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Abstract

The paper proposes a Ritz-type solution for fréeation and buckling analysis thin-
walled composite and functionally graded sandwitiedms. The variation of material
through the thickness of functionally graded bed#olilsws the power-law distribution.
The displacement field is based on the first-ostezar deformation theory, which can
reduce to non-shear deformable one. The govermpgt®ns of motion are derived
from Lagrange’s equations. Ritz method is usedhio the natural frequencies and
critical buckling loads of thin-walled beams fortbhaon-shear deformable and shear
deformable theory. Numerical results are compaoethdése from previous works and
investigate the effects of fiber angle, materiatmlution, span-to-height's ratio, and
shear deformation on the critical buckling loads aatural frequencies of thin-walled

I-beams for various boundary conditions.

" Corresponding author. Tel.: + 848 3897 2092.
E-mail address: kiennt@hcmute.edu.vn (Trung-Kienyém)



Keywords Ritz method; Vibration; Buckling; Thin-walled cgmsite I-beams; Thin-

walled functionally graded sandwich I-beams.



1. Introduction

In recent years, composite and functionally gradeerials are commonly used in
many fields of mechanical, aeronautical and civigjieeering. The most well-known
advantages of these materials are high stiffnesgetght and strength-to-weight ratios,
low thermal expansion, enhanced fatigue life angldgoorrosive resistance. In addition
to their extensive use in practice, the availaidgdtures indicate that a large number of
studies have been conducted to analyse behavidutese materials [1-3] in which
thin-walled composite and functionally graded (F&&ndwich structures have been
considered ([4-11]). One of the first thin-walleddm theories have been presented by
Vlasov [12] and Gjelsvik [13]. Bauld and Lih-Shyfity#4] then extended Vlasov’s thin-
walled beam theory of isotropic material to the posite one. Pandey et al. [15] used
Galerkin’s method to solve the equilibrium diffeti@h equation for analysing of the
flexural-torsional buckling of thin-walled compasitl-beams. Buckling and free
vibration of these beams were presented by LeeKamd[16, 17] based on the finite
element method (FEM) and classical beam theory. HEEl was used by Rajasekaran
and Nalinaa [18] to investigate static, bucklingl asibration behaviours of thin-walled
composite beams with generic section. Maddur andt®hedi [19, 20] presented a
Vlasov-type modified first-order shear deformatittreory (FSDT) and analysed the
dynamic responses of thin-walled composite opemicer beams. Qin and Librescu
[21] used an extended Galerkin’'s method to invastighatural frequencies and static
responses of anisotropic thin-walled beams whico@at for shear deformation effects.
A beam element based on the first-order shear heflole beam theory was developed
by Lee [22] for the bending analysis of laminatednposite I-beams under uniformly

distributed loads. Machado and Cortinez [23] presgra stability analysis of thin-



walled composite I-beams with open and closed @esttonsidering shear deformation
effects. Vo and Lee [24] extended previous resebef22] to study vibration and
buckling of thin-walled open section composite bsar@Dynamic stiffness matrix
method also were used in the studies [25-28] tdyaeavibration and buckling of the
thin-walled composite beams. Silvestre and Camd®@®] used shear deformable
generalised beam theory for buckling behaviourppied channel columns. Prokic et
al. [30] proposed an analytical solution for fredration of simply-supported thin-
walled composite beams by using Vlasov’s beam thand classical lamination theory.
Based on the Carrera Unified Formulation (CUF),r@ar et al. [31-35] analysed static,
vibration and elastoplastic thin-walled composttectures. By using FEM, Sheikh et al.
[36] conducted the study of free vibration of thwalled composite beams having open
and closed sections to investigate the shear sffdat et al. [37] investigated
hygrothermal effects on free vibration of simplyported thin-walled composite
beams by using Galerkin’'s method. Recently, the-talled FG beams have caught
interests of many researchers. Nguyen et al. [38,aBalysed vibration and lateral
buckling of the thin-walled FG beams by FEM. Lartcaé [40] analysed nonlinear
buckling responses of thin-walled FG open sectieants based on Euler-Bernoulli-
Vlasov theory. Kim and Lee [41, 42] investigated #hear effects on free vibration and
buckling behaviours of the thin-walled FG beam lmeé different types of finite beam
elements, namely, linear, quadratic and cubic efesnelhe studies on the effects of
shear deformation on buckling and vibration behargoof thin-walled FG beams are
still limited. On the other hand, Ritz method isnple and efficient to analyse the
behaviours of composite beams with various boundanditions [43-47], however, it

has not been used for thin-walled composite andg&talwich I-beams.



The main novelty of this work is to develop a R#alution for the vibration and
buckling analyses of thin-walled composite and Feams by using the first-order
shear deformation beam theory. The governing egmtf motion are derived by using
Lagrange’s equations. Results of the present eleraen compared with those in
available literature to show its accuracy of thesent solution. Parametric study is also
performed to investigate the effects of shear deédion, span-to-height’s ratio, fiber
angle, material anisotropy and material distributam natural frequencies and critical
buckling loads of the thin-walled composite and $&Bdwich I-beams.

2. Theoretical formulation

2.1. Kinematics

In this section, a kinematic field of the thin-val composite and FG I-beams will be
presented. The theoretical developments requireetisets of coordinate systems as

shown in Fig. 1 including the Cartesian coordinaistem (X,Yy, z), local plate
coordinate systemn(s, z) and contour coordinates along the profile of the section.
@ is an angle of orientation betweem §, z) and (x, y, z) coordinate systems. The pole
P, which has coordinatex, y, ), is called the shear center [48].
The following assumptions are made:
a. Strains are small and contour of section does efairth in its own plane.
2

b. Shear strainsy? ygz and warping sheay? are uniform over the section.

c. Local buckling and pre-buckling deformation is rohsidered.
d. Poisson’s coefficient is constant.

Relation of the mid-surface displacemenis\{, w) at a point in the contour coordinate

system and global beam displacemehts\{,W) is given by ([22]):



U(szy=U(z)sing( 3= Y z)tcod( Js-¢ 2t(q) (12)
V(sz9=U(z)cod( 3+ Y z)tsid Js+o At(r) (1b)
w(s z9=W z)+¢,( 2} ke Atly)se,(  3a() (1c)

where U,V and W are displacement ofP in the x-,y-and z- direction,

respectively; ¢ is the rotation angle about pole axig, ./, and ¢, denote rotations

of the cross-section with respecttQ y and w:

w,=y,-U (2a)
Ye=Yp=V (2b)
Wy=Vo—9 (2c)

where the prime superscript indicates differergiatwith respect toz, and w is

warping function given by:

@(s)=|r(s)ds 3)

& —y

The displacementsu(v, w) at any generic point on section are expressed dyntidl-

surface displacementsi (v, W) as:

unszy=U sz}t (4a)
vinszi=\ sz @( s2 (4b)
winszy="vsz}t+ @,( s.2 (4c)

where @ and ¢, are determined by ([24]):

g,=¢,sin6-y, cod-y, q (5a)

7.(s29=- (5b)



The strain fields are defined as:
e(nszy=g(sz)+ m( s 2)
e(nszh=g(s 2+ A s7)
Va(ns29=y(sz}+ R s2)

Vo(nszd=y., (s z}+ & s 2)

where

z 9z z y X w

K, =% =k, sind-k, cod-«,q
z

KSZ=¢_¢IW
£, =& +(x+nsinf)k ,+(y- ncod)«, +(w- ndx,

z

Ver = V3COSO+ S Sinf+ yor +nk

Viz = VaeSING = S,c0B - 120

2.2. Constitutive relations
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2.2.1 Thin-walled composite beam

The composite beam is constituted by a finite numilfe orthotropic layers. The

constitutive relation at thek™ —layer in (n, s, z) coordinate systems can be expressed

as.
© o o ®)
g, 911 916 0 &
Jsz = QIB QESB _0 ysz (8)
O, 0 0 Q;5 Yoz
=~ _= _ %
where Q,=Q,—-= (%99)
Q.
62:6 = Qle _% (9b)
Qs
2
Q=00 (90)
22
Qs =Qss (9d)

where Qj are the transformed reduced stiffnesses (sed¢d@jore details).

2.2.2. Thin-walled functionally graded (FG) sandwlmeam

The constitutive relation of the FG sandwich |-bsaran be written as follows:

Jz
Usz = O (566 O y sz (10)
Un

where Q. =E(n) (11a)
— _= _ E(n)
Qs = Qss= 2(1+I/) (11b)

E(n) is Young's modulus;v is Poisson’s coefficient. The effective mass dgng

and Young’s modulusE of the thin-walled FG sandwich beam are approxaahdy:



P=pN,+py(1-V,) (12a)
E=EV,+E,(1- V) (12b)
where the subscript€ and m are used to indicate the ceramic and metal coestis,
respectively;V, is the volume fraction of ceramic material. Twgdyof material

distributions are considered in this study:

Type A (for the flange, see Fig. 2b):

P
_| n+0.5h ~
°{—(1—a)h}’ 0.5h<n<(0.5-a)h (13a)
V,=1, (0.5-a)h<n< 0.5 (13b)

where h (h,h), p, a (a,a,) are the thickness of the flange, material paramete
and thickness ratio of ceramic material of thedmrespectively.

Type B (for the web, see Fig. 2b):

~[n+0.5h ]’
V.= m , —0.5h<n<-0.6h or 0.56h<n< 0.5h (14a)

V, =1, -0.56h<n< 0.53h (14b)
where h=h, is the thickness of the wel is thickness ratio of the ceramic material

of the web.
2.3. Variational formulation

The strain energyf1. of the thin-walled beams is defined by:
Mn :EJ (a g, roy Koy r)de (15a)
E 2 Q z-z S Sz

where k®and Q are shear correction factor and volume of beaspeagtively. It is

well-known that the models based on the first-osterar deformation theory require a



correct value of the shear correction factors. Sdaithors made contributions in order
to improve the models used for the FSDT. Nguyeal.g60] proposed shear correction
factors for analysis of functionally graded beamsd gplates. Hutchinson [51],
Gruttmann and Wagner [52], and Barbero et al. [d®sented formulas in order to
compute the shear factors of different cross-sestf a Timoshenko’s beam. In this
paper, the shear factor is assumed to be a uriighwvas suggested by some previous
authors ([21, 22, 24]). Substituting Eqgs. (71), §7r§vn), (8) and (10) into Eg. (15a)

leads to:

nE:%T[Euvv'qumwmz EWV+2( E+ E) W

H2E WY, +2EWY, + 2E, WY, + 2 B, W, + 2 £ W,
+2(E— Eig) Wi, + BU+2E,UV+2( Bt ) Up+ 2 B,
+2E Uy, + 2E, Uy, + 2EUy, + 2E, Uy, + A Eie E) Uy, + EV?
+2(Es; + Er) VO + 2E, VY, + 2E, MY + 2B\, + 2 B\ + 2 B, Y,
+2(Eps— Bs) VU, +( Ess+ 2B+ B 9° + 2( Bt Eow, + A Ef EJoy,
+2(Eps + Egg) @, + 2( Eg,+ E o, + 2( E,+ EJoy, + 2 Ege EJoy,
+E, Y]+ 2E, 4 W+ Bl + 2E 4 4+ 2B 4 4+ 2B U+ 2E4Y
B, + 2 Epg— Eng) Wl + 2E4w0;7 + A By EQQU o+ EH5
F2E AP+ Bty + 2B gl + 2 Byym EdU i, + 2E4

+2(Ep— Es) 00, + Ep2 + 2( E, zg%#% ( B 2Eqt Ey? |dz

(15b)

where the stiffness coefficientk; are givenin [24],L is length of beam.

The potential energyl1,, of thin-walled beam subjected to axial compreskiael N,

can be expressed as:

=], () a0

(16)
_ o o S A
—EQNO(U +V2+2y Uy 2>%V¢1+—A¢)jd¢

where A is the cross-sectional ared, is polar moment of inertia of the cross-
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section about the centroid defined by:

lo =1+, (17)
where |, and |, are second moment of inertia with respectxe and y-axis,

defined by:

| = j y2dA (18a)
A

|, = j x2dA (18b)
A

The kinetic energyll, of the thin-walled beam is given by:
1 22

M, —EJ'Q,o(n)(u + 1V + V\F) o]

=5 [mWer2miy, -2 w2 pr g W+ A m om)y ¢
mV2+2(m-mx) o+ p+ gr2 dF+( pr2 g gl (19)
2(my-mJy g r2(m+ m, - Mgy, +( p-2 mp me?,

42(My, = Mo+ M )@ 40, +(m,, —2m, + my )2 | dz

where dot-superscript denotes the differentiatiotih wespect to the time, ,o(n) is

the mass density and the inertia coefficients arengin [24].
The total potential energy of thin-walled beamxpressed by:

n=nN.+M,-Mn; (20)
2.4. Ritz solution

By using the Ritz method, the displacement fieldpproximated by:

W(z9=Y 4, (2w e (21)
Uz )=3¢,(2U & (21b)

11



V(Z,t):i@(z)\{é“ 21¢)

“z.9 =j2”:;,¢j (2 & (21d)
e t):j21¢;<z)wyj ¢ (21e)
Y (2= Z¢ (2, & (21)
Yo(2.)= Z¢ (2, & (219)

where w is the frequency,?=-1 the imaginary unitW,,U,, v,, @, ¢,, ¥,
and ¢, are unknown and need to be determin¢gj(z) are shape functions, which

satisfy the specified essential boundary condit{@s) [49]. It is clear that these shape
functions in Table 1 satisfy various the BCs sugBimply-supported (S-S), clamped-free
(C-F) and clamped-clamped (C-C).

By substituting Eqgs. (21) into Eq. (20) and usiragtange’s equations:

on_don g 22)

op, dtop
with p, representing the values c(i/\/j,Uj,Vj,q,(//yj Wi Wi ) the vibration and

buckling behaviours of the thin-walled beam camob&ined by solving the following

equations:

12



r Kll K 12 K 13 K 14 K 15 K 16 K 17
T K 12 K 22 K 23 K 24 K 25 K 26 K 27
T Kl3 T K 23 K 33 K 34 K 35 K 36 K 37|
TK14 TK 24 TK 34 K 44 K 45 K 46 K 47
TK15 TK 25 TK 35 TK 45 K 55 K 56 K 57 w 0
TKlG TK 26 TK 36 TK 46 TK 56 K 66 K 67 u 0
_T K17 TK 27 TK 37 TK 47 TK 57 TK 67 K 7? \Y O
B M 0 0 0 M 25 M M 177 @ 0 (23)
22 24 vy 0
0 M 0 M 0 0 0 0
0 0 M* M* 0 0 0 ¥ 0
_af O T M 24 TM 34 M 44 O O O ‘vw
T M 15 0 0 0 M 55 M 56 M 57
T M 16 0 0 0 T M 56 M 66 M 67
TMl7 O O O TM57 TM67 M77

where the stiffness matrik and mass matrikl are expresselly:

Kit= Elj¢¢ dz, K*= Emj¢¢ dz, Ki*= Eﬂj¢¢ dz, K!*=(E,+ Elg)I¢i"¢j'dz,
K= Elsz dz+ asjw di Ki= Elgj¢¢ dz+ I%IM d;

Ki = a4j¢¢ dz+( E,- 55)i¢."¢j' di, K= E%W dz+ '\LIM ds, Kif3=E67I¢;¢;dz,
Kt = (Ege + EGS)IQ'@' dz+ N, yiqg&l'@' d:, K7°= E26I¢i'¢j"dz+ EGGEMJ.' di,

K= Essj ¢4, dz+ Emj ¢4 di K;7=E46I¢z'¢;dz+( B~ ESG)EM d;
K®= E77j¢¢ dz+ Noj¢¢ dz K= E57+E78)I¢i'¢j'dz— NO%<JE¢}'¢].' d;
K> = E27I¢¢ dz+ ij¢¢ dz K¥*= E37J'¢¢ dz+ ij¢¢ dz

K} = E47j¢¢ dz+( o= i) [ 49 di 1= (B + 285+ Bu) [ 49) dz+%(j)¢;¢; d;

13



K =(E,s+ Ej j¢¢ dz+( Eg+ Eﬁg)j¢¢ d.

K;f® = (Ess + Eqg J¢¢ dz+( E,+ E,g)im d:

K7 =(E + Eg j¢¢ dz+( Eg- Ess).[¢¢ d.

Kif5=EZZI¢i"¢j"dz+ Ezﬁi(ﬁvgurm") dz g{M' d,
Kif6=E23J:¢§i"¢j"dz+ 57I¢§'¢j'dz+ gﬁiM" dz @j:M' G

7 =B a9dz(E,- B[44 0 B[4d d2( & B[eq o
Ky® = Eg3j¢¢ dz+ EA(M t4¢) dz EJM d,

Ky = Es4f¢¢dz+ By - E35f¢¢ dz EJM dz( B~ E)IM e

K{" = E,,[ 44 dz+( E,~ E)

ot—r

(¢4 +48") dz( B2 Byt ggIMJﬁ d,

M= moj¢¢ dz, Mj°= mj¢¢dz Ml6—-mj¢¢dz M7 =(m, - rra)j¢¢ dz
Mifz=moi¢i¢,- dz, Mif“=(n1+nw))i¢i¢,- dz, Mi?3=m>I¢i¢j dz,

M3 =(m - nM)j¢¢d M, = (mp+n}+2m).[¢¢ d;

M;®=(m, +2m, + m,) j¢¢ dz M/ (mycs—nls)IM}dz

M’ = (mAw Megs ~ ”Ls)j¢'¢'; di, M® :(mjz—2my0+ r@z)j¢;¢} d:,

14



L L
Me = (,% — M + r’rac) j g di M = (mwz -2m,, + er) I 89, d: (24)
0 0
If the shear effect is ignored, Eq. (2) degenertiieg, =-U", ¢, =-V', ¢, =-¢. By
setting ,, =¥,,= Vo =0 into the above equations, the number of unknowrabkes

reduces to four(W,U,V,qo) as the Euler-Bernoulli-Vlasov beam model. Finathe

natural frequencies and critical buckling loadgta# thin-walled beams without shear

effects can be found:

NSKll NJ< 12 Né< 13 NK 14 |\M 11 0 0 0 W
NEK 12 NSK 22 N4< 23 Ng( 24 _ a)2 0 ,\M 22 0 ,\M 24 u
N-;K 13 NTSI< 23 Né< 33 NK 34 0 0 NSM 33 NSM 34 Vv
N';K 14 NTSK 24 Jé( 34 Ng 44 O T,\M 24 T,\M 34 M 44 1))

(25)

O O O O

where the stiffness matri, mass matrisM are given by:

K= E1j¢¢ dz, (K= -azj¢¢ dz, NSK11.3:—E13I¢i"¢JT'dz,
NSK34=2E15f¢i"¢,fdz— EJ¢;'¢; dz sKi? = Ezzj #,¢,dz+ N)I 8,4, da NSK§3=EZJ¢J¢;dz,
wsKi' = E24J¢¢ dz- 2Ezsj¢¢ dzr ww dy \oKi'= Esgw dz,

wsKi' = E34I¢¢dz 2E35]¢¢ dz- 'WW d,

L

K& =402 En{fﬂ"q»; s d%

]
0

M= moj¢¢ dz, M7= moj¢¢dz M7= (m+m,yp)j¢¢ s,

M = ”Bf¢¢d2 WM =(m, - %&)IM dz, M {* = (m+rq+2rr,;,)f¢¢ d: (26)

15



3. Numerical results

Results for natural frequencies and critical bugklioads of thin-walled composite and
FG sandwich I-beams with various configurationdudimg boundary conditions, lay-
ups and thickness ratio of the ceramic material presented in this section.
Convergence and comparison with the available alitee are made to show the
accuracy of the present solution. In addition, seree results, which may be used as
reference data for future, are presented. The mahf@operties and geometry of thin-
walled I-beams are given in Table 2 and Fig. 2. €ffect of the fiber angle, shear
deformation, material parameter, span-to-heiglatsorand thickness ratio of ceramic

material on vibration and buckling behaviours ofe tithin-walled I|-beams are
investigated. The shear effect is defined (- R)/ R,sx100% where Ry and
Rys denote the results with and without the sheactdfeespectively.

Unless otherwise stated, the following non-dimenaiderms are used:

2 2
For composite I-beamsio = WL é , N, = :I;;It_g" (27)
. w? [p. < NI
For FG sandwich |-beamso=—- =, N, =—FX (28)
E, hE, 13

3.1. Convergence study
For purpose of testing convergence of presentisoluthe composite I-beams (MAT |,

b=b,=b,=5cm, h =h,=h=0.208 cm and L =40b,) and FG sandwich I-beams
(MAT Ill, b=b=15cm, bb=20cm, h=h,=h=05cm, a,=a,=4=0.1,
p=5 and L =100,) with the various BCs are considered. It is ndteat both flanges

and web of composite I-beams are assumed to be syinaily laminated angle-ply

16



[45/—4q4swith respect to its mid-plane. The fundamental deatpies and critical

buckling loads of thin-walled I-beams are presentedlable 3 with various series
number m. As can be seen, a rapid convergence is obtaineédna=10 is sufficient

to guarantee the numerical convergence.

3.2. Composite I-beams

3.2.1. Example 1

The first example demonstrates accuracy and walidit present solutions. The
symmetric angle-ply I-beams (MAT I) with the var®BCs are considered. The flanges

and web are 0.208 cm thickness, and made of synmnieminates that consist of 16
layers (17/-n],)- The first natural frequencies of S-S I-beanbs=(b, = b,=5 cm
and L=400,), C-F I-beams Iy =b,=4cm, b =5cm and L=20b,) and C-C I-
beams b =b,=b,=5cm and L =40b,) are showed in Table 4 and Fig. 3. It can be
seen that the present results are coincided witttieg ones. The critical buckling loads
of S-S I-beamsl§ =b,=b,=5cm and L =80b,), C-F I-beams I§ =b,=b,=5cm
and L=200,) and C-C I-beamsh{=h, =b,=5 cm, L =80b;) are displayed in Table

5 and Fig. 4, respectively. Good agreements betweepresent results and those of Vo
and Lee [24], Kim et al. [27, 28] are found agains also stated that there are not much
differences between shear and no shear resultsigetiaese beams are slender.

3.2.2. Example 2

This example is to investigate the effects of shaformation on the vibration and

buckling behaviors of I-beams. The composite I-beaAT I, b =b, =20 cm,
b,=30cm, h=h,=h,=1cm and L=200,) are considered. The top and bottom

flanges are angle-ply Iay-u[n/—/]] and the web is unidirectional one. The results of

17



I-beams with different BCs are displayed in Taliex From these tables, it can be seen
that the present results comply with those of Va dme [24], and both natural

frequencies and critical buckling loads decreasiadiber angle increases for all BCs.
The shear effects of I-beams Wi{hlS/—lq angle-ply in flanges for various BCs are
conducted. Figs. 5 and 6 show the shear effedisnofamental frequencies and critical
buckling load with respect to span-to-height'saatespectively. It can be seen that the
shear effects are biggest for beams with C-C B@d, ae significant for beams with
small span-to-height’s ratio.

In order to clearly investigate the shear effeats ffber angle to the natural frequencies,
the above composite I-beams with different geomatg material properties (MAT |,
b=b,=b,=30cm, h =h,=h=2cmand L=100,) are considered. Fig. 7 displays
the shear effects on first three frequencies oftsetor C-C BC. It is clear to see that
the shear effects are significant for high modess &lso interesting to see that the shear
effects on third mode (mod¥ ) are smallest at fiber anglb5’. This phenomenon can
be explained in Fig. 8 which shows the ratio okdiel rigidity (E,;) to shear rigidity

(E,,) with respect tos. It is observed that the ratio d&,,/ E,, is the smallest at this

angle (65°). Figs. 9-11 also show first three mode shape<C«E I-beams with

[45/-45 angle-ply in flanges with shear and without shefect. It can be seen that

the vibration modes 1, 2 and 3 are first flexuradde in x—direction (modeU ),
torsional mode (modep) and flexural mode iny —direction (modeV ), respectively.
3.2.3. Example 3

The third example aims to investigate the effechafdulus ratioE,/ E, on natural

frequencies and critical buckling loads of compmsitbeams (MAT 11, b, =b, =20 cm,

18



b,=30cm, h=h,=h,=1cm and L=20b,) with various BCs. The flanges are
symmetric cross-ply{0/90]_ lay-up and the web is unidirectional one. The atéon

of fundamental frequencies and critical bucklingds in case of including shear effects
with respect to the ratio oE, / E, is displayed in Figs. 12 and 13. It is observedt th
the results increase aB, / E, increases for all BCs, and the beams with C-C B@h

the biggest variation.

3.3. Functionally graded sandwich I-beams.

3.3.1. Example 4

This example is to assess the accuracy and effigziehthe present solution for thin-
walled FG sandwich I-beams. Non-dimensional fundaaidrequencies of S-S beams
(MAT 1ll, b =20h, b,=10h, b,=40h, h=h,=h=h, a,=0.1, a,=0.9 and
L=400b,) with p=1 and p=5 are displayed in Fig 14. The critical bucklingdoaf
I-beams (MAT IV, b=b=10cm , Bb=20cm , h=h=h=05cm ,
a,=a,=0.7,8= 0.4 and L =12.%,) with different BCs is printed in Table 10. It can
be found that the present solutions are in goo@eagents with previous results of
Nguyen et al. [39], Lanc et al. [40] and Kim andelLjgll1]. Results in Table 10 also

indicated that the critical buckling loads decreasenaterial parametep increases.

3.3.2. Example 5

In order to investigate the effects of thicknedsraf ceramic material on free vibration

and buckling behaviours, the FG sandwich I-beamA&T(MI, b =b, =30h, b, =40h,
h=h,=h=h and L=10b,) are considered. Figs. 15 and 16 show the efféct o

ceramic thickness ratio in flanges on the non-dsmaral fundamental frequencies and

critical buckling loads of beams witl#=0.3 and p=10 for the different BCs. It can
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be seen that frequencies and critical buckling leaphificantly increase as ceramic
thickness ratio increases. Figs. 17 and 18 shownthedimensional fundamental
frequencies and critical buckling loads of beamg fa,=0.1 and p=10) with
respect to the ceramic thickness ratio in web fiffer@nt BCs. It is observed that
increasing of ceramic thickness ratio in web causleghtly decrease fundamental
frequencies, and slightly increase critical loads.

3.3.3. Example 6

The FG sandwich I-beams (MAT Ill,b=b,=h=20h, h=h=h=h,
a,=a,=[=0.1) are considered to investigate the effects of isdeformation. Figs.
19 and 20 show shear effect on fundamental freqegrand critical buckling loads of
beams with p=1 and with respect to the span-to-height ratio. Ftbese figures, it
can be seen that the shear effects decrease aspdineto-height ratio increases as
expected. Effects of the material parameter orskigar effects of the C-C I-beams with

L =10b, are indicated in Fig. 21. It can be seen thatstiear effect is significant with

high modes, and is not effected by the materiahmpater for first three vibration modes.
4. Conclusions

Ritz method is developed to analyse buckling arfatation of composite and FG
sandwich I-beams in this paper. The theory is basetthe first-order shear deformation
theory. The governing equations of motion are dafifrom Lagrange’s equations. Ritz
shape functions are developed to solve probleme fdtural frequencies, critical
buckling loads of thin-walled composite and FG seict I-beams with various BCs
are obtained and compared with those of the previwarks. The results indicate that

the present study is simply and significant for doiceng buckling and vibration
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behaviours of composite and FG sandwich I-beams.
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Figure Captions

Figure 1. Thin-walled coordinate systems

Figure 2. Geometry of thin-walled I-beams

Figure 3. Variation of the fundamental frequendiez) of thin-walled C-C I-beams
with respect to fiber angle.

Figure 4. Variation of the critical buckling loadd) of thin-walled C-C I-beams with
respect to fiber angle.

Figure 5. Shear effect on the fundamental frequéoicyarious BCs

Figure 6. Shear effect on the critical bucklingdsdor various BCs

Figure 7. Shear effect on first three natural fesgpies of thin-walled C-C I-beams
Figure 8. Variation ofE,;/ E,, ratio with respect tay

Figure 9. Mode shape 1 of thin-walled C-C I-beams

Figure 10. Mode shape 2 of thin-walled C-C I-beams

Figure 11. Mode shape 3 of thin-walled C-C I-beams

Figure 12. Non-dimensional fundamental frequencwéoious BCs

Figure 13. Non-dimensional critical buckling loamt f/arious BCs

Figure 14. Non-dimensional fundamental frequencythofh-walled FG sandwich I-

beams.

Figure 15. Non-dimensional fundamental frequencythwirespect to a,, a,
(a,=a,,/=0.3 and p=10)
Figure 16. Non-dimensional critical buckling loadiwespect toa,, a, (£=0.3 and

p=10)
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Figure 17. Non-dimensional fundamental frequencthwespect tog (a, =a,=0.1,
and p=10)

Figure 18. Non-dimensional critical buckling loadtiwrespect to8 (a,=a,=0.1,
and p=10)

Figure 19. Shear effect on fundamental frequencydoious BCs

Figure 20. Shear effect on critical buckling load ¥arious BCs

Figure 21. Shear effect on first three frequencZ e I-beams with respect to material

parameter
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Table Captions

Table 1. Shape functions and essential BCs ofwlailed I-beams.

Table 2. Material properties of thin-walled I-beams

Table 3. Convergence studies for thin-walled comip@nd FG sandwich I-beams.
Table 4. The fundamental frequency (Hz) of thinfe@IS-S and C-F I-beams
Table 5. Critical buckling load (N) of thin-wall&®+S and C-F I-beams

Table 6. Non-dimensional natural frequency of tvalled S-S I-beams

Table 7. Non-dimensional natural frequency of tvalled C-F I-beams

Table 8. Non-dimensional natural frequency of twialled C-C I-beams

Table 9. Non-dimensional critical buckling loadtbin-walled composite I-beams

Table 10. The critical buckling load (N) of FG samch I-beams
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Figure 9. Mode shape 1 of thin-walled C-C I-beams
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Table 1. Shape functions and essential BCs ofwhilted I-beams.

¢, (x)
BC X x=0 X=L
eL
S-S 5(1—% U=V=¢=0 U=V=¢=0
L L
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L W:[//y: <= w:o
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C-C (%] (1_%(j Ulzvlzgp:o U :V':(d =0
W:[//y =l//x=l//w=0 W:[//y:[//X:[//w:O
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Table 2. Material properties of thin-walled I-beams

Material properties MAT | MAT Il MAT IlI MAT IV
E1, Ec(GPa) 53.78 25 380 320.7
E,=E3, En, (GPa) 17.93 1 70 101.69
G1=G13(GPa) 8.96 0.6 - -
Gz3 (GPa) 3.45 0.6 - -
V, V1= Vi3 0.25 0.25 0.30 0.3
0 (kg/m®) 1968.90 - ; ]
2 (kg/m®) - - 3960 -
Om (kg/m®) - - 2702 -
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Table 3. Convergence studies for thin-walled cormpa@nd FG sandwich I-beams.

BC m
2 4 6 8 10 12

1. Thin-walled composite I-beams

a. Fundamental frequency (Hz)

S-S Shear 16.763 16.544 16.482 16.481 16.481 16.481
No shear 16.773 16.553 16.491 16.490 16.490 16.490

C-F Shear 5.958 5.878 5.873 5.873 5.873 5.873
No shear 5.959 5.880 5.875 5.875 5.875 5.875

C-C Shear 37.433 37.307 37.304 37.303 37.302 37.301
No shear 37502 37.382 37.382 37.382 37.382 37.382

b. Critical buckling load (kN)

S-S Shear 2.752 2.690 2.671 2.671 2.671 2.671
No shear 2.755 2.692 2.673 2.673 2.673 2.673

C-F Shear 0.706 0.668 0.668 0.668 0.668 0.668
No shear 0.706 0.668 0.668 0.668 0.668 0.668

C-C Shear 10.797 10.678 10.657 10.657 10.657 10.657
No shear 10.832 10.712 10.691 10.691 10.691 10.691

2. Thin-walled functionally graded sandwich I-beams

a. Fundamental frequency (Hz)

S-S Shear 92.715 91522 91.184 91.180 91.180 91.180
No shear 93.701 92.474 92127 92122 92122 92.122

C-F Shear 33.137 32.690 32.663 32.660 32.660 32.660
No shear 33.291 32846 32.820 32.818 32.818 32.818

C-C Shear 201.801200.434 200.127 199.973 199.885 199.830
No shear 209.499208.830 208.828 208.828 208.828 208.828

b. Critical buckling load (MN)

S-S Shear 1.036 1.013 1.006 1.006
No shear 1.055 1.031 1.024 1.024
C-F Shear 0.269 0.255 0.255 0.255
No shear 0.271 0.256 0.256 0.256
C-C Shear 3.867 3.827 3.820 3.820

No shear 4.150 4.104 4.096 4.096

1.006
1.024
0.255
0.256
3.820
4.096

1.006
1.024
0.255
0.256
3.820
4.096
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Table 4. The fundamental frequency (Hz) of thinfe@lS-S and C-F I-beams

BC Reference Lay-up
[0], {15/} {30 /} {45 /} {60 /} {75 /} {90/}
-15),, |=30],, [-45],, [60J,, [-73], [—90],

S-S Present (Shear) 24.1692.977 19.806 16.481 14.660 14.071 13.964
Present (No shear) 24.1923.001 19.820 16.490 14.668 14.079 13.972
Vo and Lee [24] (Shear) 24.15@2.955 19.776 16.446 14.627 14.042 13.937
Sheikh et al. [36] (Shear) 24.16@2.970 19.800 16.480 14.660 14.070 13.960
Kim et al. [26] (No shear) 24.19422.997 19.816 16.487 14.666 14.077 13.970

C-F Present (Shear) 26.4725.174 21.699 18.057 16.063 15.417 15.299
Present (No shear) 26.5125.202 21.717 18.069 16.072 15.427 15.309
Kim and Lee [9] (Shear) 26.46(@5.160 21.700 18.060 16.060 15.420 15.300
Kim and Lee [9] (No shear) 26.51@5.200 21.710 18.070 16.070 15.420 15.310
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Table 5. Critical buckling load (N) of thin-wallestS and C-F I-beams

BC Reference Lay-up
[0], {15/} {30/} {45/} {60/} {75/} {0/}
-15|,, |=30],, [-45],, |60|,, [-75], [90],
S-S Present (Shear) 1438.1 1299.4 965.0 668.1 528.687.0 959.0
Present (No shear) 1438.8 1300.0 965.2 668.2 528.487.1 959.3
Kim et al. [27] (No shear) 1438.8 1300.0 965.2 868 528.7 487.1 964.4
C-F Present (Shear) 5743.3 5191.0 3856.8 2670.6 3.211 1946.7 3831.4
Present (No shear) 5755.2 5199.7 3861.0 2672.7 4.211 1948.3 3837.3

Vo and Lee [24] (Shear) 57415 5189.0 38545 26682111.3 1945.1 3829.8
Kim et al. [27] (No shear) 5755.2 5199.8 3861.0 728 2114.7 1948.3 3857.8
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Table 6. Non-dimensional natural frequency of thalled S-S I-beams

Reference Frequency Lay-up

P EEFRIERE

Present (Shear) 7 7.107 6.327 3.755 2.151 1.627 1.493 1.468
w, 8.189 7.528 5.137 3.610 2.967 2.713 2.645
w, 19.140 17.594 12904 8.583 6.495 5.958 5.860
w, 27542 24998 14957 10445 8.577 7.849 7.685
w 30.741 28.408 17.791 11.078 9.976 9.841 9.817

Present (No shear) « 7.186 6.353 3.761 2.153 1.628 1.494 1.469
w, 8.303 7.561 5.145 3.614 2.970 2.715 2.648
w, 20.856 18.903 13.404 8.611 6.513 5.974  5.876
w, 28.743 25.412 15.043 10.654 8.606 7.876 7.713
w 32.408 28.935 17917 11.191 10.213 10.069 10.045
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Table 7. Non-dimensional natural frequency of twalled C-F I-beams

Reference

Frequency

Lay-up

R

o |

|

90/
-90

Present (Shear)

Present (No shear)

£ £ & £

£ £ & £ &

£

2547 2.259
3.174 3.057
7.123 6.538

15.492 13.995
17.559 16.307

2.560 2.263
3.197 3.064
7.430 6.772

16.043 14.183
18.333 16.549

1.339
2.423
4.746
8.357
10.755
1.340
2.426
4.835
8.396
10.811

0.767
1.877
3.821
4.793
7.177
0.767
1.879
3.896
4.806
7.199

0.580
1.572
3.597
3.627
5.780
0.580
1.574
3.635
3.637
5.796

0.532
1.438
3.327
3.548
5.285
0.532
1.439
3.335
3.587
5.300

0.523
1.400
3.272
3.540
5.162
0.523
1.401
3.280
3.578
5.177
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Table 8. Non-dimensional natural frequency of twalled C-C I-beams

Reference Frequency Lay-up

P EEFIRIERE

Present (Shear) 7 15.480 14.129 8.474 4.865 3.682 3.378 3.322
w, 17.239 16.086 10.104 6.206 4.839 4.423 4.332
w, 34.221 32.379 23.221 13.368 10.121 9.285 9.131
w, 40.918 38.293 25.221 15901 12.265 11.221 11.004
w 44,983 43.101 27.483 22.047 19.739 18.106 17.804
Present (No shear) )] 16.289 14.401 8.525 4.880 3.691 3.386 3.330
w, 18.362 16.429 10.172 6.228 4.854 4.438 4.346
w, 44,902 39.698 23.499 13452 10.175 9.334 9.180
w, 47.279 42.154 26.604 16.021 12.342 11.294 11.079
w 50.406 45.561 31.022 24.622 19.946 18.298 17.996
Vo and Lee [24] (Shear) )] 15.460 14.122 8.471 4.862 3.678 3.374 3.319
w, 17.211 16.064 10.092 6.202 4.836 4.421 4.330
w, 33.996 32.174 23.209 13.392 10.147 9.308 9.152
w, 40.271 38.063 25.126 15.919 12.286 11.239 11.022
a, 44.134 42.818 27.457 21.991 19.855 18.211 17.905
Vo and Lee [24] (No shear) « 16.289 14.401 8.525 4.880 3.691 3.386 3.330
w, 18.362 16.429 10.172 6.228 4.854 4.438 4.346
w, 44903 39.698 23.499 13452 10.175 9.334 9.180
w, 47.279 42.154 26.604 16.021 12.342 11.294 11.079
w, 50.406 45.561 31.022 24.622 19.946 18.298 17.996
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Table 9. Non-dimensional critical buckling loadtbin-walled composite I-beams

BC Reference Lay-up

FIEEEE

>

S-S Present (Shear) 11.949.468 3.336 1.094 0.626 0.527
Present (No shear) 12.208.542 3.344 1.096 0.627 0.527

C-F Present (Shear) 3.035 2.381 0.835 0.274 0.157.1320
Present (No shear) 3.052 2.385 0.836 0.274 0.157.1320

C-C  Present (Shear) 44.9187.007 13.249 4.363 2.498 2.102
Present (No shear) 48.8338.167 13.374 4.383 2.507 2.110

0.510
0.510
0.128
0.128
2.034
2.041
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Table 10. The critical buckling load (N) of FG samch I-beams

BC p Reference
Present Kim and Lee [41] Lanc et al. [40]
Shear No shear Shear No shear No shear
S-S 0 421633 423079 422359 423083 423296
0.25 404154 405602 405208 405933 406130
0.5 392508 393960 393783 394515 394692
1 377958 379420 379533 380286 380412
363420 364899 365280 366056 366150
5 348899 350404 351058 351825 351914
10 342305 343826 344601 345333 345451
20 338539 340070 340906 341605 341762
CF 0 105679 105770 105725 105771 105773
0.25 101310 101401 101435 101483 101484
0.5 98399 98490 98577 98629 98626
1 94763 94855 95013 95072 95057
91132 91225 91448 91514 91494
5 87507 87601 87891 87957 87936
10 85861 85957 86277 86334 86321
20 84922 85018 85353 85403 85400
CC 0 1669413 1692317 1680840 1692352 1705050
0.25 1599491 1622408 1612410 1623751 1635900
0.5 1552860 1575838 1566830 1578078 1589830
1 1494551 1517678 1509950 1521156 1532310
1436213 1459595 1453060 1464229 1474860
5 1377838 1401613 1396270 1407293 1417520
10 1351288 1375299 1370490 1381317 1391480
20 1336111 1360275 1355730 1366399 1376630

61



