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Abstract

This paper proposes an improved first-order beam theory by separation of variables for
bending and buckling analysis of thin-walled functionally graded (FG) sandwich I-
beams resting on a two-parameter elastic foundation. By dividing the displacements into
bending and shear parts, this model can produce the deflections for both two cases with
and without shear effect. The mechanical properties of beams based on the power law
distribution of volume fraction of ceramic or metal. Governing equations are established
from Lagrange’s equations. The new Ritz’s approximation functions, which are
combined between orthogonal polynomial and exponential functions, are proposed to
solve problem. The deflections and critical buckling loads of thin-walled FG sandwich
I-beams are presented and compared with those available literature to verify the present
theory. The effects of material distribution, boundary conditions, length-to-height ratio,

shear deformation and foundation parameters on the results are investigated in detail.
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1. Introduction

Functionally graded materials (FGM) are special types of composite materials,
which are made from a mixture of metal and ceramic. They have advantages such as
excellent corrosive resistance, high strength and stiffness-to-weight ratio, low thermal
expansion, and especially, they meet stress continuity existing at surfaces of laminated
composite. Therefore, FGM are increasingly used in many fields of mechanical, civil,
marine, aerospace, defence, energy, electronic, medical, nuclear engineering [1].
Besides application in many engineering fields, a review study ([2]) indicates that FGM
attracted huge researchers considered behaviours of FG structures. Many solution
methods and models have been proposed for their accurate analysis, in which the static
and buckling behaviours are the critical performance and interest of thin-walled FG
beams.

Vlasov [3] firstly proposed the most straightforward thin-walled beam theory for
isotropic material. Based on Vlasov’s theory, there are many papers related to thin-
walled composite beams and some are mentioned here [4-7] since this paper focuses on
the thin-walled FG beams. Nguyen et al. [8], and Kim and Lee [9, 10] analysed bending
behaviours of FG beams with the channel, I-section and box sections using Vlasov’s
theory. Blanc et al. [11] investigated nonlinear buckling responses of FG beams by finite
element method. Librescu et al. [12] studied dynamic and buckling behaviours of
simply-supported spinning thin-walled FG beams. Flexural-torsional and lateral
buckling analysis of FG beams are also carried out in the studies ([13-15]). It can be
seen that Vlasov’s theory is just appropriate for slender beams because it neglects shear
deformation effect. In order to account this effect, Kim and Lee [16] applied thin-walled

composite beam model of Lee ([17]) to analyse flexural behaviours of FG I-beams. Kim



and Lee [18] investigated instability of FG I-beams considering shear deformation.
Demirbas et al. [19] and Kvaternik et al. [20] proposed refined beam theory in the
framework of the Carrera Unified Formulation (CUF) to evaluate bending response and
nonlinear buckling response of FG beams. FG plates also attracted a large number of
investigators. Khiloun et al. [21], Boussoula et al. [22] presented higher-order shear
deformation theory for vibration and bending of FG plates. Vibration and buckling
responses of FG nanoplates were also investigated by Balubaid et al. [23] and Karami et
al. [24]. Hussain et al. [25] analysed fundamental natural frequency of FG cylindrical
shell with ring supports. Thai and Choi [26, 27] presented simple first-order shear
deformation theories by dividing the transverse displacement into bending and shear
parts for vibration and bending analysis of composite and FG plates. In these studies,
the proposed theories just contain four unknowns and have strong similarities. Generally,
the idea of partitioning the displacement gives the displacement fields had simple forms,
and reduces computational cost. Therefore, this approach is widely used in analysing
behaviours of FG plates ([28-31]), and rectangular beams ([32-36]). However, it is
interesting to state that it has not developed for the static and buckling response of thin-
walled FG sandwich beams yet.

The behaviour of FG structures on elastic foundation is essential and interesting in
engineering fields. A large number of models and idealization are proposed for the
accurate response of structure on the foundation [37]. Li and Shao [38] analysed the
nonlinear effect on bending behaviours of FG cantilever beams on Winkler foundation.
Akbas [39] presented deflections and frequencies of FG beams resting on Winkler
foundation using classical and first-order beam theories. Gan and Nguyen [40] used

two-parameter foundation model for nonlinear response of FG beams. Ying et al. [41]



proposed an exact elasticity solution for FG beams on elastic foundation. Esen [42] used
two-parameter foundation model for dynamic response of FG Timoshenko beam. Fahsi
et al. [43] studied structural responses of the FG beams on elastic foundation with the
porosity effect. Chaabane et al. [44] investiagted bending and free vibration responses
of FG beams resting on Winkler-Pasternak foundations. Matouk et al. [45] analysed
hygro-thermal vibration of FG nanobeams on the elastic foundation using Hamilton
principle and Navier method. Bousahla et al. [46] and Bourada et al. [47] presented
buckling and vibration behaviours of SW-CNT-RC beams resting on foundation with
simply supported boundary condition based on first shear deformation theory. Besides
papers dealing with responses of FG beams ([38-47]), there are many studies
investigated behaviours of FG plates on elastic foundation. Rabhi et al. [48], Chikr et al.
[49], Kaddari et al. [50], and Rahmani et al. [51] proposed models for buckling, bending
and vibrations analysis of FG plates resting on elastic foundations. Effects of two-
parameter elastic foundation on hygro-thermo-mechanical buckling and bending
analysis of FG plates are investigated by Refrafi et al. [52] and Tounsi et al. [53].
Shariati et al. [54] and Furjan et al. [55] studied vibration and stability of multi-scale
hybrid disk based on nonlinear elastic foundation. Although there are many papers
investigated effects of elastic foundation on responses of FG beams and plates as far as
the authors are aware there is no study that considers both shear and foundation effects
for bending and buckling behaviours of thin-walled FG I-beams.

For the computational method, although the finite element method is used popularly
for analysis of thin-walled FG beams [11, 13-15, 56, 57], many investigators proposed
Ritz method for FG beams with rectangular section [58-62]. Nguyen et al. [63]

developed Ritz functions for buckling and vibration behaviours of FG and laminated



composite thin-walled beams. It can be stated that Ritz method is rarely used for
analysis of the thin-walled FG beams.

The main contributions of this paper are to propose 1) an improved first-order beam
theory for thin-walled FG I-beams using separation of variables and 2) new Ritz-
functions for their deflections and buckling loads resting on elastic foundation. This
model can produce the results for both with and without shear effect due to dividing the
displacements into bending and shear parts. The displacements and buckling loads are
presented and compared with those available literature to verify the present theory. The
effects of ceramic thickness ratio, material parameter, length-to-height ratio, boundary
conditions, shear deformation and foundation parameters on the results are examined.
Some of the new results is presented for the first time as a benchmark for reference in
the future.

2. Theoretical formulation

Consider a thin-walled FG beam as indicated in Fig. 1. There are three coordinate

systems required to develop the displacement field of the beam as follows: the Cartesian

coordinate system (y,z,x), local plate coordinate system (n,s,x), and contour

coordinate s which draws along the profile of the section. ¢, is an angle of
orientation between (y,z,x) and (n,s,x) coordinate systems. P(yp,zp) is shear

center of cross-section [6]. To establish displacement field of thin-walled FG beam, the
following assumptions are accepted:

1) The contour of thin-walled cross-section does not deform in its own plane.

2) Shear strains ;/‘y)x,yfx and warping shear »° are uniform over the section.

3) Poisson ratio is constant.

2.1. Kinematics



The mid-surface displacement ( v,w) at a point in contour are given in terms of the
rotation angle ¢ about the pole axis and displacements V, W of the pole P in the y, z-
directions, respectively as follows:

V(s,x)=V (x)sing,(s)-W(x)cose, (s)—4(x)a(s) (1a)
W(s,x)=V (x)cose,(s)+W (X)sing,(s)+4(x)r(s) (1b)
By using separation of variables [26-28], it is convenient to divide the displacements

into bending part, denoted by the subscript b and shear part, denoted by the subscript s

as follows:
V(%) =V, (X) +V, (%) (2a)
W (X) =W, (X) +W, (x) (2b)
$(x) = () + (%) (20)

The out-of-plane plate displacement T is determined according to the assumption (2).

The shear strains at mid-surface of the plate can be defined as follows:
T (8:X) =V (X)sing, (s) —W, (x)cos e, (s)— ¢ (x)a(s) (3a)
Vo (8.X) =V, (X)cosg, (5)+W, (X)sing, (s)+¢, (X)r(s) (3b)
where the prime superscript indicates differentiation with respect to x. From the
definition of the shear strain, 7, at mid-surface of each element can be expressed as
[16]:

_ oW ou
j/sx(s’x):&-l-g (4)

By substituting w from Eqg. (1b) into Eq. (4) and using Eq. (2), displacement T can

be written by:

u(s,x)=U(x)=V, (x)y(s)-W, (x)z(s)—¢ ()@ (s) (5)



where @ is the warping function:

a(s)=[r(s)s ©)

So
The displacement components (v, w, u) at an arbitrary point on the cross-section are

given with respect to the mid-surface displacements (v ,w, «) as follows:

v(n,s,x)=V(s,X) (7a)
w(n,s, x)=W(s,x)+n (s, X) (7h)
u(n,s,x)=0(s,x)+nw,(s,X) (7¢)

where w, and w, are the rotations of transverse normal about x and s, respectively.

v, can be expressed by definition of the mid-surface shear strains y,, as below:

_ _ ov
ynx(s,x)——+——y/x(s,x)+& (8)
By comparing Eq.(3) and (8), the function , (s,x) can be obtained as:
7, (5,X) ==V, (2)sing, (s)+W, (x)cosg, (s)+d (x)a(s) (9)
Similarly, y, can be written by using the assumption that the shear strain y,, should

vanish at mid-surface of each element:

_ ov
v, (s,x) == =d,(X)+4,(X) (10)
The non-zero strains of thin-walled FG beam are expressed by:

£(n,8,X)=&,(s,X)+nk, (s,X) =& +(y+nsing,)x, +(z—ncose, )k, +(@—nq)x, (112)
a

=U —(y+nsing, )V, —(z—ncosg, )W, — (@ —nq)d,

Ve (N5,X) = 74 (5,X) + Nic, (S, X) = 75, COS@, + 75 SN, +yor + N,y

| AT e (11b)
=V, cosg, +W, sing, + 41 +(24, + 4 )n



7/n><(n’s’x):77nX(S’X)+nEnx(S’X)=7/Sx5in(ps _7/2((:08(05 —ng

=V.sing, W, cosg, —4.q (11c)
where
& =U (12a)
7o =V (12)
7o =Ws (12¢)
Vo =4, (12d)
ey =W, (12¢)
=V (12)
Ko = (129)
Koo =2 +4; (12h)

2.2. Constitutive relations
Young’s modulus of thin-walled section is defined via Young’s modulus of metal
(E,) andceramic (E.) aswell as volume fraction of ceramic (V,):
E=EV,+E,(1-V,) (13)
Two types of the material distributions are considered as follows (Fig. 2):

Type A: for the top and bottom flanges

p
n+0.5h
C—l:m} , —0.5h£ﬂ£(0.5—0{)h (14a)
V,=1, (0.5-a)h<n<05h (14b)

where p, « (ay,@,) and h(h,h,) are material parameter, ceramic thickness ratio

and thickness of the top and bottom flanges, respectively.



Type B: for the web, top and bottom flanges

—|n[+0.5h

p
} , 0.5h<n<-0.5ah or 0.5ah<n<0.5h (15a)

V. =1, -0.5ah<n<0.5¢ah (15b)
where a (o, ¢,,¢,) and h(h,h,,h) are ceramic thickness ratio and thickness of

the flange and web, respectively.

The stress and strain relations are defined as follows:

O-x Ql*l 0 0 8x
O-sx = 0 Qgﬁ O 7/ SX (16)
O-nx 0 0 QgS 7/ nx

o EWm
where Qll E(n), Qee st 2(1+V) (17)

where v is Poisson’s ratio
2.3. Variational formulation

The strain energy TT. of the system is defined through volume Q by:

1
1_[E ZEJ‘Q(UX(C"X + 047« +an7nx)dQ (18)
Substituting Egs. (11) and (16) into Eq. (18) leads to:

(EU?-2E,UV, —2E,UW, —2(EU'¢ -2EU'4,)

+2E UV, +2E,UW, +2(Ejs + E;5)U ¢, + E,V,° + 2E,V,\W, + 2E,V, ¢,

—AE, N, — 2E,V\V, = 2E, VoW, —2(Ey + Ejg )V, 6 + E W,

m, -1 [ +2E W0 — 4B W,y — 2E,W,V, — 2E, W)W, — 2(Egg + Eg )Wy + E? ik (19)
_AE, g+ AE 47 — 2E, AV, +AE AV, — 2E, AW, +4E AW,
—2(Eys+Eus )it +4(Ess + Eqg )i, + EgV2 + 2E VW, +2(Egq + Egy V.
+E, W, +2(Ey; + Epg )W, 4, +(Eqg + 2Eq; + Egg ) 4

where: E; are the stiffness of thin-walled FG I-beams, which are defined in Appendix



A; L is the length.

The elastic foundation energy I1. of the system is defined by [64, 65]:

ky{Vb+VS—(¢§b+¢s)<ly—yp)}2+kZ{Wb+Ws+(¢b+¢s)(lz—zp)}2
M == |k (d+ ) + 0, NV, (s +4)(1,-¥,)) dx  (20)
_+gz{Wb' +WS'+<¢jt',+¢S')(IZ—zp)}2

where k and g, aswellas k,and g, are the first and second foundation parameters
in y- and z-direction respectively; k, is the rotational parameter for rotation of the

cross-section; and (I I ) are the coordinate of transverse translation point as shown in

y? 'z
Fig. 3.

The potential energy I, by external forces, which are axial load N, , uniformed
transverse load g, and concentrated transverse load P, applied at x , can be

expressed as [17, 63]:

(VQ +VS')2 +(WQ +WS')2 +22, (Vb +V, )(qu + ¢s)
, X

I, =[N, o o
! _2yp(wb+WS)(¢D+¢S)+'KP(¢D+¢S) (21)

+ [ g, (W, + W, Jdx+ P, (W, +W, ) x,
0
2.4. Ritz solution
By using Ritz’s approximation functions which combined between orthogonal

polynomial and exponential functions, the displacement fields can be written as:

U0 =3¢,00U, (222)
V, (0 =3¢, 00V, (22b)

10



W00 = ¢, 00w,

h00= ¢, 094,

V(0= 3¢,

W00 = ¢, 00w,

4,00 = 26,004,

(22c)

(22d)

(22b)

(22c)

(22d)

where U, Vi, W, ¢, Vi, W, and ¢, are Ritz’s parameter and £(x) are

Ritz’s approximation functions, which satisfy with various boundary conditions (BCs)

as indicated in Table 1.

The deflections and buckling loads of the beams can be obtained by using total potential

energy (IT) and Lagrange’s equations:

=TT, +I1_ —I1,,

ot

—=0
op;

where p, representing the valuesof U;, V,;, W,;, 4;, V.

Kll K12 K13 Kl4 K15
T K12 K22 K23 K24 KZS
T KlS T K23 K33 K34 K35
T Kl4 T K24 T K34 K44 K45
T K15 T K25 T K35 T K45 K55
T K16 T K26 T K36 T K46 T K56
TK17 TK27 TK37 TK47 TK57

T K67

K17 7

K27
K37
K47
K57
K67
K77

g Wy and ¢
U 0
V, | |0
W, | |F,
®, +=10
V, 0
w, | |F
® | |0

where the stiffness matrix K and vetor F are expressed in Appendix B.

11
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3. Numerical results

The numerical examples are carried out to analyse bending and buckling responses
of thin-walled FG I-beams, and verify the proposed theory. S1-section with Type A for
flanges and Type B for web (Fig.2a), and S2-section with Type B for both flanges and
web (Fig.2b) are considered. These configurations meet continuity of FG at flanges and
web connection. This makes the relation between web and flanges becomes stronger,

and the approach presented is feasible [8, 11, 16]. Material properties are given by

E =105.69x10°kN/m’ , E =320.7x10°kN/m’ and v _=v =03. Ratio

m C

W, /W x100% is defined as the shear effect. The effects of material distribution,
material parameter (p), BCs, length-to-height ratio (L/b,), shear deformation, and
foundation parameters on the results are examined.
3.1. Convergence study

To study the convergence of present solution, the FG I-beams
(h=h,=h,=h=0.005m, b=b,=01m, b=02m, L=25m, o,=¢,=0.7,
o, =04, p=5, Sl-section) are considered. For static problem, the concentrated
transverse load (P, =100kN) acts at mid-span of beams. The buckling loads and mid-

span deflections of various beams are shown in Table 2. It can be found that the present
solution converges at m = 10 for deflection and m = 8 for buckling. Therefore, these
numbers are selected for the following examples.
3.2. Bending analysis
3.2.1. Verification

In order to verify the beam model and solution, the simply-supported isotropic I-

beam (h =h,=h,=h=0.00208m, b =b,=b,=0.05m, L=25m) is considered.

12



The Poisson ratio and Young’s modulus are assumed to be v=0.25 and
E =53.78x10°kN /m? . The maximum deflections of beams subjected to the
concentrated transverse load (P, =1kN ) at mid-span are compared with those of Kim
and Lee [16] in Table 3. The present results have coincided with previous results [16]
for both cases with and without shear effect.

A cantilever FG I-beam (h =h, =h,=h=0.002m, b =20h, b, =10h, b, =40h,
L=25m, =09, «,=01, a,=04, Sl-section) subjected to a concentrated

transverse load (P,) acting at the free end is examined. For comparison with the

E.hb’
——=

available literature, the nondimensional deflection is defined by W = The

maximum deflections again agree well with previous results [16] in Table 4. Since there

is no published data for the FG I-beams resting on elastic foundation, a cantilever

composite I-beam ( h, =0.00208m, h,=0.00312m, h,=0.00104m, b =0.03m,
b, =0.04m, b,=0.05m, L=2.5m) is considered. Material properties are as follows:
E, =53.78x10°kN/m?* , E,=E,=17.93x10°kN/m’ , G, =G, =8.96x10°kN/m’ ,
G,, =3.45x10°kN /m?, v,, =v,; =025 and v,, =0.34. Lay-ups are [30/-30],; for
top flange, [30/-30],; for bottom flange, and [30/-30],; for web. Table 5 displays

the maximum deflections of beams subjected to a concentrated transverse load

(P, =0.1kN) acting at the free end respect to foundation parameters k, and g,. Itis

seen that the present results are again in excellent agreement with those of Kim and Lee

[4].

13



3.2.2 Thin-walled FG I-beams without foundation effect

The effects of p, L/b,, BCs, and material distribution on the deflections of beams are
investigated. The FG I-beams ( h =h,=h,=h=0.002m , b =20h, b,=10h,
b, =40h) are considered. Tables 6 and 7 show their mid-span deflections (L /b, =10
and L/b,=20) subjected to the concentrated transverse load (P, =10kN) acting at
mid-span  for  Sl-section (=09, a,=0.1, o, =0.4) and  S2-section
(op =01, , =0.1, &, =0.1), respectively. It is clear that beams’ deflections increase as
L/b, and p increase for both S1- and S2-sections. This is reasonable because the

portion of ceramic volume fraction directly depends on p and it leads to a reduction in

stiffness when p increases [13]. It is seen from Tables 6 and 7 that the deflections are the
largest for C-F beams and the smallest for C-C ones as predicted. Fig. 4 displays the

variation of shear effect respect to the L /b, for S1- and S2-section, respectively. The

shear effect decreases as the L /b, increases as expected, and it is the largest for C-C

beams.

To investigate the effect of ceramic thickness ratio on the shear effect, FG C-C I-
beams (h, =h, =h,=h=0.002m, b =20h, b, =10h, b,=40h, L =8h,, S1-section)
under a uniformly distributed transverse load (g, =0.5kN /m) are considered. Figs. 5a-
7a show variation of the shear effect respect to ceramic thickness ratio in flanges and
web. The ceramic thickness ratio affects significantly to the shear effect, and 1) the
shear effect decreases as the ceramic thickness ratio in web increases; 2) as the
ceramic thickness ratio of top flange increases, the shear effect increases and then
decreases; and 3) the shear effect increases as the ceramic thickness ratio in bottom
flange increases. These phenomenons can be explained in Figs. 5b-7b which display the

variation of ratios of flexural and shear rigidity (E,,/E,;) respect to ceramic thickness
ratio. It can be concluded that variation of the shear effect depends on the (E,;/E,,)

ratio which are defined by material properties, material distribution and profile of cross-

14



section.
3.2.3. Thin-walled FG I-beams with foundation effect

The FG I-beams (h =h,=h,=h=0.002m, b =20h, b,=10h, b,=40h,
p=10, L=20b,, g,=5kN/m) resting on two-parameter foundation in the z-

direction are considered as shown in Fig. 8. Tables 8 and 9 show their mid-span
deflections respect to foundation parameters for S1-section
(¢,=09, a,=0.1, o, =0.4) and S2-section (¢ =, =, =0.1), respectively. It is
seen that the deflections decrease as foundation parameters increase for both S1- and
S2-section because the increase of foundation parameters makes beams get stiffer.

To further investigate the effect of foundation parameters, the FG I-beams
(h=h=h=h=0002m , b =20h, b,=10h, b,=40h, p=10, L=20b,,
o, =09, o, =0.1, o; =0.4, S1-section) with four cases are considered as follows: Case

1 ignores the foundation effect; Case 2 considers the first parameter of foundation; Case
3 considers the second parameter of foundation, and both two parameters of the

foundation are considered in Case 4. Soil sub-grade properties are assumed to be

g,=282150kN  and K =1007kN/m® [4]. For beam with  bottom
width b, =10h=0.02m , the first foundation parameter is determined
k, =K., =20.140kN /m?. Fig. 9a and b display the deflections of the C-C and C-S
beams under uniformly distributed transverse load (g, =20kN /m), respectively. It is

seen from these figures that the first foundation parameter does not have strong effect to
beams’ deflections. However, the second one causes the decrease of maximum
deflections about 25% and 38% for C-C and C-S beam, respectively.

Figs. 10 and 11 display the ratio of deflection between the first and second

15



foundation parameters for various BCs. It can be seen from Fig. 10 that in case of small
L/b, ratio (L/b; <20), the effect of the first foundation parameter is negligible, but it
becomes very significant as L/b, ratio is large (L/b,=70). Fig. 11 indicates that the
effect of second foundation parameters is noticeable, and increases as L /b, increases.
It is the smallest for C-C beams and the largest for C-F ones. It can be concluded from
present results that the effect of foundation parameters becomes very remarkable as
stiffness of beams reduces.
3.3. Buckling analysis
3.3.1. Thin-walled FG I-beams without foundation effect

For verification purpose, FG I-beams (h =h, =h,=h=0.005m, b =b, =0.1m,
b,=02m, L=25m) with o =a,=0,=04, S2-section and o =a,=0.7,
a, =0.4, S1-section are considered. Their critical buckling loads (kN) with various BCs
are printed in Tables 10-14, and are compared with those with and without shear effect
([11, 18, 63]). It shows an excellent agreement of present results with those from
previous results. Figs. 12 and 13 show the effect of ceramic thickness ratio in flanges

(as a,;=0.4) and web (as o =, =0.7) on the first three buckling loads of C-S
beams ( p=10). It can be seen from these figures that the results increase significantly

as the ceramic thickness ratio in flanges increases, however, they just slightly increase
as the ceramic thickness ratio in web increases. This is due to the fact that the increase
of ceramic thickness ratio in flanges causes noticeable increase of the bending and
torsional rigidities of beams.

The FG I-beams (h =h,=h,=h=0.005m, b =b,=0.1m, b,=0.05m, p=10,

o, =a, =, =04, S2-section) with L/b,=10 and L/b,=50 are considered to

16



investigate shear effect. Figs. 14-17 show the first four buckling mode shapes of
beams for L/b,=10 and L/b,=50. From these figures, it is clear that the
contribution of shear mode is significant for lower length-to-height ratio (L/b, =10)

and higher buckling mode (Modes 2 and 4).
3.3.3. Thin-walled FG I-beams with foundation effect

To evaluate foundation effect on the critical buckling loads, S1-section
(y=0,=07,0,=04) and S2-section ( o4 =a,=0,=04) with geometry
(h=h,=h,=h=0.005m, b =b,=01m, b=005m, p=10, L/b,=50) are
considered. Figs. 18 and 19 display the variation of first four buckling loads of
cantilever beams for S1- and S2-section respect to k, and g,. It is seen that the

buckling modes in z-direction increase almost linearly as foundation parameter
increases, and the buckling modes in y-direction do not affect by variation of foundation

parameters because k, and g, justcause increase of beams’s rigidity in z-direction.
Finally, the effects of BCs, L/b, on the critical buckling loads are investigated.

The thin-walled FG beams with sections as in previous example are considered. Soil

properties are assumed to be g, =282.150kN and k, =100.7kN/m? . Ratio
r, =B, /B is defined to investigate the effect of BCs and L/b,, where B, and P,

are the critical buckling loads of beams with and without foundation effect, respectively.

Fig. 20a and b show the variation of r, respectto L/b, for various BCs for S1- and
S2-sections. It is seen from these figures that r, ratio increases as L/b, ratio

increases until the critical buckling load of beams with foundation effect equals to the

second buckling load of beams without it. It is mean now that r, equals to ratio of the

17



second buckling load and critical buckling load of beams without foundation effect, and

it is interesting that this ratio does not depend on boundary conditions.
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4. Conclusions

An improved first-order beam theory, which is based on dividing the displacements
into bending and shear part, is proposed for the static and buckling response of thin-
walled FG I-beams. The presented beam model has straightforward form, and it is
convenient to establish formula and solve the problems. In addition, this model can
produce the results for both two cases with and without shear effect, therefore, it
reduces computational cost in case of comparing shear effect. The effects of material
distributions, length-to-height ratio, boundary conditions and foundation parameters on
the displacement and critical buckling load of thin-walled FG I-beams are considered.
Foundation parameters significantly affect to the deflections and critical buckling loads
of beams. The proposed beam model is efficient for considering the shear effect on the

static and buckling responses of thin-walled FG I-beams.
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Appendix A: The stiffness E; of thin-walled FG beam are given:
E, =JAIQ;1dnds, E, =fJQfl(y+nsin¢s)dndS1 E, =gofl(z—ncos¢s)dnds
E. =jJQfl(w—nq)dnds . Eg=Ex=E;=E;=0
E,, =ijg;(y2 +2nysin g, +n’sin’ g, ) dnds
A
E,, = [[ Qi {yz+n(zsing, - ycosp,)-n’sin g, cos g, } dnds
A
E,, :jAjQ;{ymn(msin @, —ay)—an’sing,fdnds, E, =E,=E, =E,=0
Ey = [[ Q1 (22 —2nzcos g, + 1’ cos® g, )dnds
A
€. = [[ Q% fzorn(wcos, +az) san*cosp,ands, B, =By =E; Eo =0
Ew = [[Qi(2° —2n@q+n°q? Jdnds, Eg=E,=E,; =E, =0
A
Ey; = [[Qsn’dnds, E;, = [[Qincosgp,dnds
A A
E;; = [[Qunsinp,dnds, Eg, = [[Qgnrdnds, Eq, = [[(Qs, cos® ¢, + Qi sin” g, Jdnds
A A A
Es, = [[(Qé — Qi )sing, cosdnds, E, = jj (Qr cos @, —Qs,qsin g, )dnds

A

E77

”(Qge Sin’ g, + Qs €08’ @, Jdnds , Ey, = H(Qgersin @, + Q550 cos g, ) dnds
A

A

Eys = [[ (Qr” +Q550” Jdnds (A1)
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Appendix B: Matrix K and Vetor F

Kiﬁl:Eﬂjg{g;dx, K2 =—E12.L[§i"§;dx, K;3=—E13_L[§i"§;dx,

Ky = E14I§§dx+2E15j§§dx,

KE = Emf;;‘g;dx, K = Eﬂjgﬁ';}dx,

Ki' =(Es+Ej; jg gdx o, K= Ezzigi"g}dx+kyzgigjdx+ gyig;g;dm NOIQ'de :
K3 = Ezgigi"g;'dx,

K2 = EZ4I§i";;'dx—2E25I§;’§;dx—ky (1,- yp)Iggjdx—gy (1, —yp)I;;g;depNoIg‘g;dx :
K2 = —Ezszgj"g;dm kyiggjdm gngj(;dx+ NO.Ig“i'g“}dx, K2 = —ENIQ"C;dX ,

KZ =—(EZS+EZB)IQ:"§;dx—k ~Y, jcjg dx—g, (I, -y jgg dx+2,N jgg dx ,

K - E33I§i"§;dx+ kziggjdx+ gzig{;dwr Noigz;dx ,

K = E34_[|)L'g“i"g“}dx—2E35'I§i"§;dx+k -2, j;g dx+g, ( jgg dx—y,N, jg; dx ,
K = E36j§§dx, K = E37jggdx+k jgg dx+g, jg; dx+ N jgg dx,,

K = —(Eg +Ey) jggdx+k l,-2,) jggdx+g j;gdx yoN, jggdx
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K = EJ;"(}dx—4E45fgi"g;dx+4E55T§;§;dx+ky (1,-ve) zfgigjdm g, (1, ~ ¥ )ngi'gjidx
zp)z:[ggdmg j::dx+kj4§dx+ °Ia‘4,idx,

K = E46.I§,§de+2E56j§§dx K, (1, Y Iggjdx—g L, -Y,) .L[gi';'.dx+zPNo.T§i'§'.dx,

Ki® = E47_L[§,§dx+2E57f§§dx+k _Tg“,cjdx+g jggdx YoN, jggdx

K" =—(Ep +Eg) jggdx+2(E55+E88 jg;dx+k - jggdx+g L~ Y jggdx

+k, (1, -z jggdx+g j;gdx+kjg§dx+P j;gdx

K§5=Eﬁslggjdmky!ggjdmgylggjdmNolgigjdx,

K = ijg;;;dx,

KS" = (Eg +Eqg) j;gdx k, (I, = Yo jg;dx g, (1, - ¥e jg;dxuNj;gdx
Ki® = E77'I§i'§;dx+kzig§jdx+ gzj:gi[;dx+ NOIQ'de ,

K& =(Eg +Ep j;gdx+k -1, jggdx+g jggdx yoN, j;gdx

K77 (E55+2E58+E88 J.é/é’dx"‘k vy~ Ye J-é/é/d)H'g v~ Yp J.é’é/dx

+k, (I, -2, jggdx+g _[gg“dx+ktj'§§dx+ P °jggd

II
o‘—.l—

0,0 +Pg (%) Fsi=jqz§,-dx+Pz§,-(xL) (B1)
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Figure Captions

Figure 1. Coordinate systems of thin-walled beam

Figure 2. Thin-walled FG sandwich I-beam.

Figure 3. Coordinate and foundation parameters of FG I-beams

Figure 4. Variation of the shear effect respect to the length-to-height ratio of FG I-
beams

Figure 5. Variation of the shear effect and E,,/E,, ratio of the FG I-beams (¢, =0.1)
respectto ¢, and «,

Figure 6. Variation of the shear effectand E,,/E,, ratio of the

Figure 7. Variation of the shear effectand E,,/E,, ratio of the

Figure 8. Thin-walled FG I-beam resting on the foundation.

Figure 9. Variation of transverse deflection of C-C and C-S FG I-beams along their span
Figure 10. The effect of the first foundation parameter on the mid-span deflections of
the FG I-beams respect to the length-to-height ratio.

Figure 11. The effect of the second foundation parameter on the mid-spans deflection of
the FG I-beams respect to the length-to-height ratio

Figure 12. Variation of first three buckling loads of FG I-beams (¢, =0.4, p = 10, S1-
section) respectto o, ,
Figure 13. Variation of first three buckling loads of FG I-beams (¢, =, =0.7, p = 10,
S1-section) respect to «,

Figure 14. The buckling mode 1 of FG C-S I-beam.
Figure 15. The buckling mode 20f FG C-S I-beam.

Figure 16. The buckling mode 3 of FG C-S I-beam.
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Figure 17. The buckling mode 4 of FG C-S I-beam.

Figure 18. Variation of buckling loads of beams with S1-section respect to foundation
parameters

Figure 19. Variation of buckling load of beams with S2-section respect to foundation
parameters

Figure 20. Variation of r, ration respect to length-to-height ratio
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Table Captions

Table 1. Ritz’s approximation functions for various boundary conditions (BCs).

Table 2. Convergence studies for deflections and buckling loads of FG I-beams

Table 3. Maximum deflection of isotropic simply supported I-beams subjected to the
concentrated transverse load acting at mid-span (mm)

Table 4. Maximum deflections of cantilever FG I-beams (h =h, =h,=h=0.002m,
b =20h, b,=10h, b,=40h, L=25m, ¢ =09, «,=0.1, «,=0.4, Sl-section)
subjected to the concentrated transverse load at the free end.

Table 5. Maximum deflections of cantilever composite I-beams under the concentrated
transverse load at the free end (mm)

Table 6. Mid-span deflections of FG I-beams subject to the concentrated transverse load
acting at mid-span ( h =h,=h,=h=0.002m , b =20h, b,=10h, b,=40h,
=09, o,=0.1, o, =0.4, P,=10kN, Sl-section) (mm)

Table 7. Mid-span deflections of FG I-beams subject to the concentrated transverse load
acting at mid-span ( h =h,=h,=h=0.002m , b =20h, b,=10h, b,=40h,
o, =a, =a; =0.1, P, =10kN, S2-section) (mm)

Table 8. Mid-span deflections of FG I-beams subjected to a uniformed transverse load
( h=h,=h,=h=0002m , b=20h , b,=10h , b,=40h , p=10
g, =5kN/m, =0.9, o, =0.1, o, =0.4, Sl-section) (mm)

Table 9. Mid-span deflections (W) of FG I-beams subjected to a uniformed transverse
load ( h=h,=h,=h=0002m , b =20h , b,=10h , b,=40h , p=10

g, =5kN/m, o =a, = o, =0.1, S2-section) (mm)
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Table 10. Critical buckling loads (kN) of FG I-beams (h =h,=h,=h=0.005m,

b =b,=01m, b,=02m, L=25m, o =a,=a,=04, S2-section) with various
boundary conditions

Table 11. Critical buckling loads (kN) of FG S-S I-beams (h =h, =h, =h=0.005m,
b =b,=01m, b,=02m, L=25m, o =a,=07, a,=0.4, Sl-section)
Table 12. Critical buckling loads (kN) of FG C-F I-beams (h =h, =h, =h=0.005m,
b =b,=01m, b,=02m, L=25m, o =«,=0.7, a,=0.4, Sl-section)
Table 13. Critical buckling loads (kN) of FG C-S I-beams (h =h, =h,=h=0.005m,
b =b,=01m, b,=02m, L=25m, ¢ =a,=07, a,=0.4, Sl-section).
Table 14. Critical buckling loads (kN) of FG C-C I-beams (h =h, =h, =h=0.005m,

b =b,=01m, b,=02m, L=25m, ¢ =a,=07, a,=0.4, Sl-section).
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Figure 3. Coordinate and foundation parameters of FG I-beams
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Figure 9. Variation of transverse deflection of C-C and C-S FG I-beams along their span
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Figure 10. The effect of the first foundation parameter on the mid-span deflections of
the FG I-beams respect to the length-to-height ratio.
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Figure 11. The effect of the second foundation parameter on the mid-spans deflection of
the FG I-beams respect to the length-to-height ratio
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Figure 14. The buckling mode 1 of FG C-S I-beam.

49

R Wit eetan ) bty e .
QQ 55 ‘@Q ey 55
-0.2r1 QQ U /gb B 02t QQ A |
© ....*....Vb g) ® —-9 7Wb @
04} ° e W, }5 1 04} % -7 _3“ /@/
% — ¥ — ¢ @ % s @
] o4 ] o
06 Q w, . 06 R — % —g ‘
] ! Q .
s % — o, /d 5 /(5
0.8+ o, P 1 0.8} o P
®.® O/@P Q@ O/@p
-1 L L G\Gsnmngg L 1 ' L G\Gsnmngg L
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8
x/L x/L
a. B =10004.920kN (L /b, =10) b. B =443.780kN (L/b, =50)




0 e 5
- *
02} * * 02
* —s—U
" :
04+ s —e-—W, * -0.4
* — % =% *
* \ *
0.6 w s -0.6
: w *
* s
P
0.8} * * -0.8
% *
* *
* *
1 L L *u‘)us** L -1
0 0.2 0.4 0.6 0.8 1
x/L

a. P, =12013.673kN (L/b, =10)
Figure 15. The buckling mode 2of FG C-S I-beam.

50

0.2 0.8 1

b. P, =544.793kN (L/b, =50)



08

0.6

04r

02

-02r

0.4t

-0.6

Q)UV% QW% T
—a—U
ALY A ——u
dd X ke Vy 081 p b ke
d e W : _ _
P/ ) b 06 & /e/ o e —W,
SD : - v - ¢b p : - — d)b
2 ® A 04 o ® v
e X W ¢ ] w
o s 0.2 <] o s
\ — 0% o ) —x 0
KK HHHK bt haddi i ;/ 0 e
® P
| @ 1 0.2 @ 1
di 0.4 1 3 dd
LI %o o
. . . : 0.6 . . . :
0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
x/L x/L

a. P, =24642.089kN (L /b, =10)

Figure 16. The buckling mode 3 of FG C-S I-beam.

o1

b. P, =1300.182kN (L /b, =50)



a. P, =28631.245kN (L/b, =10)

1 e .
* * —a—U
* - e W
* ! b
05f ¥ * v =%
* v
- s
* W,
* — %=,
. .
* *
x ‘
05} *.***BK
0.2 0.4 0.6 0.8 1
x/L

Figure 17. The buckling mode 4 of FG C-S I-beam.

52

1 o
* * 5~ W
* *
051 ¥ * —v =%
. x v
* . W
* ¥ —x9
0 x> 3o BN
x .
* #
* *
-0.5 *****
0.2 0.4 0.6 0.8 1
x/L

b. P, =1592.939kN (L/b, =50)



1000 T T T 1500
Z s00g / g
k) M+ P, 2
2 500 ’ 2
2 Py 2
% +PZZ %
§ 400 _Q_sz §
(o] ]
S 9
G 2001 // 5
el X
o , . . ) . .
0 50 100 150 200 0 200 400 600 800
2
kZ (KN/m*) g, (kN)
a. Critical buckling load respect to k, b. Critical buckling load respectto g,

Figure 18. Variation of buckling loads of beams with S1-section respect to foundation
parameters

53



800 . . . 1400

= = 1200 r
= =3
o 600 - 1000
38 38
o o 800 |
= 400 £
S S 60012:;;@
] =}
o) o
El ®
£ 200 g 400t
© © 200}
0 : . . 0 L s .
0 50 100 150 200 0 200 400 600 800
2
k_ (kN/m®) g, (kN)
a. Critical buckling load respect to k, b. Critical buckling load respect to g,

Figure 19. Variation of buckling load of beams with S2-section respect to foundation
parameters

54



1.3 T T T T T 1.25

P Y VY U . . ) L
e T P T

125}
—&8—S-S
127 —*—C-F
—%—C-S
115+ = c-C

10 20 30 40 50 60 70 50 60 70

L/b3 L/b3

a. S1-section b. S2-section

Figure 20. Variation of r, ration respect to length-to-height ratio

55



Table 1. Ritz’s approximation functions for various boundary conditions (BCs).

BC Cj(x) x=0 x=L
S-S (1—5)5612XL V, =W, =¢,=0 Vo =W, =¢,=0
L/L V, =W, =¢, =0 V, =W, =¢, =0
. U=V, =W, =¢ =0
C-F (ﬁj et V, =W, =¢ =0
L V. =W, =V, =W, =0
. U=V, =W, =¢ =0 V, =W, =¢ =0
C-S (1—515] el V=W, =¢ =0 Vo=W,=¢, =0
LAL V, =W, =V. =W, =0
L. U=V =W=4=0 U=V, =W,=¢=0
c-C (1_1j (ij et V, =W, =¢ =0 V, =W, =¢ =0
LJAL V=W, =V, =W, =0 V, =W, =V, =W, =0
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Table 2. Convergence studies for deflections and buckling loads of FG I-beams

BC  Present m
2 4 6 8 10 12
1. Deflection at mid-span (mm)
S-S Withshear 8.081 9.778 9.897 9.928 9.940 9.940
No shear 7.822 9.487 9.592 9.615 9.622 9.622
C-F  With shear 13.386 19.709 19.825 19.883 19.890 19.890
No shear 13.118 19.116 19.221 19.244 19.251 19.251
C-S Withshear 4.148 4.462 4.508 4518 4.519 4.519
No shear 3.868 4.173 4.198 4.206 4.206 4.206
C-C Withshear 2.558 2.648 2.701 2.709 2.708 2.708
No shear 2.281 2.371 2.393 2.400 2.400 2.400
2. Critical buckling load (kN)
S-S Withshear 400.826 351.215 351.064 351.064 351.064 351.064
C-F  Withshear 88.490 87.891 87.891 87.891 87.891 87.891
C-S Withshear 722958 716.784 716.765 716.765 716.765 716.765
C-C Withshear 1466.429 1397.018 1396.296 1396.294 1396.294 1396.294
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Table 3. Maximum deflection of isotropic simply supported I-beams subjected to the
concentrated transverse load acting at mid-span (mm)

Reference No shear With shear
Present 39.8590 39.9465
Kim and Lee [16] 39.8900 40.1700
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Table 4. Maximum deflections of cantilever FG I-beams (h =h, =h,=h=0.002m,

b, =20h, b,=10h, b,=40h, L=25m, ¢ =09, «,=0.1, a,=0.4, Sl-section)

subjected to the concentrated transverse load at the free end.

Reference p

0 0.5 1 2 5 10 20 30 50
Present (With shear) 12740 1.4439 15521 1.6831 1.8461 1.9346 1.9904 2.0112 2.0288
Kim and Lee [16] 12732 1.4466 1.5566 1.6890 1.8520 1.9395 1.9941 2.0144 2.0315
(With shear)
Present (No shear) 1.2725 1.4422 15503 1.6811 1.8440 1.9325 1.9882 2.0090 2.0265
Kim and Lee [16] (No shear) 1.2725 1.4458 1.5558 1.6881 1.8510 1.9341 1.9931 2.0133 2.0304
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Table 5. Maximum deflections of cantilever composite I-beams under the concentrated
transverse load at the free end (mm)

Reference k; gz (kN)
(kN/m?) 0 100 200 300
Present (With shear) 0 122.6795 2.2974 1.1792 0.7951
10 17.2179  1.9626 1.0806 0.7483
20 10.2502  1.7250 0.9999 0.7076
30 7.5831 1.5481 0.9324 0.6720
40 6.1307 1.4107 0.8753 0.6404
Present (No shear) 0 122.5620 2.2890 1.1737 0.7909
10 17.2146  1.9556 1.0759 0.7445
20 10.2521  1.7198 0.9957 0.7042
30 7.5860 1.5437 0.9287 0.6688
40 6.1337 1.4070 0.8719 0.6375
Kim and Lee [4] (No shear) 0 122.5600 2.2938 1.1771 0.7936
10 17.2040 1.9600 1.0791 0.7471
20 10.2370  1.7237 0.9987 0.7067
30 7.5714 1.5471 0.9315 0.6712
40 6.1200 1.4100 0.8745 0.6398
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Table 6. Mid-span deflections of FG I-beams subject to the concentrated transverse load
acting at mid-span ( h,=h,=h,=h=0.002m ,

b =20h

=09, o,=0.1, o, =0.4, P,=10kN, Sl-section) (mm)

b, =10h , b,=40h

L/b, BC Present p
0 0.5 1 2 5 10 20 30 50
10 S-S Withshear 1.2935 14655 15749 1.7070 1.8710 1.9599 2.0158 2.0367 2.0543
No shear 1.2391 14043 15095 1.6369 1.7955 1.8816 1.9359 19561 1.9732
C-F  Withshear 2.5885 29328 3.1516 3.4159 3.7441 3.9221 4.0340 4.0757 4.1109
No shear 2.4791 2.8097 3.0202 3.2750 3.5923 3.7647 3.8733 3.9138  3.9480
C-S  Withshear 0.5965 0.6741 0.7241 0.7843 0.8590 0.8994 0.9248 0.9344 0.9421
No shear 0.5416 0.6138 0.6598 0.7155 0.7848 0.8224 0.8462 0.8550 0.8625
C-C  Withshear 0.3625 0.4098 0.4405 0.4767 05210 0.5458 0.5610 0.5686 0.5702
No shear 0.3098 0.3503 0.3771 0.4087 0.4478 0.4699 0.4835 0.4905 0.4916
20 S-S Withshear 10.0213 11.3569 12.2070 13.2353 14.5148 15.2096 15.6471 15.8102 15.9480
No shear 9.9125 11.2344 12.0763 13.0952 14.3638 15.0531 15.4872 15.6492 15.7859
C-F  Withshear 20.0513 22,7236 24.4245 26.4821 29.0420 30.4323 31.3075 31.6340 31.9097
No shear 19.8325 224773 24.1617 26.2003 28.7384 30.1176 30.9861 31.3102 31.5837
C-S  Withshear 4.4396 5.0308 5.4069 5.8615 6.4268 6.7332 6.9264 6.9984  7.0580
No shear ~ 4.3326 49104 5.2783 57237 6.2783 6.5795 6.7692 6.8400 6.8986
C-C  Withshear 25772 29206 3.1394 3.4005 3.7291 3.9059 4.0185 4.0599  4.0948
No shear 2.4717 2.8018 3.0127 3.2646 3.5826 3.7541 3.8635 3.9037 3.9377
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Table 7. Mid-span deflections of FG I-beams subject to the concentrated transverse load

acting at mid-span ( hy=h,=h,=h=0.002m , b =20h, b,=10n, b,=40h,
o, =a,=a,=0.1, P,=10kN, S2-section) (mm)
L/b, BC  Present p
0 0.5 1 2 5 10 20 30 50
10 S-S  Withshear 1.2935 1.6192 1.8524 21640 2.6018 2.8653 3.0411 3.1089 3.1670
No shear 12391 15511 1.7745 2.0730 24924 27448 29132 29781 3.0338
C-F  Withshear 25885 3.2403 3.7069 4.3306 5.2066 5.7338 6.0859 6.2214 6.3377
No shear 24791 3.1033 3.5503 4.1476 49866 5.4915 5.8287 5.9585 6.0698
C-S Withshear 0.5965 0.7449 0.8522 0.9957 1.1970 13181 1.3992 14303 1.4571
No shear 0.5416 0.6780 0.7756 0.9061 1.0894 1.1996 1.2733 1.3017 1.3261
C-C Withshear 0.3625 0.4529 05178 0.6032 0.7274 0.8015 0.8492 0.8679 0.8868
No shear 0.3098 0.3867 0.4422 0.5151 0.6212 0.6846 0.7251 0.7411 0.7576
20 S-S Withshear 10.0213 125448 14.3516 16.7663 20.1576 22.1993 23.5617 24.0865 24.5366
No shear 9.9125 12.4086 14.1958 16.5842 19.9388 21.9583 23.3059 23.8250 24.2702
C-F  Withshear 20.0513 25.1004 28.7155 33.5470 40.3327 44.4163 47.1437 48.1938 49.0944
No shear 19.8325 24.8265 28.4022 33.1809 39.8926 43.9316 46.6293 47.6680 48.5587
C-S Withshear 4.4396 55575 6.3580 7.4277 8.9302 9.8344 10.4382 10.6708 10.8701
No shear 43326 54236 6.2048 7.2487 8.7149 95973 10.1866 10.4135 10.6081
C-C Withshear 25772 3.2277 3.6923 43142 51871 57026 6.0618 6.1970 6.3112
No shear 24717 3.0956 3.5411 41376 49749 54688 58136 59433 6.0528
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Table 8. Mid-span deflections of FG I-beams subjected to a uniformed transverse load

( h=h=h=h=0002m , b=20h , b,=10h , b,=40h , p=10
g, =5kN/m, =0.9, o, =0.1, o, =0.4, Sl-section) (mm)
BC kz 0z (kN)
(kN/m?) 0 10 20 30 40 50 100 200
S-S 0 7.5989  7.262 6.9537 6.6705 6.4093 6.1678 5.1892 3.9375
5 7.5534 72205 6.9156 6.6354 6.3769 6.1377 5.1679 3.9252
10 75085 7.1795 6.878 6.6007 6.3448 6.108  5.1467 3.9129
20 7.4203 7.0987 6.8038 6.5323 6.2816 6.0494 5105 3.8887
50 7.1675 6.867 6.5905 6.3354 6.0993 5.8801 4.9837 3.8177
100 6.7823 6.5125 6.2633 6.0323 5.8178 5.6179 4.7938 3.705
C-F 0 25.8034 22.5545 20.154 18.3019 16.825 15.6164 11.7916 8.3485
5 24.6781 21.7091 19.49 17.7627 16.376 15.2349 11.5861 8.2528
10 23.6494 20.9266 18.8696 17.2555 15.9512 14.8723 11.388 8.1594
20 21.836 19.5241 17.7438 16.326 15.1666 14.1982 11.0122 7.9791
50 17.7855 16.2812 15.0701 14.0706 13.2294 12.5097 10.0251 7.4847
100 13.6479 12.8015 12.086 11.4713 10.9361 10.4645 8.7346 6.7888
C-S 0 3.0777 3.0117 29481 28874 2.8367 2.7733 25245 2.1426
5 3.0702 3.0042 29411 28806 2.8227 2.767 25194 2.1389
10 3.0626 2.9969 29341 28739 28162 2.7608 2.5143 2.1352
20 3.0474 29824 29202 28606 2.8034 2.7485 2.5041 2.1278
50 3.0029 29398 2.8793 2.8213 2.7657 2.7123 2474  2.106
100 29315 28713 28136 2.7582 2.7051 2.6539 2.4253 2.0707
C-C 0 15701 1552 15343 1517 15002 14837 1.4064 1.2741
5 15681 15501 1.5325 15153 1.4984 1482 14049 1.2728
10 15662 15482 15306 1.5134 1.4967 1.4802 1.4033 1.2715
20 15624 15445 1527 15099 14932 14768 1.4003 1.269
50 15511 15334 15162 14993 1.4828 14667 13911 1.2615
100 15326 15153 1.4985 1482 1.4659 14501 1.3762 1.2491

63



Table 9. Mid-span deflections (W) of FG I-beams subjected to a uniformed transverse

load ( h=h,=h,=h=0.002m , b =20h , b,=10h , b,=40h , p=10
g, =5kN/m, o =a, = o, =0.1, S2-section) (mm)
BC kz gz (kN)
(KN/m?) 0 10 20 30 40 50 100 200

S-S 0 11.0896 10.3866 9.7671 9.2171 8.7256 8.2837 6.6084  4.702
5 10.9931 10.3018 9.692  9.1502 8.6656 8.2296 6.5739 4.6844
10 10.8982 10.2184 9.6182 9.0843 8.6064 8.1762 6.5397  4.667
20 10.7133 10.0556 9.4737 8.9553 8.4905 8.0714 6.4723 4.6325
50 10.1942 9.5966 9.0651 8.5891 8.1605 7.7725 6.2784 4.5319
100 9.432 8.918 8.4569 8.0409 7.6639 7.3205 5.9795 4.3735
C-F 0 37.6545 31.186 26.9089 23.8514 21.5439 19.7315 14.3615 9.8633
5 35.307 29.6087 25.7585 22.965 20.8336 19.1455 14.0705 9.7359
10 33.2423 28.1878 24.7057 22.1444 20.1703 18.5945 13.7914 9.6118
20 29.7789 25.7307 22.8462 20.6731 18.9672 17.586 13.2665 9.3734
50 22.7659 20.4511 18.6788 17.268 16.1126 15.1446 11.9149 8.7263
100  16.4764 15.3377 14.3998 13.6096 12.9294 12.3398 10.2052 7.8329
C-S 0 44949 4355 42237 41002 3.9839 3.8742 3.4068 2.7489
5 44785 43396 4.2092 4.0866 3.9711 3.8621 3.3975 2.7428
10 44623 43244 41949 4.0731 3.9584 3.8501 3.3882 2.7367
20 44303 4.2943 41666 4.0464 3.9332 3.8262 3.3697 2.7246
50 43368 4.2064 4.0838 3.9683 3.8593 3.7563 3.3154  2.689
100 41894 4.0676 3.9529 3.8446 3.7422 3.6453 3.2286 2.6317
C-C 0 2.2954 22569 22198 2.1839 2.1491 21155 1.9621 1.7144
5 2.2913  2.253 2216 21802 21455 2112 19591 1.7121
10 22872 2249 22121 21765 2.1419 21085 1.9561 1.7098
20 22791 22412 22045 21691 2.1348 2.1016 1.9501 1.7052
50 22551 22179 2182 21473 21137 2.0811 19324 1.6916
100 22161 21802 2.1455 21119 2.0794 2.0478 19036 1.6694
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Table 10. Critical buckling loads (kN) of FG I-beams (h =h, =h,=h=0.005m,

boundary conditions

o, =a, =a, =04, S2-section) with various

p  Present (With shear) Lanc et al. [11] (No shear)
S-S C-F C-S Cc-C S-S C-F C-S C-C

0 422355 105.725 862.488 1680.787 423.296 105.773 867.292 1705.050
0.25 388.279 97.195 792.902 1545.182 389.143 97.239 797.316 1567.480
0.5 365,571 91510 746.530 1454.814 366.385 91.552 750.687 1475.810

1 337.199 84.408 688.592 1341.907 337.951 84.447 692.428 1361.280

2 308.845 77.311 630.692 1229.074 309.533 77.346 634.203 1246.810

5 280.517 70.219 572.842 1116.339 281.143 70.252 576.034 1132.450
10 267.650 66.999 546.568 1065.136 268.247 67.030 549.611 1080.500
20 260.301 65.159 531.560 1035.890 260.881 65.189 534.520 1050.840
30 257.694 64.506 526.236 1025.514 258.268 64.536 529.165 1040.310
50 255.547 63.969 521.852 1016.971 256.116 63.998 524.757 1031.640
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Table 11. Critical buckling loads (kN) of FG S-S I-beams (h =h, =h, =h=0.005m,

b =b,=0.1m, b,=0.2m, L=25m,

o =a,=0.7, a,=0.4, Sl-section)

p  Present Reference
Kim and Lee [18] Nguyen et al. [63] Lanc et al. [11]

With shear With shear  No shear With shear  No shear No shear
0 422.355 422.359  423.083 421.633  423.079 423.296
0.25  405.212 405.208  405.933 404.154  405.602 406.130
0.5 393.792 393.783  394.515 392.508  393.960 394.692
1 379.529 379.533  380.286 377.958  379.420 380.412
2 365.285 365.280  366.056 363.420  364.899 366.150
5 351.064 351.058  351.825 348.899  350.404 351.914
10 344.610 344.601  345.333 342.305  343.826 345.451
20 340.925 340.906  341.605 338.539  340.070 341.762
30 339.618 339.596  340.278 - - 340.455
50 338.542 338.522  339.188 - - 339.377
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Table 12. Critical buckling loads (kN) of FG C-F I-beams (h =h, =h, =h=0.005m,

b =b,=0.1m, b,=0.2m, L=25m,

o =a,=0.7, a,=0.4, Sl-section)

p  Present Reference
Kim and Lee [18] Nguyen et al. [63] Lanc et al. [11]
With shear With shear  No shear With Shear  No shear No shear
0 105.725 105.725  105.771 105.679 105.770 105.773
0.25 101.436 101.435  101.483 101.310 101.401 101.484
0.5 98.579 98.577 98.629 98.399 98.490 98.626
1 95.011 95.013 95.072 94.763 94.855 95.057
2 91.448 91.448 91.514 91.132 91.225 91.494
5 87.891 87.891 87.957 87.507 87.601 87.936
10 86.277 86.277 86.334 85.861 85.957 86.321
20 85.356 85.353 85.403 84.922 85.018 85.400
30 85.029 85.025 85.071 - - 85.073
50 84.759 84.757 84.799 - - 84.804
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Table 13. Critical buckling loads (kN) of FG C-S I-beams (h =h, =h, =h=0.005m,
b.l :b2 =0.1m, b3 =0.2m, L=25m, o =a, =0.7, oy =04, Sl'SeCtion).

p Present Reference
Kim and Lee [18] Lanc et al. [11]

With shear ~ With shear No shear No shear
0 862.488 862.202  865.523 867.292
0.25 827.449 827.152  830.439 832.121
0.5 804.106 803.804  807.080 808.686
1 774.953 774.678  777.970 779.427
2 745.835 745,545  748.857 750.207
5 716.765 716.470  719.741 721.037
10  703.570 703.270  706.458 707.795
20  696.036 695.717  698.830 700.237
30  693.364 693.037  696.115 697.558
50 691.164 690.842  693.884 695.351
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Table 14. Critical buckling loads (kN) of FG C-C I-beams (h =h, =h, =h=0.005m,

b =b,=0.1m, b,=0.2m, L=25m,

o, =a,=0.7, a,=0.4,Sl-section).

p  Present Reference
Kim and Lee [18] Nguyen et al. [63] Lanc et al. [11]

With shear With shear  No shear With shear  No shear No shear
0 1680.787 1680.840 1692.352 1669.413  1692.317 1705.050
0.25 1612.391 1612.410 1623.751 1599.491  1622.408 1635.900
0.5 1566.824 1566.830 1578.078 1552.860 1575.838 1589.830
1 1509.909 1509.950 1521.156 1494551  1517.678 1532.310
2 1453.059 1453.060  1464.229 1436.213  1459.595 1474.860
5 1396.294 1396.270  1407.293 1377.838  1401.613 1417.520
10  1370.527 1370.490 1381.317 1351.288  1375.299 1391.480
20  1355.814 1355.730  1366.399 1336.111  1360.275 1376.630
30  1350.595 1350.500 1361.089 - - 1371.360
50  1346.982 1346.210  1356.727 - - 1367.020
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