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Abstract 

This paper proposes an improved first-order beam theory by separation of variables for 

bending and buckling analysis of thin-walled functionally graded (FG) sandwich I-

beams resting on a two-parameter elastic foundation. By dividing the displacements into 

bending and shear parts, this model can produce the deflections for both two cases with 

and without shear effect. The mechanical properties of beams based on the power law 

distribution of volume fraction of ceramic or metal. Governing equations are established 

from Lagrange’s equations. The new Ritz’s approximation functions, which are 

combined between orthogonal polynomial and exponential functions, are proposed to 

solve problem. The deflections and critical buckling loads of thin-walled FG sandwich 

I-beams are presented and compared with those available literature to verify the present 

theory. The effects of material distribution, boundary conditions, length-to-height ratio, 

shear deformation and foundation parameters on the results are investigated in detail.  
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1. Introduction 

Functionally graded materials (FGM) are special types of composite materials, 

which are made from a mixture of metal and ceramic. They have advantages such as 

excellent corrosive resistance, high strength and stiffness-to-weight ratio, low thermal 

expansion, and especially, they meet stress continuity existing at surfaces of laminated 

composite. Therefore, FGM are increasingly used in many fields of mechanical, civil, 

marine, aerospace, defence, energy, electronic, medical, nuclear engineering [1]. 

Besides application in many engineering fields, a review study ([2]) indicates that FGM 

attracted huge researchers considered behaviours of FG structures. Many solution 

methods and models have been proposed for their accurate analysis, in which the static 

and buckling behaviours are the critical performance and interest of thin-walled FG 

beams. 

Vlasov [3] firstly proposed the most straightforward thin-walled beam theory for 

isotropic material. Based on Vlasov’s theory, there are many papers related to thin-

walled composite beams and some are mentioned here [4-7] since this paper focuses on 

the thin-walled FG beams. Nguyen et al. [8], and Kim and Lee [9, 10] analysed bending 

behaviours of FG beams with the channel, I-section and box sections using Vlasov’s 

theory. Blanc et al. [11] investigated nonlinear buckling responses of FG beams by finite 

element method. Librescu et al. [12] studied dynamic and buckling behaviours of 

simply-supported spinning thin-walled FG beams. Flexural-torsional and lateral 

buckling analysis of FG beams are also carried out in the studies ([13-15]). It can be 

seen that Vlasov’s theory is just appropriate for slender beams because it neglects shear 

deformation effect. In order to account this effect, Kim and Lee [16] applied thin-walled 

composite beam model of Lee ([17]) to analyse flexural behaviours of FG I-beams. Kim 



  3 

and Lee [18] investigated instability of FG I-beams considering shear deformation. 

Demirbas et al. [19] and Kvaternik et al. [20] proposed refined beam theory in the 

framework of the Carrera Unified Formulation (CUF) to evaluate bending response and 

nonlinear buckling response of FG beams. FG plates also attracted a large number of 

investigators. Khiloun et al. [21], Boussoula et al. [22] presented higher-order shear 

deformation theory for vibration and bending of FG plates. Vibration and buckling 

responses of FG nanoplates were also investigated by Balubaid et al. [23] and Karami et 

al. [24]. Hussain et al. [25] analysed fundamental natural frequency of FG cylindrical 

shell with ring supports. Thai and Choi [26, 27] presented simple first-order shear 

deformation theories by dividing the transverse displacement into bending and shear 

parts for vibration and bending analysis of composite and FG plates. In these studies, 

the proposed theories just contain four unknowns and have strong similarities. Generally, 

the idea of partitioning the displacement gives the displacement fields had simple forms, 

and reduces computational cost. Therefore, this approach is widely used in analysing 

behaviours of FG plates ([28-31]), and rectangular beams ([32-36]). However, it is 

interesting to state that it has not developed for the static and buckling response of thin-

walled FG sandwich beams yet. 

The behaviour of FG structures on elastic foundation is essential and interesting in 

engineering fields. A large number of models and idealization are proposed for the 

accurate response of structure on the foundation [37]. Li and Shao [38] analysed the 

nonlinear effect on bending behaviours of FG cantilever beams on Winkler foundation. 

Akbaş [39] presented deflections and frequencies of FG beams resting on Winkler 

foundation using classical and first-order beam theories. Gan and Nguyen [40] used 

two-parameter foundation model for nonlinear response of FG beams. Ying et al. [41] 



  4 

proposed an exact elasticity solution for FG beams on elastic foundation. Esen [42] used 

two-parameter foundation model for dynamic response of FG Timoshenko beam. Fahsi 

et al. [43] studied structural responses of the FG beams on elastic foundation with the 

porosity effect. Chaabane et al. [44] investiagted bending and free vibration responses 

of FG beams resting on Winkler-Pasternak foundations. Matouk et al. [45] analysed 

hygro-thermal vibration of FG nanobeams on the elastic foundation using Hamilton 

principle and Navier method. Bousahla et al. [46] and Bourada et al. [47] presented 

buckling and vibration behaviours of SW-CNT-RC beams resting on foundation with 

simply supported boundary condition based on first shear deformation theory. Besides 

papers dealing with responses of FG beams ([38-47]), there are many studies 

investigated behaviours of FG plates on elastic foundation. Rabhi et al. [48], Chikr et al. 

[49], Kaddari et al. [50], and Rahmani et al. [51] proposed models for buckling, bending 

and vibrations analysis of FG plates resting on elastic foundations. Effects of two-

parameter elastic foundation on hygro-thermo-mechanical buckling and bending 

analysis of FG plates are investigated by Refrafi et al. [52] and Tounsi et al. [53]. 

Shariati et al. [54] and Furjan et al. [55] studied vibration and stability of multi-scale 

hybrid disk based on nonlinear elastic foundation. Although there are many papers 

investigated effects of elastic foundation on responses of FG beams and plates as far as 

the authors are aware there is no study that considers both shear and foundation effects 

for bending and buckling behaviours of thin-walled FG I-beams. 

For the computational method, although the finite element method is used popularly 

for analysis of thin-walled FG beams [11, 13-15, 56, 57], many investigators proposed 

Ritz method for FG beams with rectangular section [58-62]. Nguyen et al. [63] 

developed Ritz functions for buckling and vibration behaviours of FG and laminated 
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composite thin-walled beams. It can be stated that Ritz method is rarely used for 

analysis of the thin-walled FG beams.  

The main contributions of this paper are to propose 1) an improved first-order beam 

theory for thin-walled FG I-beams using separation of variables and 2) new Ritz-

functions for their deflections and buckling loads resting on elastic foundation. This 

model can produce the results for both with and without shear effect due to dividing the 

displacements into bending and shear parts. The displacements and buckling loads are 

presented and compared with those available literature to verify the present theory. The 

effects of ceramic thickness ratio, material parameter, length-to-height ratio, boundary 

conditions, shear deformation and foundation parameters on the results are examined. 

Some of the new results is presented for the first time as a benchmark for reference in 

the future. 

2. Theoretical formulation 

Consider a thin-walled FG beam as indicated in Fig. 1. There are three coordinate 

systems required to develop the displacement field of the beam as follows: the Cartesian 

coordinate system ( , ,y z x ), local plate coordinate system ( , ,n s x ), and contour 

coordinate s  which draws along the profile of the section. 
s  is an angle of 

orientation between ( , ,y z x ) and ( , ,n s x ) coordinate systems.  , zP PP y  is shear 

center of cross-section [6]. To establish displacement field of thin-walled FG beam, the 

following assumptions are accepted: 

1) The contour of thin-walled cross-section does not deform in its own plane.  

2) Shear strains 0 0,yx zx   and warping shear 0

  are uniform over the section.   

3) Poisson ratio is constant. 

2.1. Kinematics 
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The mid-surface displacement ( ,v w ) at a point in contour are given in terms of the 

rotation angle   about the pole axis and displacements V, W of the pole P in the y, z- 

directions, respectively as follows:  

              , sin coss sv s x V x s W x s x q s      (1a) 

              , cos sins sw s x V x s W x s x r s      (1b) 

By using separation of variables [26-28], it is convenient to divide the displacements 

into bending part, denoted by the subscript b and shear part, denoted by the subscript s 

as follows: 

      b sV x V x V x   (2a) 

      b sW x W x W x   (2b) 

      b sx x x     (2c) 

The out-of-plane plate displacement u  is determined according to the assumption (2). 

The shear strains at mid-surface of the plate can be defined as follows: 

              ' ' ', sin cosnx s s s s ss x V x s W x s x q s       (3a) 

              ' ' ', cos sinsx s s s s ss x V x s W x s x r s       (3b) 

where the prime superscript indicates differentiation with respect to x. From the 

definition of the shear strain, sx  at mid-surface of each element can be expressed as 

[16]: 

  ,sx

w u
s x

x s


 
 
 

 (4) 

By substituting w  from Eq. (1b) into Eq. (4) and using Eq. (2), displacement u  can 

be written by: 

                ' ' ', b b bu s x U x V x y s W x z s x s      (5) 
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where   is the warping function: 

    
0

 
s

s

s r s ds  (6) 

The displacement components (v, w, u) at an arbitrary point on the cross-section are 

given with respect to the mid-surface displacements ( v , w , u ) as follows: 

    , , ,v n s x v s x  (7a) 

      , , , ,sw n s x w s x n s x   (7b) 

      , , , ,xu n s x u s x n s x   (7c) 

where x  and s  are the rotations of transverse normal about x and s, respectively. 

x  can be expressed by definition of the mid-surface shear strains nx  as below:  

    , ,nx x

u v v
s x s x

n x x
 

  
   
  

 (8) 

By comparing Eq.(3) and (8), the function  ,x s x can be obtained as: 

              ' ' ', sin cosx b s b s bs x V z s W x s x q s       (9) 

Similarly, s  can be written by using the assumption that the shear strain sn  should 

vanish at mid-surface of each element: 

      ,s b s

v
s x x x

s
  


   


 (10) 

The non-zero strains of thin-walled FG beam are expressed by: 

           

     

0

' '' '' ''

, , , , sin cos

sin cos

x x x x s z s y

s b s b b

n s x s x n s x y n z n nq

U y n V z n W nq

         

   

        

      
 (11a) 

 
     

 

0 0 0

' ' ' ' '

, , , , cos sin

cos sin 2

sx sx sx yx s zx s sx

s s s s s b s

n s x s x n s x r n

V W r n

        

    

     

    
 (11b) 
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      0 0 0

' ' '

, , , , sin cos

sin cos

nx nx nx yx s zx s

s s s s s

n s x s x n s x q

V W q

       

  

    

  
 (11c) 

where  

 
0 '

x U   (12a) 

 0 '

yx sV   (12b) 

 
0 '

zx sW   (12c) 

 
0 '

s   (12d) 

 ''

y bW    (12e) 

 
''

z bV    (12f) 

 
''

b    (12g) 

 
' '2sx b s     (12h) 

2.2. Constitutive relations  

Young’s modulus of thin-walled section is defined via Young’s modulus of metal 

( )mE  and ceramic ( )cE  as well as volume fraction of ceramic (
cV ): 

  1c c m cE E V E V     (13) 

Two types of the material distributions are considered as follows (Fig. 2): 

Type A: for the top and bottom flanges  

 
 

0.5

1

 
  

  

p

c

n h
V

h
,  0.5 0.5   h n h   (14a) 

 1cV ,  0.5 0.5  h n h   (14b) 

where p,   1 2,   and h  1 2,h h  are material parameter, ceramic thickness ratio  

and thickness of the top and bottom flanges, respectively. 
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Type B: for the web, top and bottom flanges 

 
 

0.5

0.5 1

p

c

n h
V

h

  
  

  
, 0.5 0.5h n h    or 0.5 0.5h n h     (15a) 

 1cV , 0.5 0.5h n h      (15b) 

where   1 2 3, ,     and h  1 2 3, ,h h h  are ceramic thickness ratio  and thickness of 

the flange and web, respectively.  

The stress and strain relations are defined as follows: 

 

*

11

*

66

*

55

0 0

0 0

0 0

x x

sx sx

nx nx

Q

Q

Q

 

 

 

    
    

    
    
    

 (16) 

where    *

11Q E n , 
 

 
* *

66 55
2 1

E n
Q Q


 


  (17) 

where   is Poisson’s ratio 

2.3. Variational formulation  

The strain energy E
 of the system is defined through volume   by: 

  
1

2
E x x sx sx nx nx d     


       (18) 

Substituting Eqs. (11) and (16) into Eq. (18) leads to: 

 
 

 

'2 ' '' ' '' ' '' ' '

11 12 13 14 15

' ' ' ' ' ' ''2 '' '' '' ''

16 17 15 18 22 23 24

'' ' '' ' '' ' '' ' ''2

25 26 27 25 28 33

'' ''

34

2 2 2 2

2 2 2 2 2

4 2 2 2
1

2 4
2

b b b b

s s s b b b b b

b b b s b s b s b

E b b

E U E U V E U W E U E U

E U V E U W E E U E V E V W E V

E V E V V E V W E E V E W

E W E

 

 

 



   

      

     

     

     

'' ' '' ' '' ' '' ' ''2

35 36 37 35 38 44

'' ' '2 '' ' ' ' '' ' ' '

45 55 46 56 47 57

'' ' ' ' '2 ' ' ' '

45 48 55 88 66 67 56 68

'2

77

2 2 2

4 4 2 4 2 4

2 4 2 2

2

b b b s b s b s b

b b b b s b s b s b s

b s b s s s s s s

s

W E W V E W W E E W E

E E E V E V E W E W

E E E E E V E V W E E V

E W

  

      

    

    

     

       

     

0

' ' '2

57 78 55 58 882

L

s s s

dx

E E W E E E 

 
 
 
 
 
 
 
 
 
 
 
    
 


 (19) 

where: 
ijE  are the stiffness of thin-walled FG I-beams, which are defined in Appendix 
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A; L is the length.  

The elastic foundation energy 
F  of the system is defined by [64, 65]: 

       

     

   

2 2

22 ' ' ' '

0
2

' ' ' '

1

2

y b s b s y p z b s b s z p

L

F t b s y b s b s y p

z b s b s z p

k V V l y k W W l z

k g V V l y dx

g W W l z

   

   

 

         
 
 

         
 
     
 

   (20) 

where 
yk and 

yg  as well as 
zk and 

zg  are the first and second foundation parameters 

in y- and z-direction respectively; 
tk  is the rotational parameter for rotation of the 

cross-section; and  ,y zl l  are the coordinate of transverse translation point as shown in 

Fig. 3. 

The potential energy W
 by external forces, which are axial load 

0N , uniformed 

transverse load 
zq  and concentrated transverse load 

zP  applied at 
Lx , can be 

expressed as [17, 63]:  

 

      

    

   

2 2
' ' ' ' ' ' ' '

0 2
' ' ' ' ' '

0

0

2

2

L b s b s P b s b s

W
P

P b s b s b s

L

z b s z b s L

V V W W z V V

N dx
I

y W W
A

q W W dx P W W x

 

   

      
 

   
     
 

   





 (21) 

2.4. Ritz solution  

By using Ritz’s approximation functions which combined between orthogonal 

polynomial and exponential functions, the displacement fields can be written as: 

 '

1

( ) ( )
m

j j

j

U x x U


   (22a) 

 
1

( ) ( )
m

b j bj

j

V x x V


  (22b) 
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1

( ) ( )
m

b j bj

j

W x x W


  (22c) 

 
1

( ) ( )
m

b j bj

j

x x  


  (22d) 

 
1

( ) ( )
m

s j sj

j

V x x V


  (22b) 

 
1

( ) ( )
m

s j sj

j

W x x W


  (22c) 

 
1

( ) ( )
m

s j sj

j

x x  


  (22d) 

where 
jU , 

bjV , 
bjW , 

bj , 
sjV , 

sjW  and 
sj  are Ritz’s parameter and  j x  are 

Ritz’s approximation functions, which satisfy with various boundary conditions (BCs) 

as indicated in Table 1.  

The deflections and buckling loads of the beams can be obtained by using total potential 

energy ( )  and Lagrange’s equations: 

 
E F W     (23) 

 0
jp





  (24) 

where 
jp  representing the values of 

jU , 
bjV , 

bjW , 
bj , 

sjV , 
sjW  and 

sj  

 

11 12 13 14 15 16 17

12 22 23 24 25 26 27

13 23 33 34 35 36 37

14 24 34 44 45 46 47

15 25 35 45 55 56 57

16 26 36 46 56 66 67

17 27 37 47 57 67 77

T

T T

T T T

T T T T

T T T T T

T T T T T T

 
 
 
 
 
 
 
 
 
 
 

b

b

b

s

UK K K K K K K

VK K K K K K K

WK K K K K K K

ΦK K K K K K K

VK K K K K K K

WK K K K K K K

K K K K K K K

   
   
   
   
   

   
   
   
   
   

  

b

ss

s

0

0

F

0

0

F

0Φ

 (25) 

where the stiffness matrix K and vetor F are expressed in Appendix B. 
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3. Numerical results 

The numerical examples are carried out to analyse bending and buckling responses 

of thin-walled FG I-beams, and verify the proposed theory. S1-section with Type A for 

flanges and Type B for web (Fig.2a), and S2-section with Type B for both flanges and 

web (Fig.2b) are considered. These configurations meet continuity of FG at flanges and 

web connection. This makes the relation between web and flanges becomes stronger, 

and the approach presented is feasible [8, 11, 16]. Material properties are given by 

6 2105.69x10 /mE kN m , 6 2320.7x10 /cE kN m  and 0.3 .m c   Ratio 

/ x100%sW W  is defined as the shear effect. The effects of material distribution, 

material parameter ( )p , BCs, length-to-height ratio 
3( / )L b , shear deformation, and 

foundation parameters on the results are examined.  

3.1. Convergence study  

To study the convergence of present solution, the FG I-beams 

(
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,

1 2 0.7   ,  

3 0.4  , 5p  , S1-section) are considered. For static problem, the concentrated 

transverse load ( 100 )zP kN  acts at mid-span of beams. The buckling loads and mid-

span deflections of various beams are shown in Table 2. It can be found that the present 

solution converges at m = 10 for deflection and m = 8 for buckling. Therefore, these 

numbers are selected for the following examples.  

3.2. Bending analysis 

3.2.1. Verification  

In order to verify the beam model and solution, the simply-supported isotropic I-

beam (
1 2 3 0.00208h h h h m    , 

1 2 3 0.05b b b m   , 2.5L m ) is considered. 
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The Poisson ratio and Young’s modulus are assumed to be 0.25   and 

6 253.78x10 /E kN m . The maximum deflections of beams subjected to the 

concentrated transverse load ( 1zP kN ) at mid-span are compared with those of Kim 

and Lee [16] in Table 3. The present results have coincided with previous results [16] 

for both cases with and without shear effect. 

A cantilever FG I-beam (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

2.5L m , 
1 0.9  , 

2 0.1  , 
3 0.4  , S1-section) subjected to a concentrated 

transverse load ( )zP  acting at the free end is examined. For comparison with the 

available literature, the nondimensional deflection is defined by 
3

3

3

c

z

E hb
W

P L
 . The 

maximum deflections again agree well with previous results [16] in Table 4. Since there 

is no published data for the FG I-beams resting on elastic foundation, a cantilever 

composite I-beam (
1 0.00208h m , 

2 0.00312h m , 
3 0.00104h m , 

1 0.03b m , 

2 0.04b m , 
3 0.05b m , 2.5L m ) is considered. Material properties are as follows: 

6 2

1 53.78x10 /E kN m , 6 2

2 3 17.93x10 /E E kN m  , 6 2

12 13 8.96x10 /G G kN m  , 

6 2

23 3.45x10 /G kN m , 
12 13 0.25    and 

23 0.34  . Lay-ups are 
4[30/ 30] S  for 

top flange, 
6[30/ 30] S  for bottom flange, and 

2[30/ 30] S  for web. Table 5 displays 

the maximum deflections of beams subjected to a concentrated transverse load 

( 0.1 )zP kN  acting at the free end respect to foundation parameters 
zk  and 

zg . It is 

seen that the present results are again in excellent agreement with those of Kim and Lee 

[4].  
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3.2.2 Thin-walled FG I-beams without foundation effect 

The effects of p , 
3/L b , BCs, and material distribution on the deflections of beams are 

investigated. The FG I-beams (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h ) are considered. Tables 6 and 7 show their mid-span deflections (
3/ 10L b   

and 
3/ 20L b  ) subjected to the concentrated transverse load ( 10 )zP kN  acting at 

mid-span for S1-section 
1 2 3( 0.9, 0.1, 0.4)      and S2-section 

1 2 3( 0.1, 0.1, 0.1)     , respectively. It is clear that beams’ deflections increase as 

3/L b  and p  increase for both S1- and S2-sections. This is reasonable because the 

portion of ceramic volume fraction directly depends on p  and it leads to a reduction in 

stiffness when p increases [13]. It is seen from Tables 6 and 7 that the deflections are the 

largest for C-F beams and the smallest for C-C ones as predicted. Fig. 4 displays the 

variation of shear effect respect to the 
3/L b  for S1- and S2-section, respectively. The 

shear effect decreases as the 
3/L b  increases as expected, and it is the largest for C-C 

beams.  

To investigate the effect of ceramic thickness ratio on the shear effect, FG C-C I-

beams (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 
38L b , S1-section) 

under a uniformly distributed transverse load ( 0.5 /zq kN m ) are considered. Figs. 5a-

7a show variation of the shear effect respect to ceramic thickness ratio in flanges and 

web. The ceramic thickness ratio affects significantly to the shear effect, and 1) the 

shear effect decreases as the ceramic thickness ratio  in web increases; 2) as the 

ceramic thickness ratio of top flange increases, the shear effect increases and then 

decreases; and 3) the shear effect increases as the ceramic thickness ratio in bottom 

flange increases. These phenomenons can be explained in Figs. 5b-7b which display the 

variation of ratios of flexural and shear rigidity 
33 77( / )E E  respect to ceramic thickness 

ratio. It can be concluded that variation of the shear effect depends on the 
33 77( / )E E  

ratio which are defined by material properties, material distribution and profile of cross-
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section. 

3.2.3. Thin-walled FG I-beams with foundation effect 

The FG I-beams (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

10p  , 
320L b , 5 /zq kN m ) resting on two-parameter foundation in the z-

direction are considered as shown in Fig. 8. Tables 8 and 9 show their mid-span 

deflections respect to foundation parameters for S1-section 

1 2 3( 0.9, 0.1, 0.4)      and S2-section 
1 2 3( 0.1)     , respectively. It is 

seen that the deflections decrease as foundation parameters increase for both S1- and 

S2-section because the increase of foundation parameters makes beams get stiffer.  

To further investigate the effect of foundation parameters, the FG I-beams 

(
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 10p  , 
320L b , 

1 2 30.9, 0.1, 0.4     , S1-section) with four cases are considered as follows: Case 

1 ignores the foundation effect; Case 2 considers the first parameter of foundation; Case 

3 considers the second parameter of foundation, and both two parameters of the 

foundation are considered in Case 4. Soil sub-grade properties are assumed to be 

282.150zg kN  and 31007 /sK kN m [4]. For beam with bottom 

width
2 10 0.02b h m  , the first foundation parameter is determined 

2

2 20.140 /z sk K b kN m  . Fig. 9a and b display the deflections of the C-C and C-S 

beams under uniformly distributed transverse load ( 20 /zq kN m ), respectively. It is 

seen from these figures that the first foundation parameter does not have strong effect to 

beams’ deflections. However, the second one causes the decrease of maximum 

deflections about 25% and 38% for C-C and C-S beam, respectively. 

Figs. 10 and 11 display the ratio of deflection between the first and second 
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foundation parameters for various BCs. It can be seen from Fig. 10 that in case of small 

3/L b  ratio (
3/ 20L b  ), the effect of the first foundation parameter is negligible, but it 

becomes very significant as 
3/L b  ratio is large 

3( / 70)L b  . Fig. 11 indicates that the 

effect of second foundation parameters is noticeable, and increases as 
3/L b  increases. 

It is the smallest for C-C beams and the largest for C-F ones. It can be concluded from 

present results that the effect of foundation parameters becomes very remarkable as 

stiffness of beams reduces. 

3.3. Buckling analysis 

3.3.1. Thin-walled FG I-beams without foundation effect 

For verification purpose, FG I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 

3 0.2b m , 2.5L m ) with 
1 2 3 0.4     , S2-section and 

1 2 0.7   , 

3 0.4  , S1-section are considered. Their critical buckling loads (kN) with various BCs 

are printed in Tables 10-14, and are compared with those with and without shear effect 

([11, 18, 63]). It shows an excellent agreement of present results with those from 

previous results. Figs. 12 and 13 show the effect of ceramic thickness ratio in flanges 

(as 
3 0.4  ) and web (as 

1 2 0.7   ) on the first three buckling loads of C-S 

beams ( 10p  ). It can be seen from these figures that the results increase significantly 

as the ceramic thickness ratio in flanges increases, however, they just slightly increase 

as the ceramic thickness ratio in web increases. This is due to the fact that the increase 

of ceramic thickness ratio in flanges causes noticeable increase of the bending and 

torsional rigidities of beams. 

The FG I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.05b m , 10p  , 

1 2 3 0.4     , S2-section) with 
3/ 10L b   and 

3/ 50L b   are considered to 
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investigate shear effect.  Figs. 14-17 show the first four buckling mode shapes of 

beams for 
3/ 10L b   and 

3/ 50L b  . From these figures, it is clear that the 

contribution of shear mode is significant for lower length-to-height ratio (
3/ 10L b  ) 

and higher buckling mode (Modes 2 and 4). 

3.3.3. Thin-walled FG I-beams with foundation effect 

To evaluate foundation effect on the critical buckling loads, S1-section 

(
1 2 30.7, 0.4     ) and S2-section (

1 2 3 0.4     ) with geometry 

(
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.05b m , 10p  , 

3/ 50L b  ) are 

considered. Figs. 18 and 19 display the variation of first four buckling loads of 

cantilever beams for S1- and S2-section respect to 
zk  and 

zg . It is seen that the 

buckling modes in z-direction increase almost linearly as foundation parameter 

increases, and the buckling modes in y-direction do not affect by variation of foundation 

parameters because 
zk  and 

zg  just cause increase of beams’s rigidity in z-direction.  

Finally, the effects of BCs, 
3/L b  on the critical buckling loads are investigated. 

The thin-walled FG beams with sections as in previous example are considered. Soil 

properties are assumed to be 282.150zg kN  and 2100.7 /zk kN m . Ratio 

1 1/f fr P P  is defined to investigate the effect of BCs and 
3/L b , where 

1 fP  and 
1P  

are the critical buckling loads of beams with and without foundation effect, respectively. 

Fig. 20a and b show the variation of 
fr  respect to 

3/L b  for various BCs for S1- and 

S2-sections. It is seen from these figures that 
fr  ratio increases as 

3/L b  ratio 

increases until the critical buckling load of beams with foundation effect equals to the 

second buckling load of beams without it. It is mean now that 
fr  equals to ratio of the 
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second buckling load and critical buckling load of beams without foundation effect, and 

it is interesting that this ratio does not depend on boundary conditions. 
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4. Conclusions 

An improved first-order beam theory, which is based on dividing the displacements 

into bending and shear part, is proposed for the static and buckling response of thin-

walled FG I-beams. The presented beam model has straightforward form, and it is 

convenient to establish formula and solve the problems. In addition, this model can 

produce the results for both two cases with and without shear effect, therefore, it 

reduces computational cost in case of comparing shear effect. The effects of material 

distributions, length-to-height ratio, boundary conditions and foundation parameters on 

the displacement and critical buckling load of thin-walled FG I-beams are considered. 

Foundation parameters significantly affect to the deflections and critical buckling loads 

of beams. The proposed beam model is efficient for considering the shear effect on the 

static and buckling responses of thin-walled FG I-beams.  
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Appendix A: The stiffness 
ijE  of thin-walled FG beam are given: 

*

11 11

A

E Q dnds  ,  *

12 11 sin s

A

E Q y n dnds  ,  *

13 11 cos s

A

E Q z n dnds   

 *

14 11

A

E Q nq dnds  , 
15 16 17 18 0E E E E     

 * 2 2 2

22 11 2 sin sins s

A

E Q y ny n dnds     

  * 2

23 11 zsin cos sin coss s s s

A

E Q yz n y n dnds        

  * 2

24 11 sin sins s

A

E Q y n qy qn dnds       , 
25 26 27 28 0E E E E     

 * 2 2 2

33 11 2 cos coss s

A

E Q z nz n dnds     

  * 2

34 11 cos coss s

A

E Q z n qz qn dnds       , 
35 36 37 38 0E E E E     

 * 2 2 2

44 11 2
A

E Q n q n q dnds    , 
45 46 47 48 0E E E E     

* 2

55 66

A

E Q n dnds  , *

56 66 cos s

A

E Q n dnds   

*

57 66 sin s

A

E Q n dnds  , *

58 66

A

E Q nrdnds  ,  * 2 * 2

66 66 55cos sins s

A

E Q Q dnds    

 * *

67 66 55 sin coss s

A

E Q Q dnds   ,  * *

68 66 55cos sins s

A

E Q r Q q dnds    

 * 2 * 2

77 66 55sin coss s

A

E Q Q dnds   ,  * *

78 66 55sin coss s

A

E Q r Q q dnds    

 * 2 * 2

88 66 55

A

E Q r Q q dnds    (A1) 
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Appendix B: Matrix K and Vetor F  

11 '' ''

11

0

L

ij i jK E dx   , 12 '' ''

12

0

L

ij i jK E dx    , 13 '' ''

13

0

L

ij i jK E dx    , 

14 '' '' '' '

14 15

0 0

2
L L

ij i j i jK E dx E dx       , 

15 '' '

16

0

L

ij i jK E dx   , 16 '' '

17

0

L

ij i jK E dx   , 

 17 '' '

15 18

0

L

ij i jK E E dx    , 22 '' '' ' ' ' '

22 0

0 0 0 0

L L L L

ij i j y i j y i j i jK E dx k dx g dx N dx              , 

23 '' ''

23

0

L

ij i jK E dx   ,  

   24 '' '' '' ' ' ' ' '

24 25 0

0 0 0 0 0

2
L L L L L

ij i j i j y y P i j y y P i j P i jK E dx E dx k l y dx g l y dx z N dx                    , 

25 '' ' ' ' ' '

26 0

0 0 0 0

L L L L

ij i j y i j y i j i jK E dx k dx g dx N dx               , 26 '' '

27

0

L

ij i jK E dx    ,  

     27 '' ' ' ' ' '

25 28 0

0 0 0 0

L L L L

ij i j y y P i j y y P i j P i jK E E dx k l y dx g l y dx z N dx                  ,  

33 '' '' ' ' ' '

33 0

0 0 0 0

L L L L
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35 38 0
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2 2
44 '' '' '' ' ' ' ' '

44 45 55

0 0 0 0 0

2 2 ' ' ' '0

0 0 0 0

4 4

,

L L L L L

ij i j i j i j y y P i j y y P i j

L L L L
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z z P i j z z P i j t i j i j
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k l z dx g l z dx k dx dx

A

         

       

      

     

    

   

   45 '' ' ' ' ' ' ' '

46 56 0
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L L L L L
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   46 '' ' ' ' ' ' ' '

47 57 0
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Figure Captions 

Figure 1. Coordinate systems of thin-walled beam 

Figure 2. Thin-walled FG sandwich I-beam. 

Figure 3. Coordinate and foundation parameters of FG I-beams 

Figure 4. Variation of the shear effect respect to the length-to-height ratio of FG I-

beams 

Figure 5. Variation of the shear effect and 
33 77/E E  ratio of the FG I-beams (

3 0.1  ) 

respect to 
1  and 

2  

Figure 6. Variation of the shear effect and 
33 77/E E  ratio of the 

Figure 7. Variation of the shear effect and 
33 77/E E  ratio of the 

Figure 8. Thin-walled FG I-beam resting on the foundation. 

Figure 9. Variation of transverse deflection of C-C and C-S FG I-beams along their span 

Figure 10. The effect of the first foundation parameter on the mid-span deflections of 

the FG I-beams respect to the length-to-height ratio. 

Figure 11. The effect of the second foundation parameter on the mid-spans deflection of 

the FG I-beams respect to the length-to-height ratio 

Figure 12. Variation of first three buckling loads of FG I-beams (
3 0.4  , p = 10, S1-

section) respect to 
1 2,   

Figure 13. Variation of first three buckling loads of FG I-beams (
1 2 0.7   ,  p = 10, 

S1-section) respect to 
3  

Figure 14. The buckling mode 1 of FG C-S I-beam. 

Figure 15. The buckling mode 2of FG C-S I-beam. 

Figure 16. The buckling mode 3 of FG C-S I-beam. 
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Figure 17. The buckling mode 4 of FG C-S I-beam. 

Figure 18. Variation of buckling loads of beams with S1-section respect to foundation 

parameters 

Figure 19. Variation of buckling load of beams with S2-section respect to foundation 

parameters 

Figure 20. Variation of 
fr  ration respect to length-to-height ratio 
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Table Captions 

Table 1. Ritz’s approximation functions for various boundary conditions (BCs). 

Table 2. Convergence studies for deflections and buckling loads of FG I-beams 

Table 3. Maximum deflection of isotropic simply supported I-beams subjected to the 

concentrated transverse load acting at mid-span (mm) 

Table 4. Maximum deflections of cantilever FG I-beams (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 2.5L m , 
1 0.9  , 

2 0.1  , 
3 0.4  , S1-section) 

subjected to the concentrated transverse load at the free end. 

Table 5. Maximum deflections of cantilever composite I-beams under the concentrated 

transverse load at the free end (mm) 

Table 6. Mid-span deflections of FG I-beams subject to the concentrated transverse load 

acting at mid-span (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

1 2 30.9, 0.1, 0.4     , 10zP kN , S1-section) (mm) 

Table 7. Mid-span deflections of FG I-beams subject to the concentrated transverse load 

acting at mid-span (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

1 2 3 0.1     , 10zP kN , S2-section) (mm) 

Table 8. Mid-span deflections of FG I-beams subjected to a uniformed transverse load 

(
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 10p   

5 /zq kN m ,
1 2 30.9, 0.1, 0.4     , S1-section) (mm) 

Table 9. Mid-span deflections (W) of FG I-beams subjected to a uniformed transverse 

load (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 10p   

5 /zq kN m ,
1 2 3 0.1     , S2-section) (mm) 
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Table 10. Critical buckling loads (kN) of FG I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 3 0.4     , S2-section) with various 

boundary conditions 

Table 11. Critical buckling loads (kN) of FG S-S I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section) 

Table 12. Critical buckling loads (kN) of FG C-F I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section) 

Table 13. Critical buckling loads (kN) of FG C-S I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section). 

Table 14. Critical buckling loads (kN) of FG C-C I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section). 
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Figure 1. Coordinate systems of thin-walled beam 
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Figure 2. Thin-walled FG sandwich I-beam. 
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Figure 3. Coordinate and foundation parameters of FG I-beams 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  39 

 

a. S1-section                        b. S2-section 

Figure 4. Variation of the shear effect respect to the length-to-height ratio of FG I-beams 
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a. Shear effect (%)                  b. 
33 77/E E  ratio 

Figure 5. Variation of the shear effect and 
33 77/E E  ratio of the FG I-

beams (
3 0.1  ) respect to 

1  and 
2  
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a. Shear effect (%)                  b. 
33 77/E E  ratio 

Figure 6. Variation of the shear effect and 
33 77/E E  ratio of the FG I-

beams (
2 0.1  ) respect to 

1  and 
3  
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a. Shear effect (%)                  b. 
33 77/E E  ratio 

Figure 7. Variation of the shear effect and 
33 77/E E  ratio of the FG I-

beams (
1 0.1  ) respect to 

2  and 
3  
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Figure 8. Thin-walled FG I-beam resting on the foundation. 
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              a. C-C beam                         b. C-S beam 

Figure 9. Variation of transverse deflection of C-C and C-S FG I-beams along their span 
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Figure 10. The effect of the first foundation parameter on the mid-span deflections of 

the FG I-beams respect to the length-to-height ratio.  
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Figure 11. The effect of the second foundation parameter on the mid-spans deflection of 

the FG I-beams respect to the length-to-height ratio 
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Figure 12. Variation of first three buckling loads of FG I-beams (
3 0.4  , p = 10, S1-

section) respect to 
1 2,   
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Figure 13. Variation of first three buckling loads of FG I-beams (
1 2 0.7   ,  p = 10, 

S1-section) respect to 
3  
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       a. 
1 310004.920 ( / 10)P kN L b     b. 

1 3443.780 ( / 50)P kN L b   

Figure 14. The buckling mode 1 of FG C-S I-beam. 
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     a. 
2 312013.673 ( / 10)P kN L b           b. 

2 3544.793 ( / 50)P kN L b   

Figure 15. The buckling mode 2of FG C-S I-beam. 
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     a. 
3 324642.089 ( / 10)P kN L b          b. 

3 31300.182 ( / 50)P kN L b   

Figure 16. The buckling mode 3 of FG C-S I-beam. 
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     a. 
4 328631.245 ( / 10)P kN L b          b. 

4 31592.939 ( / 50)P kN L b   

Figure 17. The buckling mode 4 of FG C-S I-beam. 
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   a. Critical buckling load respect to 
zk       b. Critical buckling load respect to 

zg  

Figure 18. Variation of buckling loads of beams with S1-section respect to foundation 

parameters 
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   a. Critical buckling load respect to 
zk       b. Critical buckling load respect to 

zg  

Figure 19. Variation of buckling load of beams with S2-section respect to foundation 

parameters 
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              a. S1-section                        b. S2-section       

Figure 20. Variation of 
fr  ration respect to length-to-height ratio 
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Table 1. Ritz’s approximation functions for various boundary conditions (BCs). 
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Table 2. Convergence studies for deflections and buckling loads of FG I-beams 

 

BC Present m      

  2 4 6 8 10 12 

1. Deflection at mid-span (mm) 

S-S With shear 8.081 9.778 9.897 9.928 9.940 9.940 

 No shear 7.822 9.487 9.592 9.615 9.622 9.622 

C-F With shear 13.386 19.709 19.825 19.883 19.890 19.890 

 No shear 13.118 19.116 19.221 19.244 19.251 19.251 

C-S With shear 4.148 4.462 4.508 4.518 4.519 4.519 

 No shear 3.868 4.173 4.198 4.206 4.206 4.206 

C-C With shear 2.558 2.648 2.701 2.709 2.708 2.708 

 No shear 2.281 2.371 2.393 2.400 2.400 2.400 

2. Critical buckling load (kN) 

S-S With shear 400.826 351.215 351.064 351.064 351.064 351.064 

C-F With shear 88.490 87.891 87.891 87.891 87.891 87.891 

C-S With shear 722.958 716.784 716.765 716.765 716.765 716.765 

C-C With shear 1466.429 1397.018 1396.296 1396.294 1396.294 1396.294 

 

 

 

 

 

 

 

 

 

 

 

 

 



  58 

Table 3. Maximum deflection of isotropic simply supported I-beams subjected to the 

concentrated transverse load acting at mid-span (mm) 

Reference No shear  With shear 

Present 39.8590 39.9465 

Kim and Lee [16] 39.8900 40.1700 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  59 

Table 4. Maximum deflections of cantilever FG I-beams (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 2.5L m , 
1 0.9  , 

2 0.1  , 
3 0.4  , S1-section) 

subjected to the concentrated transverse load at the free end. 

Reference p         

 0 0.5 1 2 5 10 20 30 50 

Present (With shear) 1.2740 1.4439 1.5521 1.6831 1.8461 1.9346 1.9904 2.0112 2.0288 

Kim and Lee [16]  

(With shear) 

1.2732 1.4466 1.5566 1.6890 1.8520 1.9395 1.9941 2.0144 2.0315 

Present (No shear) 1.2725 1.4422 1.5503 1.6811 1.8440 1.9325 1.9882 2.0090 2.0265 

Kim and Lee [16] (No shear) 1.2725 1.4458 1.5558 1.6881 1.8510 1.9341 1.9931 2.0133 2.0304 
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Table 5. Maximum deflections of cantilever composite I-beams under the concentrated 

transverse load at the free end (mm) 

 

Reference kz 

(kN/m2) 

gz (kN) 

 0 100 200 300 

Present (With shear) 0 122.6795 2.2974 1.1792 0.7951 

 10 17.2179 1.9626 1.0806 0.7483 

 20 10.2502 1.7250 0.9999 0.7076 

 30 7.5831 1.5481 0.9324 0.6720 

 40 6.1307 1.4107 0.8753 0.6404 

Present (No shear) 0 122.5620 2.2890 1.1737 0.7909 

 10 17.2146 1.9556 1.0759 0.7445 

 20 10.2521 1.7198 0.9957 0.7042 

 30 7.5860 1.5437 0.9287 0.6688 

 40 6.1337 1.4070 0.8719 0.6375 

Kim and Lee [4] (No shear) 0 122.5600 2.2938 1.1771 0.7936 

 10 17.2040 1.9600 1.0791 0.7471 

 20 10.2370 1.7237 0.9987 0.7067 

 30 7.5714 1.5471 0.9315 0.6712 

 40 6.1200 1.4100 0.8745 0.6398 
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Table 6. Mid-span deflections of FG I-beams subject to the concentrated transverse load 

acting at mid-span (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

1 2 30.9, 0.1, 0.4     , 10zP kN , S1-section) (mm) 

3/L b  BC Present p 

   0 0.5 1 2 5 10 20 30 50 

10 S-S With shear 1.2935 1.4655 1.5749 1.7070 1.8710 1.9599 2.0158 2.0367 2.0543 

  No shear 1.2391 1.4043 1.5095 1.6369 1.7955 1.8816 1.9359 1.9561 1.9732 

 C-F With shear 2.5885 2.9328 3.1516 3.4159 3.7441 3.9221 4.0340 4.0757 4.1109 

  No shear 2.4791 2.8097 3.0202 3.2750 3.5923 3.7647 3.8733 3.9138 3.9480 

 C-S With shear 0.5965 0.6741 0.7241 0.7843 0.8590 0.8994 0.9248 0.9344 0.9421 

  No shear 0.5416 0.6138 0.6598 0.7155 0.7848 0.8224 0.8462 0.8550 0.8625 

 C-C With shear 0.3625 0.4098 0.4405 0.4767 0.5210 0.5458 0.5610 0.5686 0.5702 

  No shear 0.3098 0.3503 0.3771 0.4087 0.4478 0.4699 0.4835 0.4905 0.4916 

20 S-S With shear 10.0213 11.3569 12.2070 13.2353 14.5148 15.2096 15.6471 15.8102 15.9480 

  No shear 9.9125 11.2344 12.0763 13.0952 14.3638 15.0531 15.4872 15.6492 15.7859 

 C-F With shear 20.0513 22.7236 24.4245 26.4821 29.0420 30.4323 31.3075 31.6340 31.9097 

  No shear 19.8325 22.4773 24.1617 26.2003 28.7384 30.1176 30.9861 31.3102 31.5837 

 C-S With shear 4.4396 5.0308 5.4069 5.8615 6.4268 6.7332 6.9264 6.9984 7.0580 

  No shear 4.3326 4.9104 5.2783 5.7237 6.2783 6.5795 6.7692 6.8400 6.8986 

 C-C With shear 2.5772 2.9206 3.1394 3.4005 3.7291 3.9059 4.0185 4.0599 4.0948 

  No shear 2.4717 2.8018 3.0127 3.2646 3.5826 3.7541 3.8635 3.9037 3.9377 
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Table 7. Mid-span deflections of FG I-beams subject to the concentrated transverse load 

acting at mid-span (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 

1 2 3 0.1     , 10zP kN , S2-section) (mm) 

3/L b  BC Present p          

   0 0.5 1 2 5 10 20 30 50 

10 S-S With shear 1.2935 1.6192 1.8524 2.1640 2.6018 2.8653 3.0411 3.1089 3.1670 

  No shear 1.2391 1.5511 1.7745 2.0730 2.4924 2.7448 2.9132 2.9781 3.0338 

 C-F With shear 2.5885 3.2403 3.7069 4.3306 5.2066 5.7338 6.0859 6.2214 6.3377 

  No shear 2.4791 3.1033 3.5503 4.1476 4.9866 5.4915 5.8287 5.9585 6.0698 

 C-S With shear 0.5965 0.7449 0.8522 0.9957 1.1970 1.3181 1.3992 1.4303 1.4571 

  No shear 0.5416 0.6780 0.7756 0.9061 1.0894 1.1996 1.2733 1.3017 1.3261 

 C-C With shear 0.3625 0.4529 0.5178 0.6032 0.7274 0.8015 0.8492 0.8679 0.8868 

  No shear 0.3098 0.3867 0.4422 0.5151 0.6212 0.6846 0.7251 0.7411 0.7576 

20 S-S With shear 10.0213 12.5448 14.3516 16.7663 20.1576 22.1993 23.5617 24.0865 24.5366 

  No shear 9.9125 12.4086 14.1958 16.5842 19.9388 21.9583 23.3059 23.8250 24.2702 

 C-F With shear 20.0513 25.1004 28.7155 33.5470 40.3327 44.4163 47.1437 48.1938 49.0944 

  No shear 19.8325 24.8265 28.4022 33.1809 39.8926 43.9316 46.6293 47.6680 48.5587 

 C-S With shear 4.4396 5.5575 6.3580 7.4277 8.9302 9.8344 10.4382 10.6708 10.8701 

  No shear 4.3326 5.4236 6.2048 7.2487 8.7149 9.5973 10.1866 10.4135 10.6081 

 C-C With shear 2.5772 3.2277 3.6923 4.3142 5.1871 5.7026 6.0618 6.1970 6.3112 

  No shear 2.4717 3.0956 3.5411 4.1376 4.9749 5.4688 5.8136 5.9433 6.0528 
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Table 8. Mid-span deflections of FG I-beams subjected to a uniformed transverse load 

(
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 10p   

5 /zq kN m ,
1 2 30.9, 0.1, 0.4     , S1-section) (mm) 

BC kz 

(kN/m2) 

gz (kN)        

 0 10 20 30 40 50 100 200 

S-S 0 7.5989 7.262 6.9537 6.6705 6.4093 6.1678 5.1892 3.9375 

 5 7.5534 7.2205 6.9156 6.6354 6.3769 6.1377 5.1679 3.9252 

 10 7.5085 7.1795 6.878 6.6007 6.3448 6.108 5.1467 3.9129 

 20 7.4203 7.0987 6.8038 6.5323 6.2816 6.0494 5.105 3.8887 

 50 7.1675 6.867 6.5905 6.3354 6.0993 5.8801 4.9837 3.8177 

 100 6.7823 6.5125 6.2633 6.0323 5.8178 5.6179 4.7938 3.705 

C-F 0 25.8034 22.5545 20.154 18.3019 16.825 15.6164 11.7916 8.3485 

 5 24.6781 21.7091 19.49 17.7627 16.376 15.2349 11.5861 8.2528 

 10 23.6494 20.9266 18.8696 17.2555 15.9512 14.8723 11.388 8.1594 

 20 21.836 19.5241 17.7438 16.326 15.1666 14.1982 11.0122 7.9791 

 50 17.7855 16.2812 15.0701 14.0706 13.2294 12.5097 10.0251 7.4847 

 100 13.6479 12.8015 12.086 11.4713 10.9361 10.4645 8.7346 6.7888 

C-S 0 3.0777 3.0117 2.9481 2.8874 2.8367 2.7733 2.5245 2.1426 

 5 3.0702 3.0042 2.9411 2.8806 2.8227 2.767 2.5194 2.1389 

 10 3.0626 2.9969 2.9341 2.8739 2.8162 2.7608 2.5143 2.1352 

 20 3.0474 2.9824 2.9202 2.8606 2.8034 2.7485 2.5041 2.1278 

 50 3.0029 2.9398 2.8793 2.8213 2.7657 2.7123 2.474 2.106 

 100 2.9315 2.8713 2.8136 2.7582 2.7051 2.6539 2.4253 2.0707 

C-C 0 1.5701 1.552 1.5343 1.517 1.5002 1.4837 1.4064 1.2741 

 5 1.5681 1.5501 1.5325 1.5153 1.4984 1.482 1.4049 1.2728 

 10 1.5662 1.5482 1.5306 1.5134 1.4967 1.4802 1.4033 1.2715 

 20 1.5624 1.5445 1.527 1.5099 1.4932 1.4768 1.4003 1.269 

 50 1.5511 1.5334 1.5162 1.4993 1.4828 1.4667 1.3911 1.2615 

 100 1.5326 1.5153 1.4985 1.482 1.4659 1.4501 1.3762 1.2491 
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Table 9. Mid-span deflections (W) of FG I-beams subjected to a uniformed transverse 

load (
1 2 3 0.002h h h h m    , 

1 20b h , 
2 10b h , 

3 40b h , 10p   

5 /zq kN m ,
1 2 3 0.1     , S2-section) (mm) 

BC kz 

(kN/m2) 

gz (kN)        

 0 10 20 30 40 50 100 200 

S-S 0 11.0896 10.3866 9.7671 9.2171 8.7256 8.2837 6.6084 4.702 

 5 10.9931 10.3018 9.692 9.1502 8.6656 8.2296 6.5739 4.6844 

 10 10.8982 10.2184 9.6182 9.0843 8.6064 8.1762 6.5397 4.667 

 20 10.7133 10.0556 9.4737 8.9553 8.4905 8.0714 6.4723 4.6325 

 50 10.1942 9.5966 9.0651 8.5891 8.1605 7.7725 6.2784 4.5319 

 100 9.432 8.918 8.4569 8.0409 7.6639 7.3205 5.9795 4.3735 

C-F 0 37.6545 31.186 26.9089 23.8514 21.5439 19.7315 14.3615 9.8633 

 5 35.307 29.6087 25.7585 22.965 20.8336 19.1455 14.0705 9.7359 

 10 33.2423 28.1878 24.7057 22.1444 20.1703 18.5945 13.7914 9.6118 

 20 29.7789 25.7307 22.8462 20.6731 18.9672 17.586 13.2665 9.3734 

 50 22.7659 20.4511 18.6788 17.268 16.1126 15.1446 11.9149 8.7263 

 100 16.4764 15.3377 14.3998 13.6096 12.9294 12.3398 10.2052 7.8329 

C-S 0 4.4949 4.355 4.2237 4.1002 3.9839 3.8742 3.4068 2.7489 

 5 4.4785 4.3396 4.2092 4.0866 3.9711 3.8621 3.3975 2.7428 

 10 4.4623 4.3244 4.1949 4.0731 3.9584 3.8501 3.3882 2.7367 

 20 4.4303 4.2943 4.1666 4.0464 3.9332 3.8262 3.3697 2.7246 

 50 4.3368 4.2064 4.0838 3.9683 3.8593 3.7563 3.3154 2.689 

 100 4.1894 4.0676 3.9529 3.8446 3.7422 3.6453 3.2286 2.6317 

C-C 0 2.2954 2.2569 2.2198 2.1839 2.1491 2.1155 1.9621 1.7144 

 5 2.2913 2.253 2.216 2.1802 2.1455 2.112 1.9591 1.7121 

 10 2.2872 2.249 2.2121 2.1765 2.1419 2.1085 1.9561 1.7098 

 20 2.2791 2.2412 2.2045 2.1691 2.1348 2.1016 1.9501 1.7052 

 50 2.2551 2.2179 2.182 2.1473 2.1137 2.0811 1.9324 1.6916 

 100 2.2161 2.1802 2.1455 2.1119 2.0794 2.0478 1.9036 1.6694 
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Table 10. Critical buckling loads (kN) of FG I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 3 0.4     , S2-section) with various 

boundary conditions 

p Present (With shear)  Lanc et al. [11] (No shear) 

 S-S C-F   C-S  C-C  S-S  C-F  C-S  C-C 

0 422.355 105.725 862.488 1680.787  423.296 105.773 867.292 1705.050 

0.25 388.279 97.195 792.902 1545.182  389.143 97.239 797.316 1567.480 

0.5 365.571 91.510 746.530 1454.814  366.385 91.552 750.687 1475.810 

1 337.199 84.408 688.592 1341.907  337.951 84.447 692.428 1361.280 

2 308.845 77.311 630.692 1229.074  309.533 77.346 634.203 1246.810 

5 280.517 70.219 572.842 1116.339  281.143 70.252 576.034 1132.450 

10 267.650 66.999 546.568 1065.136  268.247 67.030 549.611 1080.500 

20 260.301 65.159 531.560 1035.890  260.881 65.189 534.520 1050.840 

30 257.694 64.506 526.236 1025.514  258.268 64.536 529.165 1040.310 

50 255.547 63.969 521.852 1016.971  256.116 63.998 524.757 1031.640 
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Table 11. Critical buckling loads (kN) of FG S-S I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section) 

p Present  Reference 

  Kim and Lee [18]  Nguyen et al. [63]  Lanc et al. [11] 

 With shear  With shear No shear  With shear No shear  No shear 

0 422.355  422.359 423.083  421.633 423.079  423.296 

0.25 405.212  405.208 405.933  404.154 405.602  406.130 

0.5 393.792  393.783 394.515  392.508 393.960  394.692 

1 379.529  379.533 380.286  377.958 379.420  380.412 

2 365.285  365.280 366.056  363.420 364.899  366.150 

5 351.064  351.058 351.825  348.899 350.404  351.914 

10 344.610  344.601 345.333  342.305 343.826  345.451 

20 340.925  340.906 341.605  338.539 340.070  341.762 

30 339.618  339.596 340.278  - -  340.455 

50 338.542  338.522 339.188  - -  339.377 
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Table 12. Critical buckling loads (kN) of FG C-F I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section) 

p Present  Reference 

  Kim and Lee [18]  Nguyen et al. [63]  Lanc et al. [11] 

 With shear  With shear No shear  With Shear No shear  No shear 

0 105.725  105.725 105.771  105.679 105.770  105.773 

0.25 101.436  101.435 101.483  101.310 101.401  101.484 

0.5 98.579  98.577 98.629  98.399 98.490  98.626 

1 95.011  95.013 95.072  94.763 94.855  95.057 

2 91.448  91.448 91.514  91.132 91.225  91.494 

5 87.891  87.891 87.957  87.507 87.601  87.936 

10 86.277  86.277 86.334  85.861 85.957  86.321 

20 85.356  85.353 85.403  84.922 85.018  85.400 

30 85.029  85.025 85.071  - -  85.073 

50 84.759  84.757 84.799  - -  84.804 
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Table 13. Critical buckling loads (kN) of FG C-S I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section). 

p Present  Reference 

  Kim and Lee [18]  Lanc et al. [11] 

 With shear   With shear No shear  No shear 

0 862.488  862.202 865.523  867.292 

0.25 827.449  827.152 830.439  832.121 

0.5 804.106  803.804 807.080  808.686 

1 774.953  774.678 777.970  779.427 

2 745.835  745.545 748.857  750.207 

5 716.765  716.470 719.741  721.037 

10 703.570  703.270 706.458  707.795 

20 696.036  695.717 698.830  700.237 

30 693.364  693.037 696.115  697.558 

50 691.164  690.842 693.884  695.351 
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Table 14. Critical buckling loads (kN) of FG C-C I-beams (
1 2 3 0.005h h h h m    , 

1 2 0.1b b m  , 
3 0.2b m , 2.5L m ,  

1 2 0.7   , 
3 0.4  , S1-section). 

p Present  Reference 

  Kim and Lee [18]  Nguyen et al. [63]  Lanc et al. [11] 

 With shear  With shear No shear  With shear No shear  No shear 

0 1680.787  1680.840 1692.352  1669.413 1692.317  1705.050 

0.25 1612.391  1612.410 1623.751  1599.491 1622.408  1635.900 

0.5 1566.824  1566.830 1578.078  1552.860 1575.838  1589.830 

1 1509.909  1509.950 1521.156  1494.551 1517.678  1532.310 

2 1453.059  1453.060 1464.229  1436.213 1459.595  1474.860 

5 1396.294  1396.270 1407.293  1377.838 1401.613  1417.520 

10 1370.527  1370.490 1381.317  1351.288 1375.299  1391.480 

20 1355.814  1355.730 1366.399  1336.111 1360.275  1376.630 

30 1350.595  1350.500 1361.089  - -  1371.360 

50 1346.982  1346.210 1356.727  - -  1367.020 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


