 

are investigated. Based on the extensive analysis, the main important results are given below:  

 The deflections of the 1D and 2D-FG microbeams are greatly affected by the thickness 

to material length scale parameter. While their thickness approach the material length 

scale parameter, they exhibit significant size dependent behaviour. The size dependence 

decreases while the thickness to material length scale parameter increases. 

 As the gradient indexes increase, the deflections increase for all type of boundary 

conditions, aspect ratios and thickness to material length scale parameters.  

 The increment in the deflections because of the gradient index variation in the x-

direction is more than the gradient index variation in the z-direction for all type of 

boundary conditions. 

 The influence of the gradient index in the z-direction on the axial and normal stresses is 

more pronounced than the gradient index in the x-direction.  

 Due to the strong small size effect, the effect of the both gradient indexes on the axial 

and normal stresses is more significant for lower thickness to material length scale 

parameter. 

 To meet the design requirements, the flexural behaviour of the 2D-FG microbeams can 

be controlled by selecting suitable gradient indexes.  
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Table Captions 

Table 1: Kinematic boundary conditions used for the numerical computations. 

Table 2: Dimensionless mid-span deflections of SS FG microbeams for various gradient 

indexes. 

Table 3: Dimensionless mid-span deflections of CC FG microbeams for various gradient 

indexes. 

Table 4: Dimensionless tip deflections of CF FG microbeams for various gradient indexes. 

Table 5: Dimensionless mid-span deflections, axial and shear stress of SS 2D-FG beams–(p𝑧 =

1) 

Table 6: Dimensionless mid-span deflections, axial and shear stress of SS 2D-FG mirobeams 

(p𝑧 = 1) 

Table 7: Dimensionless mid-span deflections of the SS 2D-FG microbeams for various 

gradient indexes. 

Table 8: Dimensionless mid-span deflections of the CC 2D-FG microbeams for various 

gradient indexes. 

Table 9: Dimensionless tip deflections of the CF 2D-FG microbeams for various gradient 

indexes. 
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Figure Captions 

Fig. 1: Geometry and coordinate of a 2D-FG beam. 

Fig. 2: Variation of dimensionless axial 𝜎𝑥(𝐿/2, 𝑧), normal 𝜎𝑧(𝐿/2, 𝑧) and shear 

𝜎𝑥𝑧(𝐿/2, 𝑧)stresses for CF FG microbeams with respect to gradient indexes (L/h=5, a) ℎ ℓ⁄ =

1, b) ℎ ℓ⁄ = 8). 

Fig. 3: Variation of dimensionless axial, normal  and shear stresses for SS 2D-FG microbeams 

with respect to thickness to material length scale parameters (L/h=5, 𝑝𝑧 = 𝑝𝑥 = 1). 

Fig. 4: Variation of dimensionless axial stress 𝜎𝑥(𝐿/2, 𝑧) for CC 2D-FG microbeams with 

respect to gradient indexes (L/h=5). 

Fig. 5: Variation of dimensionless normal stress 𝜎𝑧(𝐿/2, 𝑧) for CC 2D- FG microbeams with 

respect to gradient indexes (L/h=5). 

Fig. 6: Variation of dimensionless shear stress 𝜎𝑥𝑧(𝐿/2, 𝑧) for CC 2D- FG microbeams with 

respect to gradient indexes (L/h=5). 

Fig. 7: Variation of tip deflections for CF 2D-FG microbeams with respect to gradient indexes 

and thickness to material length scale parameters (L/h=5). 
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Table 1. Kinematic boundary conditions used for the numerical computations. 

BC x=0 x=L 

SS 𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0 𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0 

CC 
𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0, 

𝑤𝑏
′ = 0,𝑤𝑠

′ = 0,𝑤𝑧
′ = 0 

𝑢 = 0, 𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0, 

𝑤𝑏
′ = 0,𝑤𝑠

′ = 0,𝑤𝑧
′ = 0 

CF 
𝑢 = 0,𝑤𝑏 = 0,𝑤𝑠 = 0,𝑤𝑧 = 0, 

𝑤𝑏
′ = 0,𝑤𝑠

′ = 0 
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Table 2 Dimensionless mid-span deflections of SS FG microbeams for various gradient 

indexes. 

𝐿/ℎ ℎ/ℓ 
Number of 

elements 
Theory p𝑧 = 0 p𝑧 = 0.5 p𝑧 = 1 p𝑧 = 10 

5 

1 

6 elements 

Present 

Quasi-3D 

0.0364 0.0527 0.0663 0.1564 

10 elements 0.0364 0.0527 0.0663 0.1565 

20 elements 0.0364 0.0527 0.0663 0.1565 

30 elements 0.0364 0.0527 0.0663 0.1565 

40 elements 0.0364 0.0527 0.0663 0.1565 

Quasi-3D [43] 0.0364 0.0527 0.0663 0.1565 

2 

6 elements 

Present 

Quasi-3D 

0.0990 0.1460 0.1859 0.4015 

10 elements 0.0990 0.1461 0.1860 0.4019 

20 elements 0.0990 0.1461 0.1861 0.4020 

30 elements 0.0990 0.1461 0.1861 0.4020 

40 elements 0.0990 0.1461 0.1861 0.4020 

Quasi-3D [43] 0.0990 0.1461 0.1861 0.4021 

4 

6 elements 

Present 

Quasi-3D 

0.1734 0.2621 0.3383 0.6655 

10 elements 0.1734 0.2622 0.3388 0.6665 

20 elements 0.1734 0.2623 0.3391 0.6669 

30 elements 0.1734 0.2623 0.3391 0.6669 

40 elements 0.1734 0.2623 0.3391 0.6669 

Quasi-3D [43] 0.1734 0.2623 0.3391 0.6670 

8 

6 elements 

Present 

Quasi-3D 

0.2136 0.3270 0.4256 0.7989 

10 elements 0.2136 0.3273 0.4265 0.8002 

20 elements 0.2136 0.3274 0.4268 0.8008 

30 elements 0.2136 0.3274 0.4269 0.8009 

40 elements 0.2136 0.3274 0.4269 0.8009 

Quasi-3D [43] 0.2136 0.3274 0.4269 0.8010 

10 

1 

6 elements 

Present 

Quasi-3D 

0.0352 0.0510 0.0643 0.1520 

10 elements 0.0352 0.0510 0.0643 0.1521 

20 elements 0.0352 0.0510 0.0643 0.1521 

30 elements 0.0352 0.0510 0.0643 0.1521 

40 elements 0.0352 0.0510 0.0643 0.1521 

Quasi-3D [43] 0.0352 0.0510 0.0643 0.1521 

2 

6 elements 

Present 

Quasi-3D 

0.0949 0.1404 0.1789 0.3827 

10 elements 0.0949 0.1404 0.1791 0.3831 

20 elements 0.0949 0.1404 0.1792 0.3833 

30 elements 0.0949 0.1404 0.1792 0.3833 

40 elements 0.0949 0.1404 0.1792 0.3833 

Quasi-3D [43] 0.0949 0.1404 0.1792 0.3833 

4 

6 elements 

Present 

Quasi-3D 

0.1646 0.2499 0.3230 0.6181 

10 elements 0.1646 0.2501 0.3236 0.6191 

20 elements 0.1646 0.2501 0.3238 0.6195 

30 elements 0.1646 0.2502 0.3239 0.6195 

40 elements 0.1646 0.2502 0.3239 0.6195 

Quasi-3D [43] 0.1646 0.2502 0.3239 0.6196 

8 

6 elements 

Present 

Quasi-3D 

0.2016 0.3105 0.4045 0.7311 

10 elements 0.2016 0.3107 0.4053 0.7324 

20 elements 0.2016 0.3108 0.4057 0.7330 

30 elements 0.2016 0.3108 0.4058 0.7331 

40 elements 0.2016 0.3108 0.4058 0.7331 

Quasi-3D [43] 0.2016 0.3109 0.4058 0.7332 
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Table 3 Dimensionless mid-span deflections of CC FG microbeams for various gradient 

indexes. 

𝐿/ℎ ℎ/ℓ Reference p𝑧 = 0 p𝑧 = 1 p𝑧 = 2 p𝑧 = 5 p𝑧 = 10 

5 

1 

Present 

0.1202 0.2068 0.2624 0.3555 0.4313 

2 0.3287 0.5831 0.7454 0.9894 1.1749 

4 0.5836 1.0747 1.3898 1.8261 2.1277 

8 0.7281 1.3680 1.7828 1.8261 2.1277 

∞ 0.8217 1.5534 2.0296 2.6774 3.0951 

∞ FEM [76] 0.8327 1.5722 2.0489 2.6929 3.1058 

10 

1 

Present 

0.1060 0.1839 0.2367 0.3245 0.3927 

2 0.2755 0.4989 0.6419 0.8427 0.9883 

4 0.4599 0.8733 1.1248 1.4174 1.6143 

8 0.5530 1.0760 1.3873 1.7168 1.9294 

∞ 0.6306 1.2303 1.5810 1.9471 2.1905 

20 

1 

Present 

0.1021 0.1776 0.2297 0.3159 0.3820 

2 0.2607 0.4755 0.6131 0.8014 0.9356 

4 0.4265 0.8190 1.0529 1.3054 1.4734 

8 0.5072 0.9996 1.2833 1.5509 1.7237 

∞ 0.5845 1.1522 1.4704 1.7623 1.9593 

∞ FEM [76] 0.5894 1.1613 1.4811 1.7731 1.9694 
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Table 4 Dimensionless tip deflections of CF FG microbeams for various gradient indexes. 

𝐿/ℎ ℎ/ℓ Reference p𝑧 = 0 p𝑧 = 1 p𝑧 = 2 p𝑧 = 5 p𝑧 = 10 

5 

1 

Present 

4.9207 8.5591 11.0626 15.2093 18.3904 

2 12.5871 13.8139 15.1851 19.9476 28.0594 

4 20.6392 39.6255 50.9772 63.3044 71.4820 

8 24.5841 48.4402 62.2580 75.4226 83.8715 

∞ 28.1129 55.4977 71.0212 85.5438 95.3550 

∞ FEM [76] 28.5524 56.2002 71.7295 86.1201 95.7582 

10 

1 

Present 

4.8576 8.4580 10.9493 15.0716 18.2182 

2 12.3493 22.5778 29.1321 38.0364 44.3417 

4 20.1027 38.7537 49.8245 61.5077 69.2222 

8 23.8480 47.2127 60.5900 72.7624 80.5743 

∞ 27.5448 54.5183 69.5326 82.8371 91.8567 

20 

1 

Present 

4.8411 8.4317 10.9197 15.0356 18.1732 

2 12.2871 22.4799 29.0112 37.8630 44.1226 

4 19.9645 38.5294 49.2579 61.0485 68.6661 

8 23.6640 49.9070 60.1767 72.1243 79.8687 

∞ 27.4872 54.4071 69.2900 82.2525 91.0326 

∞ FEM [76] 27.6217 54.6285 69.5266 82.4836 91.2606 
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Table 5 Dimensionless mid-span deflections, axial and shear stress of SS 2D-FG beams for 

various gradient indexes (p𝑧 = 1) 

 

𝐿/ℎ Reference p𝑥 = 0 p𝑥 = 1 p𝑥 = 2 p𝑥 = 5 p𝑥 = 10 

5 

Deflections 

Present 6.1318 7.2314 8.3533 11.3840 14.3867 

Meshless [66] 6.1343 7.2342 8.3430 - - 

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 

Present 5.8946 5.6360 5.3826 4.7306 4.1064 

Meshless [66] 5.8815 5.6196 5.3454 - - 

Shear stress 𝜎̅𝑥𝑧(0,0) 

Present 0.7333 0.7886 0.8299 0.8787 0.8735 

Meshless [66] 0.7234 0.7780 0.8186 - - 

20 

Deflections 

Present 5.7184 6.7284 7.7680 10.6228 13.4716 

Meshless [66] 5.7215 6.7299 7.7469 - - 

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 

Present 23.2583 22.2396 21.2480 18.6978 16.2384 

Meshless [66] 23.2099 22.1731 21.0861 - - 

Shear stress 𝜎̅𝑥𝑧(0,0) 

Present 0.7479 0.8008 0.8394 0.8798 0.8614 

Meshless [66] 0.7432 0.7993 0.8415 - - 
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Table 6: Dimensionless mid-span deflections, axial and shear stress of SS 2D-FG 

microbeams for various gradient indexes (p𝑧 = 1) 

𝐿/ℎ ℎ/ℓ Results p𝑥 = 0 p𝑥 = 1 p𝑥 = 2 p𝑥 = 5 p𝑥 = 10 

5 

1 

Deflections 0.9136 1.1038 1.3051 1.8658 2.4156 

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 0.9527 0.9357 0.9173 0.8537 0.7618 

Shear stress 𝜎̅𝑥𝑧(0,0) 0.1019 0.1109 0.1181 0.1289 0.1334 

8 

Deflections 5.3006 6.2531 7.2242 9.8416 12.4293 

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 5.4605 5.2325 5.0083 4.4237 3.8492 

Shear stress 𝜎̅𝑥𝑧(0,0) 0.6627 0.7158 0.7562 0.8089 0.8154 

20 

1 

Deflections 0.8796 1.0620 1.2558 1.7996 2.3348 

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 3.8772 3.8083 3.7323 3.4746 3.1061 

Shear stress 𝜎̅𝑥𝑧(0,0) 0.1037 0.1117 0.1178 0.1249 0.1236 

8 

Deflections 4.9015 5.7663 6.6552 9.0946 11.5693                  

Axial stress 𝜎̅𝑥(
𝐿

2
,
ℎ

2
) 21.5721 20.6743 19.7950 17.4989 15.2269 

Shear stress 𝜎̅𝑥𝑧(0,0) 0.6735 0.7229 0.7591 0.7985 0.7846 
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Table 7 Dimensionless mid-span deflections of the SS 2D-FG microbeams for various 

gradient indexes. 

ℎ/ℓ pz 
px 

0 1 2 5 10 

L/h=5 

1 

0 0.5264 0.6667 0.8324 1.4065 2.1451 

1 0.9136 1.1038 1.3051 1.8658 2.4156 

2 1.1770 1.3780 1.5777 2.0814 2.5241 

5 1.6144 1.8028 1.9749 2.3580 2.6521 

10 1.9535 2.1133 2.2506 2.5306 2.7268 

2 

0 1.3635 1.7270 2.1552 3.6323 5.5279 

1 2.4730 2.9622 3.4727 4.8757 6.2526 

2 3.1840 3.6773 4.1636 5.3980 6.5155 

5 4.1777 4.6237 5.0413 6.0176 6.8168 

10 4.8950 5.2969 5.6555 6.4303 7.0076 

4 

0 2.2652 2.8691 3.5787 6.0146 9.1338 

1 4.3140 5.1162 5.9404 8.1755 10.3777 

2 5.5572 6.3187 7.0652 8.9850 10.7886 

5 6.9836 7.6478 8.2881 9.8698 11.2511 

10 7.9377 8.5703 9.1580 10.5031 11.5658 

8 

0 2.7142 3.4380 4.2873 7.1957 10.9163 

1 5.3006 6.2531 7.2242 9.8416 12.4293 

2 6.8322 7.7048 8.5594 10.7789 12.9084 

5 8.4154 9.1625 9.8959 11.7625 13.4458 

10 9.4327 10.1633 10.8573 12.4935 13.8246 

∞ 

0 3.1394 3.9764 4.9588 8.3261 12.6406 

1 6.1318 7.2314 8.3533 11.3840 14.3867 

2 7.8571 8.8609 9.8488 12.4325 14.9233 

5 9.6003 10.4696 11.3292 13.5332 15.5285 

10 10.7555 11.6141 12.4344 14.3792 15.9632 

L/h=20 

1 

0 0.5051 0.6397 0.7994 1.3580 2.0798 

1 0.8796 1.0620 1.2558 1.7996 2.3348 

2 1.1389 1.3312 1.5229 2.0089 2.4376 

5 1.5680 1.7467 1.9102 2.2762 2.5583 

10 1.8953 2.0456 2.1750 2.4406 2.6279 

2 

0 1.2831 1.6248 2.0305 3.4487 5.2815 

1 2.3465 2.8061 3.2879 4.6259 5.9480 

2 3.0278 3.4868 3.9417 5.1111 6.1816 

5 3.9526 4.3624 4.7506 5.6753 6.4466 

10 4.6075 4.9796 5.3162 6.0564 6.6296 

4 

0 2.0868 2.6425 3.3022 5.6077 8.5899 

1 4.0245 4.7609 5.5226 7.6188 9.7091 

2 5.1734 5.8598 6.5401 8.3284 10.0477 

5 6.3824 6.9785 7.5671 9.0651 10.4389 

10 7.1842 7.7740 8.3324 9.6439 10.8226 

8 

0 2.4747 3.1338 3.9162 6.6508 10.2041 

1 4.9015 5.7663 6.6552 9.0946 11.5693 

2 6.2891 7.0640 7.8344 9.8933 11.9717 

5 7.5488 8.2185 8.8958 10.6865 12.5156 

10 8.3754 9.0727 9.7492 11.4176 13.1510 

∞ 

0 2.8947 3.6656 4.5806 7.7778 11.9083 

1 5.7184 6.7284 7.7680 10.6228 13.4716 

2 7.2773 8.1819 9.0864 11.5114 13.8817 

5 8.6446 9.4404 10.2475 12.3673 14.3076 

10 9.5726 10.4004 11.1993 13.1082 14.6676 
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Table 8 Dimensionless mid-span deflections of the CC 2D-FG microbeams for various 

gradient indexes. 

ℎ/ℓ pz 
px 

0 1 2 5 10 

L/h=5 

1 

0 0.1202 0.1530 0.1881 0.2834 0.3751 

1 0.2068 0.2511 0.2933 0.3879 0.4623 

2 0.2624 0.3093 0.3514 0.4381 0.5008 

5 0.3555 0.4005 0.4375 0.5059 0.5505 

10 0.4313 0.4703 0.5004 0.5518 0.5831 

2 

0 0.3287 0.4182 0.5140 0.7739 1.0270 

1 0.5831 0.7035 0.8175 1.0728 1.2752 

2 0.7454 0.8696 0.9808 1.2120 1.3811 

5 0.9894 1.1056 1.2029 1.3868 1.5082 

10 1.1749 1.2780 1.3594 1.5019 1.5895 

4 

0 0.5836 0.7424 0.9119 1.3712 1.8235 

1 1.0747 1.2863 1.4852 1.9298 2.2862 

2 1.3898 1.6003 1.7889 2.1853 2.4786 

5 1.8261 2.0142 2.1746 2.4852 2.6923 

10 2.1277 2.2932 2.4277 2.6706 2.8216 

8 

0 0.7281 0.9261 1.1371 1.7072 2.2710 

1 1.3680 1.6302 1.8755 2.4231 2.8642 

2 1.7828 2.0378 2.2665 2.7500 3.1098 

5 2.3436 2.5624 2.7516 3.1238 3.3732 

10 2.7076 2.8960 3.0532 3.3434 3.5248 

∞ 

0 0.8217 1.0455 1.2842 1.9315 2.5789 

1 1.5534 1.8498 2.1275 2.7528 3.2609 

2 2.0296 2.3165 2.5754 3.1292 3.5436 

5 2.6774 2.9215 3.1352 3.5616 3.8479 

10 3.0951 3.3043 3.4821 3.8145 4.0227 

L/h=20 

1 

0 0.1021 0.1300 0.1600 0.2412 0.3174 

1 0.1776 0.2153 0.2511 0.3312 0.3927 

2 0.2297 0.2693 0.3046 0.3771 0.4282 

5 0.3159 0.3527 0.3828 0.4382 0.4732 

10 0.3820 0.4129 0.4367 0.4770 0.5009 

2 

0 0.2607 0.3319 0.4084 0.6159 0.8106 

1 0.4755 0.5709 0.6609 0.8614 1.0152 

2 0.6131 0.7086 0.7942 0.9734 1.1013 

5 0.8014 0.8874 0.9611 1.1041 1.1978 

10 0.9356 1.0133 1.0764 1.1897 1.2590 

4 

0 0.4265 0.5430 0.6680 1.0072 1.3258 

1 0.8190 0.9728 1.1167 1.4371 1.6827 

2 1.0529 1.1977 1.3290 1.6113 1.8160 

5 1.3054 1.4328 1.5479 1.7839 1.9430 

10 1.4734 1.5973 1.7033 1.9028 2.0289 

8 

0 0.5072 0.6457 0.7944 1.1976 1.5767 

1 0.9996 1.1808 1.3496 1.7259 2.0145 

2 1.2833 1.4480 1.5987 1.9279 2.1688 

5 1.5509 1.6947 1.8285 2.1099 2.3027 

10 1.7237 1.8688 1.9959 2.2407 2.3989 

∞ 

0 0.5845 0.7443 0.9160 1.3833 1.8246 

1 1.1522 1.3611 1.5563 1.9937 2.3304 

2 1.4704 1.6601 1.8350 2.2204 2.5033 

5 1.7623 1.9309 2.0886 2.4223 2.6512 

10 1.9593 2.1310 2.2818 2.5730 2.7598 
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Table 9 Dimensionless tip deflections of the CF 2D-FG microbeams for various gradient 

indexes. 

ℎ/ℓ pz 
px 

0 1 2 5 10 

L/h=5 

1 

0 4.9207 5.3966 5.9280 7.7744 10.9306 

1 8.5591 9.2176 9.9073 12.0027 14.9647 

2 11.0626 11.7642 12.4724 14.4905 17.1269 

5 15.2093 15.8725 16.5095 18.1870 20.1803 

10 18.3904 18.9569 19.4819 20.7907 22.2494 

2 

0 12.5871 13.8139 15.1851 19.9476 28.0594 

1 22.9526 24.6385 26.3913 31.6615 39.0516 

2 29.5943 31.2984 33.0100 37.8881 44.3291 

5 38.6990 40.2354 41.7351 45.8095 50.8652 

10 45.1877 46.5898 47.9222 51.3745 55.4021 

4 

0 20.6392 22.6665 24.9341 32.8093 46.1751 

1 39.6255 42.3839 45.2293 53.6950 65.4712 

2 50.9772 53.5889 56.2038 63.6789 73.6885 

5 63.3044 65.5574 67.7965 74.0873 82.2488 

10 71.4820 73.6709 75.7995 81.5212 88.4924 

8 

0 24.5841 27.0066 29.7175 39.1321 55.0853 

1 48.4402 51.7176 55.0855 65.0558 78.8740 

2 62.2580 65.2503 68.2445 76.8280 88.4163 

5 75.4226 77.9524 80.4908 87.7461 97.3660 

10 83.8715 86.3971 88.8818 95.6802 104.1344 

∞ 

0 28.1129 30.9503 34.1270 45.1626 63.8316 

1 55.4977 59.3376 63.2867 74.9833 91.1610 

2 71.0212 74.5281 78.0478 88.1681 101.8271 

5 85.5438 88.5651 91.6046 100.3052 111.8212 

10 95.3550 98.3980 101.3950 109.5963 119.7711 

L/h=20 

1 

0 4.8411 5.3021 5.8161 7.6031 10.6797 

1 8.4317 9.0713 9.7407 11.7779 14.6752 

2 10.9197 11.6034 12.2928 14.2593 16.8404 

5 15.0356 15.6826 16.3033 17.9387 19.8886 

10 18.1732 18.7247 19.2355 20.5101 21.9353 

2 

0 12.2871 13.4576 14.7629 19.3007 27.1115 

1 22.4799 24.0957 25.7730 30.8256 37.9722 

2 29.0112 30.6453 32.2846 36.9685 43.2055 

5 37.8630 39.3348 40.7729 44.7004 49.6151 

10 44.1226 45.4711 46.7562 50.1053 54.0416 

4 

0 19.9645 21.8674 23.9895 31.3669 44.0623 

1 38.5294 41.1268 43.7998 51.7714 62.9997 

2 49.5279 51.9733 54.4209 61.4639 71.0389 

5 61.0485 63.1671 65.2869 71.3155 79.2469 

10 68.6661 70.7771 72.8425 78.4386 85.3157 

8 

0 23.6640 25.9200 28.4359 37.1824 52.2331 

1 46.9070 49.9614 53.0914 62.3851 75.4598 

2 60.1767 62.9352 65.6983 73.6990 84.7196 

5 72.1243 74.4871 76.8833 83.8431 93.2310 

10 79.8687 82.3361 84.7772 91.5034 99.9354 

∞ 

0 27.4872 30.1290 33.0751 43.3176 60.9395 

1 54.4071 57.9786 61.6418 72.5328 87.8652 

2 69.2900 72.5125 75.7525 85.1782 98.1991 

5 82.2525 85.0696 87.9357 96.2803 107.5314 

10 91.0326 93.9935 96.9268 105.0134 115.1265 
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Fig. 1: Geometry and coordinate of a 2D-FG beam. 
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 Fig. 2: Variation of dimensionless axial stress 𝜎𝑥(𝐿/2, 𝑧), normal stress 𝜎𝑧(𝐿/2, 𝑧) 

and shear stress 𝜎𝑥𝑧(𝐿/2, 𝑧) for CF FG microbeams with respect to gradient indexes 

(L/h=5, ℎ ℓ⁄ = 1 and ℎ ℓ⁄ = 8.) 
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a) Axial stress 𝜎𝑥(𝐿/2, 𝑧) 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b) Normal stress 𝜎𝑧(𝐿/2, 𝑧) 

 
c) Shear stress 𝜎𝑥𝑧(0, 𝑧) 

Fig. 3: Variation of dimensionless axial, normal and shear stresses for SS 2D-FG 

microbeams with respect to thickness to material length scale parameters  

(L/h=5, 𝑝𝑧 = 𝑝𝑥 = 1). 
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Fig. 4: Variation of dimensionless axial stress 𝜎𝑥(𝐿/2, 𝑧) for CC 2D-FG microbeams with 

respect to gradient indexes (L/h=5). 
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Fig. 5: Variation of dimensionless normal stress 𝜎𝑧(𝐿/2, 𝑧) for CC 2D- FG microbeams with 

respect to gradient indexes (L/h=5). 
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Fig. 6: Variation of dimensionless shear stress 𝜎𝑥𝑧(𝐿/2, 𝑧) for CC 2D- FG microbeams with 

respect to gradient indexes (L/h=5). 
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Fig. 7: Variation of tip deflections for CF 2D-FG microbeams with respect to gradient 

indexes and thickness to material length scale parameters (L/h=5). 
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