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Abstract 

Ensuring the security of sensitive information stored on small devices has become 

increasingly challenging due not only to technological advances but also growth in the 

number of IoT devices. Currently, there is a lack of efficient encryption and cryptanalysis 

methods for small devices, and lightweight encryption techniques including ciphers must 

therefore be improved to meet security standards. The growth of radio-frequency 

identification (RFID) applications on small devices has also provided communication 

solutions which require appropriate security to ensure their integrity through authentication 

and authorisation. To address this security gap, this thesis develops a measurement 

framework by establishing the maximum order complexity method of unique window size 

as a vital binary sequence strength measurement. A novel neural network model is 

implemented to predict the unique window size to evaluate targeted ciphers’ pseudo-

randomness. A secure and lightweight cipher based on the well-known MICKEY 2.0, 

called MICKEY 2.0.85, is proposed. This cipher reduces the length of both registers from 

the original 100 bits each to 80 bits for both. Pseudo-randomness tests from the US 

National Institute of Standards and Technology were used to ensure that all usual security 

requirements are met. Broad cryptanalysis was also performed by testing MICKEY 2.0.85 

against common attacks. The findings show that MICKEY 2.0.85 has slightly more 

resistance, consumes less power, occupies less space and is 23% faster in encryption speed 

than MICKEY 2.0. This thesis also proposes a lightweight cloud computing security 

protocol, FEATHER, for communications between mobile devices over insecure channels, 

as well as the Near Field Security Data Extractor (NFSDE) system that has an encryption 

protocol to provide security for RFID technologies when internet connectivity is 

unavailable or unreliable. These proposed security solutions are developed in an eHealth 

context but could be adapted for other applications using IoT, RFID and mobile cloud 

computing and in uses with insecure channels or unstable internet. 
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Chapter 1: Introduction 

 

1.0 Chapter overview 

This chapter is an introduction for the thesis, offering an overview of thesis content and 

providing the chapters association and organisation. Section 1.1 presents a general 

introduction to security, while section 1.2 offers security background on applications 

requiring security to protect sensitive data. Section 1.3 provides an overview on 

cryptosystems, and section 1.4 discusses security challenges. In addition, section 1.5 

details research objectives, aims, research questions and methodologies, while section 1.6 

presents an overview of the thesis contributions to current literature in lightweight security 

methods and applications. Finally, section 1.7 provides the thesis structure, and section 1.8 

concludes the chapter. 

 

1.1 Introduction 

This thesis aims to harmonise theory and practice to make an important contribution to, 

and advance the field of, cryptography. Given that data transfer and sharing are essential 

in daily life, cryptography plays a vital role in security, privacy, authentication, and 

integrity. 

 

Security and privacy are an integral part of people’s lives. Sensitive personal data, 

including finance-related information, health records and job-related data and information, 

must be secured to avoid misuse and ensure it is only accessible by the data owner and 

authorised people. Developing strong security methods such as encryption of data is 

essential to the field of cryptology. Cryptanalysis is the science of analysing encryption 

methods that need to be updated to meet the threat of information misuse. Analysis can use 

either statistical methods or other mathematical methods. In this era of advanced 

development of communication devices and network improvements in data storage, cloud 

computing can facilitate the transfer of data. A specific branch of cloud computing is 

mobile cloud computing which makes use of mobile devices. Cloud computing, including 

mobile cloud computing, involves the transfer of large amounts of data, which can be 

sensitive. However, transfer methods are unsafe, and the data must be encrypted for 
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transfer and storage. There has been significant growth in the use of the internet of things 

(IoT), which in turn has led to growth in the use of radio-frequency identification (RFID) 

technology for object tracking and monitoring. As a result, a secure and valid secure 

cryptosystem is needed.  

 

This thesis investigates and tests various lightweight stream ciphers as a type of 

cryptosystem for small devices, using different analysis methods. It introduces a new 

method of analysis to propose MICKEY 2.0 cipher reduced variants that aim to be suitable 

for small devices such as those used in IoT, mobile cloud computing and RFID tags. This 

thesis provides new security applications and protocols for mobile cloud computing and 

RFID technology that have practical use in eHealth care as a real-world example, as 

security of patient data is critical to avoid potentially life-threatening changes to 

information. 

 

1.2 Background 

Both individuals and organisations need data security. Individuals want data security to 

protect sensitive personal data such as bank account and credit card information, while 

organisations want security protection for employee and business data including 

employment records and payments. There are two main branches of security protection: 

data security, which focuses on information protection; and system protection, which 

targets information protection within devices that contain this information, as well as 

protecting data transfer through networks [1]. 

 

The internet of things (IoT) [2] was established to provide solutions for data computing by 

devices, and transfer data over networks without the need for human interaction. The IoT 

connects devices with the internet for data transfer and exchange. Some of the data is 

sensitive and needs to be protected from unauthorised people. Cryptology uses algorithms 

that encrypt data with secret keys or public keys that need to be protected and shared 

securely. With advances in technology there is a need to improve cryptography methods 

to meet new demands, as devices become more widespread and networks grow and expand 

their coverage. Growth leads to vulnerabilities and more attacks by people who can use 

this sensitive data. 
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Cloud computing is part of the IoT facilitating an external server to store and transfer data 

[3]. Mobile cloud computing adds mobile devices for communication and information 

exchange [4], [5]. Another technology, radio frequency-identification (RFID), implements 

tags for information protection and tracking [6]. 

 

Encryption is an effective tool for transferring information that requires security and 

protection. Therefore, strong encryption systems, called cryptosystems which are sets of 

cryptographic algorithms applied for implementing a security service [7], must be chosen 

by the users and their strength must be tested. Some cryptosystems act as pseudo-random 

number generators (PRNG), see for example [8], and their strength can be assessed by 

testing the randomness of the pseudo-randomness binary sequences produced by these 

cryptographic systems. This thesis tests the security of cryptosystems by implementing 

neural network models to measure the strength of specific stream ciphers, as well as other 

randomness test tools. The thesis also provides security optimised methods for secure 

applications and tests them by improved cryptanalysis to ensure efficiency and resistance 

against attacks by attackers who want to reveal the information. 

 

It is important to examine the effectiveness of the application of ciphers in current uses 

including mobile cloud computing [9] and IoT, especially in the field of RFID tag 

implementation as tags are used to secure and authenticate the users [9-11]. It is important 

to ensure the confidentiality and protection of information.  

 

1.2.1 Cryptographic methods 

Cryptology can be defined as the science of secret and hidden information, while 

cryptography is specifically the science of hidden text. Cryptographic methods include 

encryption/decryption, one way functions like hash and digest, authentication, digital 

signatures, entropy and randomness, and protocols [12], [13]. This thesis provides the 

background for most of these primitives. A stream cipher is a binary additive cipher (as 

the plaintext binary sequence XORed with keystream (mod 2) for encryption). The first 

step in the process to identify its internal state is to use an initialisation vector (IV) and key 

to produce a keystream for an IV-based system, while other ciphers only use a key. The 

next step is to XOR the keystream – symbol by symbol – with plaintext to obtain the 

ciphertext. 
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The standard model for attacking synchronous stream ciphers, where the encryption is 

done one step at a time, assumes that there is a known keystream. This assumption is 

reasonable because the known plaintext and XOR can be used with the ciphertext to obtain 

the known keystream. According to good practice, the design of the cipher should be made 

public to enable analysis and avoid ‘security by obscurity’. Researchers can analyse their 

own copy of the cipher—typically in software—in any mode. 

 

Cryptographers design the stream cipher’s internal state to produce a random keystream 

by using IV bits and key bits. A higher security level requires that the internal state of the 

encryption cipher is twice the size of the key within it. In some stream ciphers, the 

designer’s goal is to increase the size of the internal state in order to avoid some types of 

attacks like time–memory trade-off (TMTO) attacks. However, cryptanalysis has found 

that if the key is larger than the IV, this process will not guarantee more resistance to a 

TMTO. Consequently, IV bits should be greater than key bits, and the internal state should 

be equal to (or greater than) IV + key. This result can be found in [14], [15]. 

 

1.3 Cryptosystems targeted in this research 

Cryptosystems include traditional cryptography and lightweight cryptography. The focus 

of this thesis is lightweight cryptography as this thesis is devoted to lightweight and low-

cost applications, including lightweight synchronous ciphers and lightweight 

asynchronous ciphers. This thesis focuses on lightweight synchronous ciphers, specifically 

lightweight synchronous stream ciphers [14 -17]. Lightweight cryptography that does not 

require extensive computation resources has been attracting interest in research and 

application over the past 20 years. A large number of cryptographic systems are suitable 

for applications that have limited capacity in terms of complex processes and small 

memory. These systems include Present, Clefia, LED, Trivium, Grain and MICKEY 2.0 

[17-19] which are a good fit for mobile cloud computing and IoT which have small devices 

included in their structures.  

 

1.4 Challenges and motivation 

Communication technology and information circulation is widespread, and there is an 

urgent need to ensure confidence and confidentiality of information dissemination through 

different communication channels, which are not necessarily protected. The rapid 
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development of mobile devices makes this an important area of study in terms of 

information analysis and encryption systems to ensure the best applications to help 

overcome cloud computing and IoT challenges. 

 

Lightweight encryption methods are cryptosystems for small devices, and there are many 

of them including lightweight synchronous stream ciphers. It is important to improve these 

systems to be more suitable for new and emerging ultra small devices. It is also important 

to improve current cryptanalysis methods, which requires testing and validation of the 

ciphers’ visibility in terms of implementation and ensuring the level of their security. 

Existing research still has many shortcomings and gaps requiring extensive and deeper 

research. 

 

1.5 Research objective and aims  

The research objective is to analyse flaws in lightweight synchronous stream ciphers such 

as Shrinking Generator (SG) and Self-Shrinking Generator (SSG) synchronous ciphers. It 

adapts the MICKEY 2.0 cipher in mobile cloud computing and IoT in a secure manner. It 

shows how lightweight stream ciphers can be more practical compared to heavy 

cryptosystems such as Advanced Encryption Standard (AES) by implementing this method 

in mobile cloud computing and IoT applications while still maintaining security. Statistical 

and theoretical analysis tools such as randomness tests and neural networks are needed. 

 

This thesis research aims to evaluate the security of targeted lightweight synchronous 

stream ciphers. It explores analysis methods that can be used for targeted ciphers, which 

can be applicable for similar ciphers. Understanding pseudo-random binary sequence 

behaviour will help the applications that use it to identify the flaws in those applications. 

This thesis adds new data analysis approaches for evaluating the security of ciphers and 

binary sequences, such as neural networks, which is an active research area. The results of 

this thesis can be applied in fields such as mobile cloud computing and IoT, with a focus 

on applications related to RFID tags. This thesis aims to show the importance of using an 

IV-based cryptosystem compared to cryptosystems that do not use an IV. 

 

This thesis has four main goals. First, it aims to achieve a better understanding of some 

current lightweight synchronous stream ciphers. Second, it aims to investigate the usability 

of these synchronous stream ciphers in real-world applications. Third, it links the first and 
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second goals with mobile cloud computing to improve optimal implementation. Fourth, it 

links the first and second goals with RFID technology application and study of its 

performance to determine the most beneficial applications. 

 

1.5.1 Thesis approach and research questions  

Building on the three blocks of security, data analysis and applications in Figure 1.1, Figure 

1.2 shows the four stages of the thesis research to address these targeted gaps as illustrated 

in the research stages in this section.  

 

 

 

                                                       Figure 1. 1 Research stages 

 

Stage 1 Analysing the implementation of lightweight ciphers 

Lightweight synchronous stream ciphers provide security for devices and software with 

limited abilities such as computation power, energy consumption and memory limited size. 

Despite the evaluation of implementation of lightweight encryption methods, the research 

on cryptanalysis, optimising existing ciphers and proper implementation still requires more 

attention. The research questions are: 

 

1. How can lightweight synchronous stream ciphers be implemented effectively to secure 

the transfer of data? 

1.1   Based on the current gaps in proper implementation, what are the benefits of using 

lightweight stream ciphers?  
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1.2   Why is it not always efficient to use other cryptosystems such as Advanced Encryption 

Standard (AES)? 

 

Stage 2 Analysing lightweight stream ciphers 

Identifying the weaknesses and flaws in existing lightweight synchronous stream ciphers 

will help optimise or replace them with more lightweight encryption methods. Although 

this is a very active research area, implementing new cryptanalysis methods needs further 

effort. The research questions are: 

 

2. How can existing lightweight stream ciphers be analysed properly, and avoid problems 

in poor analysis to find weaknesses to help users decide which cryptographic algorithm 

should be used? 

2.1 How can neural networks be applied as a prediction method for the nonlinear 

complexity of a binary pseudo-random sequence? 

2.2.  How can randomness tests be applied effectively to find weaknesses in a given stream 

cipher? 

 

Stage 3 Providing solutions for real-world applications by optimising lightweight 

encryption 

Improving current lightweight encryption has not received sufficient focus, and 

optimisation and analysis methods, and the cost of current encryption methods, are still not 

optimal. There is a need to secure sensitive data, especially in small devices, at reasonable 

cost. The research questions are: 

 

3. How can this study contribute to real-world applications by providing solutions to 

current issues in security, efficiency, cost and performance? 

3.1 How can lightweight encryption ciphers be optimised, and how can lighter versions be 

proposed to avoid shortcomings in implementation in small devices?  

3.2 How can cryptanalysis be tested to provide sufficient confidence for the proposed novel 

lightweight encryption cipher to ensure validity for usage? 

    

Stage 4 Implementing MICKEY 2.0 and proposing secure applications 

The binary sequences generated by pseudo-random number generators need to be as 

pseudo-random as possible. MICKEY 2.0 is a popular lightweight encryption cipher, yet 

needs to be optimised for applications such as RFID and mobile cloud computing. Further 
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research to enhance such ciphers has benefits in security and related costs associated with 

implementation. As there are problems with current applications, the study provides 

solutions for these applications by addressing the following question: 

 

4. How can RFID, mobile cloud computing, pseudo-random binary sequence analysis and 

MICKEY 2.0 be connected to ensure consistency and identify contributions to multiple 

disciplines and different applications, and fix current implementation issues? 

4.1 How can MICKEY 2.0 be implemented efficiently to secure communication between 

mobile devices in mobile cloud computing? 

4.2 How can MICKEY 2.0 be implemented efficiently to secure communication in RFID 

technology devices in IoT, especially in RFID tags? 

 

1.5.2 Components of the thesis 

The thesis investigates lightweight synchronous stream ciphers as the main focus of 

general lightweight encryption methods [16] through three main blocks of security, data 

analysis (for cryptanalysis) and applications. The thesis assesses encryption methods and 

some lightweight ciphers, and optimises the best candidate and then implements them with 

novel security applications, as shown in Figure 1.2. 

 

 

                                Figure 1. 2 Thesis main blocks and overall focus 

 

The first block is security. The protection of information has become necessary with the 

proliferation of means of communication such as portable devices and other channels of 
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communication such as Wi-Fi, 3G, 4G and, in the near future, 5G [20], as well as the 

development of systems and IoT technology such as RFID, cloud computing and mobile 

cloud computing [21]. 

 

The second block of data analysis is important in the study and evaluation of cryptographic 

systems for development. This thesis uses randomness statistical tests and neural networks, 

a connectionist approach for computation based on the use of interconnected artificial 

neurons, among other methods.  

 

The third block is application. Applications can be designed so they are highly protected 

in mobile cloud computing and can protect information using RFID technology in sensitive 

areas such as eHealth as an example.  

 

1.5.2 Significance of the research and implications 

This thesis provides a better understanding of some current lightweight synchronous 

stream ciphers, and investigates the usability of some synchronous stream ciphers and 

optimises them to be suitable in real-world applications. This research helps evaluate the 

security of the targeted ciphers. It also explores the most effective methods that can be 

used for evaluation of ciphers, which can be applicable for similar ciphers. In addition, 

understanding pseudo-random binary sequence behaviour can help the applications that 

use it to identify the flaws in those applications. This research adds new data analysis 

approaches in terms of evaluating the security of ciphers and binary sequences, such as 

neural networks, which is an active research area. Lastly, the results of this research can 

be applied in fields such as mobile cloud computing and IoT, with a focus on applications 

related to RFID tags such as eHealth. 

 

1. Lightweight encryption is important because it provides a considerable level of security 

that is suitable for devices with a small capacity. 

2. It is important to find the flaws of the ciphers for designers to improve their 

cryptosystems, and for users to choose the best cryptosystem for their security needs. 

3. Applying different cryptanalysis methods in this thesis helps to improve them and 

enables them to be applied in different cryptosystems. 
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4. Suitable applications need to be created using lightweight stream ciphers such as 

MICKEY 2.0 for implementation in mobile cloud computing and RFID tags for eHealth 

security. 

 

1.5.3 Methodology 

This thesis uses the following analysis methods to achieve the research aims and answer 

the research questions: 

 

1. The outcomes of recently published research on lightweight stream ciphers are analysed 

to obtain a broader understanding of the topic and extend the knowledge of IV-dependent 

(MICKEY and Trivium) and IV-less (SSG and SG) stream ciphers.  

2. Statistical tests such as d-monomial and chi-square are applied to investigate the 

appearance of randomness in synchronous lightweight stream ciphers. 

3. Comparison techniques are used for the statistical test results to identify the weaknesses 

in stream ciphers. In particular, this thesis compares SG and SSG (IV-less) and MICKEY 

2.0 (IV-dependent) stream ciphers. 

4. Statistical programming software such as R programming is used as a statistical tool for 

the chi-square test. C programming is used to design codes to interpret the algorithms for 

the statistical tests. Linux is used to submit the job to EC2 [21], [22] and Python 

programming language is used for neural network models. 

5. A range of theoretical approaches are applied to cipher design. This enables the 

mathematical theories, formulas and propositions to be compared to provide an 

understanding of their relevance and applicability to the thesis aims. 

6. The NIST randomness test suite is used to measure the randomness of the proposed 

MICKEY 2.0 cipher lighter variant, a reduced version of MICKEY 2.0 cipher, which is 

designed to be suitable for RFID tag applications [23]. 

7. The neural networks model is implemented to predict nonlinearity and complexity levels 

for given binary sequences. 

8. Cryptanalysis and attacks are applied to show how the targeted ciphers are resistant to 

attacks. 
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1.6 Thesis contributions 

This section provides an overview of the results, including the results from the analysis, 

and the proposed security applications, to identify the thesis contributions. 

 

1.6.1 Statistical tests on SG and SSG 

This thesis conducts in-depth calculations to test the effectiveness of encryption systems 

such as shrinking generator (SG) [24] and self-shrinking generator (SSG) [25] ciphers. It 

identified their strengths and weaknesses to provide insights to researchers on the 

protection of information that is transmitted through unsafe communication channels (see 

Chapter 3). 

 

This thesis presents prediction models using neural networks [26] to measure randomised 

binary sequences, which are reflected in the efficiency of the cryptosystems they produce. 

Promising and interesting results are obtained (see Chapter 4). Implementing these models 

as a measuring tool can contribute to related applications in information protection 

systems. 

 

1.6.2 MICKEY 2.0 reduced variant (MICKEY 2.0.85) 

To ensure that the encryption system is suitable for use in RFID tags, the number of gates 

equivalent (GE) must be as small as possible. This thesis introduces an optimised version 

of MICKEY 2.0 that is suitable for use in RFID tags, as well as lightweight devices. Using 

standard randomised tests from NIST [27] as well as other cryptanalysis methods shows 

the MICKEY 2.0.85 reduced variant does meet the required standards and is resistant to 

attacks (see Chapter 5). 

 

1.6.3 Mobile cloud computing and FEATHER protocol 

This thesis introduces a protocol called FEATHER to secure information transfer between 

two or more mobile devices using an insecure communication channel. FEATHER 

depends on the following components: 

• Mobile devices for communication between people, networks (e.g., Wi-Fi and 4G) 

and cloud servers are used to produce secure keystreams. 
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• The MICKEY 2.0 cipher is used to produce a secure keystream. 

• A number of identification and protection parameters, including One-Time-Pad 

(OBP), hash function and time stamp, are added to ensure the transfer of 

information between mobile devices and between mobile devices and the cloud 

server. The MICKEY 2.0 cipher is used because it provides protection and rapid 

production of the keystream in the server, which enables fast communication 

between the server and mobile devices. This is an important feature and reduces 

costs. Chapter 6 presents details of the proposed FEATHER protocol design and 

application and the results of the tests. 

 

1.6.4 eHealth proposed cryptosystem 

RFID technology is important in healthcare [28], for example, to follow up patients and 

their medications and to monitor the development of patients’ health. For example, patients 

who have state-of-health calls for permanent follow-up may be able to call an ambulance 

at any time. To supervise patients, patients can be given a wristband carrying an RFID tag. 

To follow up on their status and to verify their identity, this thesis added another dimension 

to protect the confidentiality of the information using the MICKEY 2.0 cipher, which was 

developed in this thesis and is suitable for RFID tags. This protocol can be implemented 

without the need for internet connectivity. This protocol secures patients’ follow-up and 

communication using their medical records. It also ensures identity verification. In 

addition, to protect the confidentiality of the information, this thesis considered a reduction 

in the costs of use and its resistance to piracy (see Chapter 7). The MICKEY 2.0 included 

in the protocol was tested in a real-world application of eHealth. The protocol showed it 

could provide identity verification and confidentiality. 

 

1.7 Thesis structure 

The thesis has eight chapters addressing the three main components of this thesis of 

security, data analysis and applications. Figure 1.3 shows how the eight chapters are 

connected as one theme, with lightweight encryption as the main focus for the thesis and 

the centre of these approaches.  

 

Chapter 1 outlines the main objectives and goals of the thesis research, and presents a brief 

summary of the individual studies that make up the thesis. The chapter discusses the 
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importance of the research and its applications, as well as the motivations and challenges 

of the research. The chapter summarises the types of algorithms used for cryptography in 

this study and applications in daily life. 

 

Chapter 2 provides the background for the thesis research in terms of the science of 

cryptography and its importance. It also examines previous research related to this 

research, as well as random tests of binary series. The chapter discusses the main and 

general design of the principle of cryptography from the perspective of hardware, software 

and theory, as well as challenges relating to the security of information and confidentiality. 

 

Chapter 3 defines and analyses SG and SSG in terms of the principle of their operation and 

how to use them. Randomness based tests are used to test SG and SSG keystreams which 

are binary sequences, and the results are presented. 

 

Chapter 4 continues to examine the importance of random binary sequences in the field of 

cryptography. It discusses the importance of the neural network model in the field of 

randomness prediction of this sequence, as a tool to measure and test the effective 

cryptographic algorithms developed. Promising and important results are achieved for the 

SG and SSG ciphers. 

 

Chapter 5 introduces a secure, lighter and faster version of MICKEY 2.0, named MICKEY 

2.0.85, which has 30 bits less in internal state than MICKEY 2.0. The pseudo-randomness, 

cryptanalysis and performance of MICKEY 2.0.85 are explained in detail. 

 

Chapter 6 examines cloud computing, its importance and its components, with a focus on 

mobile cloud computing. It outlines the importance of ensuring the confidentiality of 

information in mobile cloud computing. The proposed FEATHER protocol includes the 

implementation of cipher MICKEY 2.0, and other important components are discussed. 

Good results are presented that can be applied to devices with limited computational 

capacity, memory and bandwidth. 

 

Chapter 7 presents an important application for lightweight stream ciphers in the field of 

sensor networks, especially RFID tags, for which the MICKEY 2.0 cipher is applied within 

a secure protocol and its proposed variant to be compatible with the technology. The 

proposed secure protocol was implemented as a lightweight security method using a 
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prototype device, called Near Field Secure Data Extractor (NFSDE). The chapter presents 

results showing the method’s effectiveness, performance and security. 

 

Chapter 8 analyses and links the three main components – confidentiality and protection 

of information, analysis, and applications. It discusses the results using multiple 

disciplines, which represent an important contribution in the field of cryptography, and it 

contributes to research by examining important tools that have different applications in 

non-cryptographic areas. The chapter shows the thesis research may contribute to future 

studies by linking the science of cryptography with other fields of study and making them 

more interactive and productive. Thus, this research contributes to the development of the 

science of cryptography and security in general as well as the development of other 

sciences that interact with cryptography. The conclusion of the chapter summarises the 

results of this thesis in line with the objectives and research questions and the methods 

used. It outlines the contributions made by this thesis and identifies future research 

directions to help enhance cryptanalysis research. 
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Figure 1. 3 Relationship between thesis themes and chapters 

 

1.7.1 Link between Chapters 3 and 4 

Results of the statistical tests on the pseudo-randomness study of SG and SSG showed 

their weaknesses through testing using d-monomial tests and their derivatives, as well as a 

model of expectation through the multilinear regression model in Chapter 3. Further, 

theoretical concepts behind SG and SSG were provided in terms of how they are designed 

and how they work. Applying the neural network model resulted in superior predictability 

of pseudo-randomness, as shown in Chapter 4. 

 

1.7.2 Links between Chapters 3, 4, 5 and 6 

Based on the work conducted in Chapters 3 and 4, this study implements the MICKEY 2.0 

cipher as an IV-based lightweight synchronous stream cipher because it is far more secure 
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than SG and SSG, by introducing MICKEY 2.0.85 as a lighter and secure version of 

MICKEY 2.0 cipher. It is implemented in a protocol called FEATHER to facilitate 

communication between the cloud server and mobile devices. Further, design principles 

and implementation details are provided, as well as the security aspect and results of the 

implementation. 

 

1.7.3 Links between Chapters 5, 6 and 7 

This thesis uses the MICKEY 2.0 cipher and introduces a reduced variant that is suitable 

for RFID tag communications and implementation in Chapter 5. The ciphers’ performance 

and designs are compared. Chapters 6 and 7 discuss enhanced applications in mobile cloud 

computing, IoT and wireless sensor networks. 

 

In summary, analysing the security of lightweight stream ciphers by collecting data (e.g., 

about the keystream) and then analysing nonlinearity and randomness will lead to the best 

applications for daily life without compromising confidentiality and security. FEATHER 

is internet dependent and NFSDE can be used if the internet is not available. 

 

1.8 Summary 

This thesis examines different analysis methods to find the flaws in lightweight 

synchronous stream ciphers. The findings contribute to the existing body of knowledge 

and enhance the field of security with a focus on lightweight encryption methods, which 

are suitable for small devices with limited computational power and memory. 

 

Simulations and computations are run to measure the random appearance of the keystream 

of the shrinking generator and the self-shrinking generator ciphers. The thesis proposes a 

new approach based on designing neural network models to predict the randomness of the 

ciphers. This model can then be simulated for other ciphers. A security protocol called 

FEATHER is introduced to secure communication between two or more mobile devices 

with the help of a cloud server to create a secure random keystream. 

 

The findings are applied to the eHealth security field by implementing the MICKEY 2.0 

cipher and designing a reduced version that is suitable for RFID technology. This thesis 

adds a step to enhance secure applications for small devices to maintain their security, 
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performance, speed and power consumption, which are particularly important in eHealth 

applications. 
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Chapter 2: Literature review and background 

 

2.0 Chapter overview 

This chapter reviews the field of cryptography and identifies research gaps. Section 2.1 

introduces the field, Section 2.2 presents an overview of different encryption types, Section 

2.3 presents a brief mathematical foundation for cryptographic functionalities, Section 2.4 

summarizes different cryptanalysis methods with types of common attacks, Section 2.5 

focuses on an important branch of cryptography which is lightweight encryption, Section 

2.6 introduces neural networks with proposed prediction models, Section 2.7 introduces 

cloud computing, Section 2.8 introduces mobile cloud computing, Section 2.9 introduces 

RFID technology with security, and Section 2.10 summarizes the literature review and 

identifies the research gaps.  

 

2.1 Introduction 

Cryptography can be explained as methods for securing information from unauthorised 

parties and also the study and analysis of these methods. Different branches of the field 

include encryption, decryption, protocols and key management. Encryption is the 

procedure of transforming information from a clear text into a ciphertext state, and is used 

for encryption [8]. It is performed by a cipher that encodes messages. Information that has 

already been encoded can also be recovered by the cipher via a specified performance 

decoding method when required. Cryptographic encoding prevents unauthorised 

individuals from obtaining the information encrypted in the message; it therefore has 

significant implications for individual, national and international security [16]. 

 

The history of cryptography is reviewed in [29] and [30]. Cryptography science has 

expanded greatly since Julius Caesar in ancient Rome used cipher text in letters to his 

military officers to conceal his plans and actions. Just before World War I, in the twentieth 

century, the use of cryptography grew significantly, allowing across-the-board application. 

For the history of cryptography since before Julius Caesar till World War I please refer to 

[30]. Cryptographers are increasingly considering scientific ideas and concepts from 

software engineering and mathematics, especially when designing and using cryptographic 

algorithms. The strength of cryptography depends on calculations which are hard to break, 
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particularly due to algorithms which require considerable expense and effort to break [30], 

[31]. Regardless of this careful configuration, a few attempts have demonstrated that 

cryptographic methods can be broken. However, it is important to note that these methods 

have rarely been broken using functional methodologies such as analysis and, since they 

are exceptionally hard to break, cryptographic algorithms are considered computationally 

secure [17]. Changes in whole-number factorization calculations limit the generalization 

of algorithms’ functionality needed for figuring the encryption mechanism. Therefore, this 

further upgraded the security offered by cryptographic methods, as quantum computing is 

not yet in practice [32]. 

 

The implementation of cryptographic algorithms needs to be adapted according to the 

targeted system, as cryptography is part of advanced hardware as a security tool, a system 

where signs represent discrete simple groups of logical Boolean binary operation. The 

cryptographic strategy empowers a hardware electronic gadget to open and close electronic 

gates to encode a message using binary representation. Its advanced electronic circuits 

have extensive clusters of logical gates, which use a Boolean rationale that works in basic 

gadgets. These advanced circuits have movement registers, each consisting of a course of 

flip-flops with a comparable clock. Every flip-flop of a movement register is joined with 

information and included in an arrangement chain [16]. The subsequent circuit moves by 

one position (bit array) where the put away bit cluster moves in the information present at 

its yield while the last bit in the exhibit moves out. This procedure happens at every move 

(shift) of clock data. The input and yield output of movement registers can be both parallel 

and serial and the registers are therefore arranged as SIPO (serial-in, parallel-out) and PISO 

(parallel-in, serial-out) [33]. SIPO and PISO therefore produce bidirectional movement 

from the way that they move in both bearings. 

 

2.2 Encryption types 

There are two important types of cryptographic encryption design: asymmetric and 

symmetric cryptography [34]. Asymmetric cryptography is the encryption of a text or 

message using a secret key. Asymmetric encryption has two related keys, sometimes 

referred to as a pair of keys: a private key, in sole possession of the owner; and a second 

key which is public and available to whoever wishes to send private information to the 

owner. All messages (binary files, documents and text) are encrypted. The public key may 

be decoded using the same encryption technique or the equivalent private key [34], [35]. 
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Conversely, any message encrypted using the private decryption needs the matching public 

key. There is minimal concern about the exchange of public keys over the internet as long 

as the private key is kept secret [34-36]. The main issue for asymmetrical encryption is 

that it is slower than symmetric encryption, thus more power is required to decrypt and 

encrypt messages [34-37]. 

 

In contrast, symmetric encryption uses a secret or private key consisting of a word, a string 

of random letters, or a number, which is used to change the content of a text or message in 

a specific manner [35]. This change of content may involve shifting each of the letters 

across a number of places. It requires the sender and recipient to know the same concealed 

key for encryption and decryption of the messages. The greatest threat to this type of 

encryption is that if the secret keys are exchanged over a large network such as the internet, 

the message can easily be decrypted if an attacker knows or manages to retrieve the secret 

key [38]. 

 

2.3 Mathematical foundation for encryption methods 

For the encryption relay on a Boolean function  that can generate a binary sequence which 

is essential in cryptography as it works as keystream generated by the cipher, this sequence 

should look as random as possible, thus  can be considered a pseudo-random number 

generator (PRNG). Brief mathematical preliminaries are provided below. 

 

2.3.1 Boolean function 

In the binary field  = , let  be a Boolean function with  variables, and  mapping 

from   to   and can be written as:  

Let us consider the vector  if  then  is accepting  and the opposite 

when . 

Then  generates a sequence of binary bits. Chapter 3 explains this sequence in detail. 
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2.3.2 Pseudo-random number generators 

An important component of stream ciphers used in cryptography is the generator. It 

produces a sequence of numbers that appear random (pseudo-random numbers) and 

difficult to discover which helps to encrypt a message securely [39]. This section reviews 

some pseudo-random number generators. 

 

One generator relevant to cryptography is the linear feedback shift register ( ). 

 are similar to linear congruential generators, as a linear function from the previous 

state is used as the input bit of an . The exclusive-or ( ) is one of the most 

common single bit linear functions, where the  input is driven by some XOR bits 

of the overall shift register value. For instance,  can be implemented by feeding 

the XOR gates into non-sequential, different registers within. This requires placing the 

 inside the shift register. In  the initial value is referred to as a ‘seed’, and 

the current or previous state can be used to determine the stream of values that the register 

produces. Because a finite number of possible states exists in the register, the  

repeats its cycle. If an  has a well-chosen feedback function, it can produce a 

sequence of bits that appear randomly and have an extended cycle [39], [40]. 

 

 have a great number of applications including generation of pseudo-random 

numbers, fast digital counting, the production of pseudo-noise sequences, cryptographic 

use and circuit testing, among other applications. In cryptography,  have been used 

as pseudo-random number generators (PRNG) in stream ciphers [39-41]. They can be 

developed from simple electronic and electromechanical circuits, have long periods, and 

have a uniform distribution for output streams (keystream). Because of this simple 

structure and its linear feature,  are valuable targets for cryptographic attacks [42]. 

For instance, if the plaintext is provided with a corresponding ciphertext, an attacker can 

easily use cryptanalysis to recover the output of the . The retrieved output stream 

can be used by the attacker to construct a small sized  that is capable of simulating 

the intended receiver. This process can be achieved by using the Berlekamp–Massey 

algorithm [42], [43]. The recovered output stream can be used to gather and calculate the 

remaining extended output stream and thus recover the whole plaintext and break the 

encryption. 

 

Three methods can be used to increase the complexity associated with the  stream 

cipher: using a nonlinear combination of different bits from the  state; using a 
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nonlinear combination of two or more  output bits; and performing irregular 

clocking of the  as an alternating step generator. The -based stream cipher 

incorporates A5/1 and A5/2 cipher technology, which is also used in GSM cell phones. 

Bluetooth and shrinking generators (SG) also use the LFSR-based stream cipher. The A5/1 

and A5/2 ciphers both have limitations [17]. For instance, there are reports of breaking the 

A5/2 and different studies have identified different shortcomings in the cipher [16]. 

 

Nonlinear feedback shift generators ( ) are also usually connected in current 

stream ciphers, such as smart cards and RFID. They are used in these applications because 

they are more impervious to cryptanalytic attacks than the . For instance, the 

 can generate n-bit at maximum length of  and thus can be extended to a 

maximum n-stage length  resulting in a De Bruijn sequence [42], [43]. Nonlinearity 

can be introduced using new tools such as the evolutionary algorithm. This design reflects 

that the evolutionary algorithm is equipped for learning methods applying diverse 

operations on strings from the , therefore improving the viability and quality of the 

function [16], [17]. Other large  can be established by ensuring long periods, 

and this is still considered to be an open problem. For example, a list of maximum-period 

n-bit  can be generated by brute force methods for  to include  

and . The generation of pseudo-random sequences for stream ciphers can be 

achieved using both  and . The -based stream cipher is an 

attractive target for algebraic attacks, which can be performed by secret key recovery 

which then allows an attacker to solve sets of chosen numbers of equations [7]. Algebraic 

attacks are made possible when there is misuse of multivariate relations involving key bits 

and output bits. This sort of attack is successful in estimating connections in low  

polynomial degrees, which usually exist in well-known developments of stream ciphers 

that are resistant to all the already-known attacks. The low degree multiples of Boolean 

functions in algebraic attacks are the main concern in designing both the stream ciphers 

and block ciphers. 

 

There is a close relationship between both the shrinking generator (SG) and the self-

shrinking generator (SSG), where the SSG is a special sub-type of the SG [42-45]. As a 

type of pseudo-random number generator used in stream ciphers, the SG is relevant to this 

thesis research. The generator’s system uses two , which are referred to as A 

(output bit generating sequence), and S (the sequence that controls output). Both the A and 

S sequences clock so that when the S bit = 1 it implies the A bit will be in the output, and 
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when S = 0 it means A will not be in the output. The greatest disadvantage of this system 

is that the rate of output varies irregularly and can therefore hint at the state of S. However, 

this problem is resolved through output buffering via a SSG. The SSG uses aspects of the 

SG and is a pseudo-random number generator. It was first introduced by Meier and 

Staffelbach [25], whose implementation of the generator is based on cryptography with its 

variants built on the . Because of the shrinking rule, the SSG’s equipment 

prerequisites are very low and yet it can resist cryptanalysis. The SSG has only one LFSR, 

which has a bits length L. The LFSR can generate an m-sequence and its selection criteria 

are similar to that of the SG. For instance, the generator uses two sequences: an m-sequence 

( ) and a controlling version of the sequence that is expressed as ( ). A straightforward 

decimal rule is also used to relate both groupings through the basic destruction standard 

and to set up a yield arrangement.  

 

SG are nonlinear keystream generators consisting of two . They have three main 

characteristics: length, their characteristic polynomial and initial state. The length of the 

 is dictated by the number of its memory cells. The characteristic polynomial of 

 is simply the feedback function. Lastly, the initial state of  is determined 

by the seed or key of the cryptosystem. If the primitive polynomial acts as the characteristic 

polynomial of the  it can generate pseudo-noise sequences that have good pseudo-

randomness properties, which is important for pseudo-random number generators [24]. 

Chapter 3 provides more discussion and analysis on both the SG and the SSG. 

 

The computation device termed a random number generator generates a sequence of 

numbers or symbols without a pattern, giving the appearance of a random sequence. This 

randomness has many applications and has allowed the development of multiple 

computational methods to generate random data. Random number generators are used in 

gambling, statistical sampling, cryptography, randomised design, and computer simulation 

amongst other areas. They can be used for simulations, such as the development of Monte 

Carlo method simulation [12]. 

 

Random number generators can be applied in cryptography if the seed is kept secret. This 

allows the sender and receiver to automatically generate an identical set of numbers, in this 

case, the key. Random number generators can also generate pseudo-random numbers that 

can be applied in computer programming. Cryptography requires a high degree of 

randomness even though many of its operations require a low level of unpredictability [46]. 
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For example, stronger forms of random generation have been used by physical sources like 

thunder noise and to generate computer-controlled adversaries associated with computer 

games. On the other hand, weaker forms of random generation (randomness) have been 

applied in hash algorithms, the creation of amortised searching, and sorting algorithms 

[16]. 

 

There are two main techniques for generating random numbers. The first technique 

measures some physical phenomena based on expected randomness and thus possible 

biases can be compensated for in the measuring process [47]. Some of the parameters 

associated with applying this technique include atmospheric noise, thermal noise, external 

electromagnetism and quantum phenomena. However, this technique is not practical and 

not implementation friendly. The second technique uses computation algorithms to 

produce lengthy sequences of results with a random appearance that are determined 

entirely by shorter initial values (seed or key) [48]. Pseudo-random generators do not rely 

on natural occurring entropy. However, there are cases where pseudo-random generators 

are periodically and naturally seeded. Due to this, their rates are not limited by external 

events. 

 

Mathematical formulae can also be used to differentiate pseudo-random numbers from 

quasi-random numbers [49]. The basis of random number generators is deterministic 

computation that is not truly random. With known seed values, the output of a random 

number generator can be very practical. If the pseudo-random number generator is 

designed and implemented carefully, it can be certified for security-critical cryptographic 

purposes. Some practical uses of random number generators for operating systems include 

FreeBSD, AIX, Mac OSX and NetBSD, among others [50], [51]. 

 

2.4 Cryptanalysis methods and some common attacks 

Cryptanalysis, or cryptographic attack, is the analytical study of an information system to 

identify the hidden aspects of the system [17]. Cryptanalysis is used to breach 

cryptographic security systems and thus allows the analyst to access and view encrypted 

messages, even where the cryptographic key is not known. Cryptanalysis can also study or 

determine side channel attacks [17], [52]. This type of cryptanalysis focuses on the 

weaknesses associated with the implementation of hardware in devices and hence does not 

target the weaknesses in cryptographic algorithms [53]. In addition to these methods, an 
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important cryptographic attack introduced by Hellman [54], called time–memory–data 

trade-off attack (TMTO), is used in cryptanalysis. In this particular attack, the attacker 

attempts to create conditions related to space–time trade-off using one or multiple 

parameters of data, depending on the quantity of data available to the attacker in real time. 

The attacker balances or reduces one or multiple parameters in order to enhance other 

parameters of interest. The planned attack is chosen based on design failures of the ciphers 

and encryption to resist the established computational conditions, and is hence considered 

a special type of cryptanalytic attack [55]. There are two main phases of TMTO: the pre-

computation (offline) phase and the actual or real time (online) phase. The pre-processing 

phase (pre-computation) is characterised by structural exploration of cryptosystems before 

computation is performed, and the findings are recorded in large tables which take 

considerable time to complete. Conversely, the real-time phase is characterised by 

cryptanalysis of real data that is obtained from a specific unknown key. The pre-computed 

table from the pre-processing phase is used to generate a particular specific unknown key 

in the shortest time possible. 

 

The five key parameters of a TMTO attack are search space size (N), needed pre-

computation phase time (P), needed real-time phase time (T), the amount of memory 

available to attackers (M), and the amount of real-time data available to attackers (D). 

TMTO attacks on block ciphers can be shown or described through the Hellman simulation 

[54]. For instance, where the number of potentially-employable keys is (N), the 

corresponding number of possible plaintexts and ciphertexts would be N. Additionally, if 

the data given to a block of ciphertext corresponds to a specific plaintext, then the key  

for the ciphertext y would be represented as a map function of random permutation ( ) 

over point space (N). Where the f function is invertible, the inverse of  is 

needed. The pre-processing phase of TMTO is characterised by coverage of N and point 

space would be expressed by the  (rectangular) matrix, which can be constructed 

through random iterating of function  on  starting from points N for time . In this matrix, 

the leftmost columns represent the start points whereas the rightmost columns represent 

the endpoints. The real-time phase is characterised by the total computation that is required 

to determine  hence . Since  inversion is required, one matrix can be covered 

by a single evaluation of    of some . 

 

Another form of time–memory–data trade-off attack is referred to as a Babbage-and-Golic 

[56], [57] trade-off attack, which can be successfully performed on stream ciphers. Stream 
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ciphers are identified by a specific number of internal states of bit generators (N) that are 

considered to be different from the numbers of keys, whereas the number of first pseudo-

random bits (D) is produced by the generator. The attackers therefore achieve their goals 

by finding one bit in the internal state of the pseudo-random number generator, and then 

running the pseudo-random number generator to produce the remaining part of the key. 

 

2.4.1 Internal state and initialisation vector (IV) 

The internal state of a stream cipher can be identified using an initialisation vector (IV) 

and key to produce a keystream, then XORing the keystream symbol by symbol. The 

standard model for attacking synchronous ciphers assumes there is some known 

keystream. Cryptographers design the stream cipher’s internal state to produce a random 

keystream, using IV and key-bits; for a higher security level, the internal state should be at 

least twice the size of the key within it. Cryptographers also perform statistical tests on the 

internal state to investigate the correlation between the IV and the key with a fixed 

keystream, between the keystream and the IV with a fixed key, and between a keystream 

and a key with fixed IV. There are a number of IV distinguisher tests such as the coverage 

test, the P-test and the DP-coverage test [58]. 

 

The IV in stream ciphers is used in the internal state to obtain the first output of the 

keystream. The IV allows the cipher to use several modes of operations with the same key 

but with a different IV, to produce a unique keystream. Significantly, this unique keystream 

removes the need to use a different key for each process. The IV also helps improve the 

encryption processes and provides synchronisation between the sender and receiver by 

producing a keystream with a randomised appearance [59]. 

 

The security of stream ciphers depends on the IV and the key initialisation, as the pseudo-

random function and the pseudo-random number generator produce a keystream that has 

a random appearance. However, in stream ciphers without an IV, the security is provided 

with a pseudo-random number generator [60]. 
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2.4.2 Statistical tests on stream ciphers 

Statistical tests have historically been an important tool in cryptography and are usually 

used to analyse the cipher. An attacker can use statistical analysis to investigate letter 

frequency in ciphertext written in the English alphabet (or any other alphabet) [39]. 

Currently, generic statistical tests, like those of the US National Institute of Standards and 

Technology (NIST) 800-22 suite [61], [62], are suitable for observing performance errors 

without considering the cipher structure and strength. Distinguishing statistical tests are 

more useful for analysing the internal state, especially in stream ciphers which are the focus 

of the thesis research. 

 

One important statistical testing tool is hypothesis testing which is used to analyse the 

behaviour or character of a large population by taking a sample and using the data obtained 

from the sample to represent the whole population. Determining whether the sample Mean 

is equal to the population Mean is important in the subsequent analysis in general [63]. 

 

2.4.3 Statistical-based attacks on stream ciphers 

Randomness distinguishing tests are another kind of statistical test. Random sequences are 

also highly significant in cryptography as a pseudo-random number generator is needed to 

produce a random sequence. The pseudo-random number generator is easier to use for 

applications where the algorithm is deterministic, while in comparison the truly random 

number generator requires physical objects to generate the sequences, making truly 

random number generators hard to apply and inefficient [34]. The benefits of applying 

statistical tests to distinguish randomness include ease of implementation and the short 

time needed to run the tests. 

 

Turan et al. [58] investigated six cipher randomness features in their study and observed 

statistical differences. They applied structural tests to check the relationship between the 

cipher key and the IV and the keystream. They identified some failures in Decim and Polar 

Bear which are stream ciphers, as well as failures in Frog which is a block cipher. For 

Decim, Turan et al. found a positive correlation between the key and keystream and a 

positive correlation between the IV and keystream. They also discovered some weaknesses 

by using the correlation between output using a fixed key and IV, similar to that already 

used in Decim, F-FCRS-8, Frogbit, Mag and Zk-Crypt. They also found weaknesses in 

diffusion in F-FCRS-8, Frogbit, Mag and Zk-Crypt. As a result of these findings, they 
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suggested modifying the structure of these ciphers to remove the observed weaknesses. In 

the studies [58] and [64] have extensions and further related statistical based analysis and 

results. 

 

d-monomial tests as an Algebraic Normal Form-based randomness (ANF), as it 

combination of algebraic and statistical analysis for randomness. In addition to the 

distinguishing tests and hypothesis testing, the d-monomial test is another statistical tool 

for stream cipher analysis. It is an algebraic normal form-based test. Researchers applied 

the d-monomial test to some proposed stream ciphers for the eSTREAM competition [65], 

looking for specific parts of ciphers’ output bits. These parts have bits that are less likely 

to have received a good mixing in the initialisation process, probably in the first or last bits 

of IV. By performing the experiment on eSTREAM the researchers found ciphers with 

insufficient mixing processes that simply failed to produce random outputs. These could 

be easily distinguished. Ciphers with this weakness included Mag, Frogbit and F-FCSR, 

all with extreme biases [43]. Englund et al. [34] used a generalised approach for the d-

monomial test by using polynomial description to detect how polynomials accrue and 

added two new tests: the monomial distribution test and maximal degree monomial test 

[34]. 

 

By studying different types of TMTO cryptanalysis, suitable tests can be chosen that can 

be run efficiently for stream ciphers. Turan et al. presented a new suite of TMTO-based 

tests on selected stream ciphers using some random mapping tests with three 

distinguishers: coverage test, P-test and DP-coverage test. The statistical distribution of the 

p values varied in the Pomaranch cipher. The most significant difference (p-value of 0.05) 

was obtained from the encryption for Pomaranch, and thus Turan et al. repeated the test on 

the cipher 450 times to confirm their conclusion [58].  

 

There has been continuous improvement in cryptanalysis methods. Randomness analysis 

includes Unique Window Size (UWS) and Algebraic Normal Form (ANF) based tests such 

as the d-monomial test, adapted to test IV-less based stream ciphers, as these tests are on 

SG and SSG as can be seen in Chapter 3. 
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2.4.3 Black-box attacks 

Attacks have different mechanisms based on the amount of information available for an 

attacker. The generic distinguishing attack and the key recovery attack can be applied on 

stream ciphers using the internal state or taking the cipher as a black-box. In other words, 

the cipher as a pseudo-random number generator is treated as a black-box and then 

considers the element outside the black-box [58], [66]. Figure 2.1 shows the message 

(plaintext), the key, IV and the keystream as elements to investigate. The term “black-box” 

describes the cipher without considering the structure of its internal state. It is a 

metaphorical term, indicating that researchers are focusing on the input and output of a 

cipher without taking into account the internal state. A distinguishing attack aims to 

determine whether the sequences generated from the stream cipher appear random or not, 

hence identifying any flaws in the cipher. The attacker’s target in a key recovery attack is 

to reveal the secret key. 

 

Figure 2. 1 Black-box principle 

 

A generic distinguishing attack takes the keystream generator as a black-box, then applies 

a test to the keystream and studies its statistical properties, usually investigating the 

“random” properties of the cipher elements. The tests used in these generic applications 

include statistical tests and time–memory trade-off tests, amongst others. In contrast, a 

specific distinguishing attack studies the inner state of the stream cipher, examining the 

properties of the IVs and the keys used to generate the keystream [67]. 

 

A key recovery attack aims to recover the encryption key or at least some part of it. While 

this is a strong attack, the attacker needs more information about the cipher structure and 
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access to information related to input and output bits [68]. This attacker has some known 

plaintexts with their corresponding ciphertexts, then aims to recover the encryption key by 

performing some calculations on the relations between the plaintexts and ciphertexts. 

 

In general, when applying these three types of tests which do not rely on knowing the 

internal structure of ciphers on a large keystream to study its random characteristics, it is 

possible that if the cipher fails the attackers will not recover either the key or the internal 

state. However, these attack methods are useful: the generic distinguishing attack can be 

used as a distinguisher for the keystream; the specific distinguishing attack is useful for 

finding the weaknesses in both the internal state (key and IV) and black-box (keystream); 

and the key recovery attack can help to obtain all or part of the key. Generic statistical tests 

can be applied on the black-box to observe weaknesses in the cipher’s implementation. 

However, since this kind of test does not explain the cipher algorithm strength, 

distinguishing tests for a chosen-IV attack are needed in order to evaluate the internal state 

setup and allow cryptographers to determine the strength of IV initialisation [61]. 

 

2.5 Lightweight cryptography 

The concept of lightweight cryptography is based on enhancing the security for devices 

that use ciphers which are becoming smaller and smaller with technological advances. 

Lightweight cryptography aims to achieve the highest security levels using minimal 

computing power [69]. Strategies for lightweight cryptography include one-pass 

authenticated encryption, lightweight block ciphers, hash function and stream ciphers [61], 

[70]. Each of these types has features that form the basis of recent advances in security. 

For instance, each type of previous lightweight encryption method has a special design that 

enables listing of attacks and thus allows characteristic implementation of the best 

hardware, which makes it easy to establish and describe connections between designs. In 

cryptography, the reduction of the size of the device is based on design. The concept was 

coined by Saarinen and Engels and was expressed as lightweight primitive [12]. This 

expression led to the generation of algorithm measurement being referred to as “weighting 

a primitive” [71], which, in turn, has led to the definition of algorithmic weight. The weight 

of an algorithm is defined as the quantity, considering both space and time, of resources 

required to run it. Two distinct ways can be used to measure the weight of a primitive: the 

software context and the hardware context. If both contexts are considered, software 

lightweightness and hardware lightweightness imply vastly different things [12]. The only 
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connection that demonstrates any interrelation between these two contexts is power 

consumption. 

 

Lightweight cryptography involves the implementation of types of cryptographic 

algorithms in constrained environments that include RFID tags, sensors, healthcare devices 

and contactless smart cards. The properties of lightweight cryptography as described in 

ISO/IEC 29192 are expressed according to their target platforms [70]. The hardware 

context of lightweight cryptography is measured and evaluated according to chip size 

and/or energy consumption. Conversely, the software context of lightweight cryptography 

is expressed according to smaller code and/or size of RAM. Lightweight primitives are 

better than the conventional primitives currently being used in internet security protocols 

such as IP security (IPsec) and Transport Layer Security (TLS) [70], [72]. Lightweight 

encryption (LWE) has been proven to provide an adequate level of security though it does 

have security–efficiency trade-offs, considering that lightweight encryption does not need 

much device space and, if implemented properly, will be sufficient to provide the desired 

security. 

 

The key symmetric cryptographic algorithms include block ciphers, stream ciphers and 

hash functions [35]. Many of the block ciphers that have been recently proposed with 

lightweight properties are inspired by the Advanced Encryption Standard (AES). Some of 

these block ciphers include CLEFIA and PRESENT. In advanced studies, the block ciphers 

have been confirmed as having sufficient security and implementation. Stream ciphers 

with lightweight properties include ECRYPT II, eSTREAM (which has seven algorithms), 

Grain v1, MICKEY 0.2, and Trivium. The hash functions include the NIST (SHA-3). Most 

of the hash functions are general purpose and thus do not have lightweight properties and 

are considered too underdeveloped to adopt. However, theoretical concepts indicate that 

constructing a lightweight hash function is possible because the concepts are based on 

lightweight block ciphers. 

 

There is still strong demand to create new lightweight encryption, and optimise current 

lightweight encryption methods to fit into new hardware, which is becoming increasingly 

smaller over time.  
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2.6 Neural network predicting models 

The neural network model is important for science, with rapidly increasing performance 

and fields of applications [73-76]. A neural network is a mathematical based tool that 

mimics the human brain of information processing, implementing different disciplines of 

mathematics such as algebra, linear algebra and calculus, as well as statistics and 

probability [76-80], and is thus a powerful predictive and learning tool. As neural networks 

are an important predictive tool and a tool which learns from the data entered, they are 

important for confidentiality and reliability of information [81], [82].  

 

Neural networks have been used to select cryptographic keys among other fields of 

cryptography [83], [84]. However, use is still limited in the current literature, especially in 

the field of random prediction, and measuring the strength of a binary series and testing its 

pseudo-randomness. This thesis research provides a study on neural networks and 

demonstrates their effectiveness as a measurement tool, including nonlinear complexity 

strength for these binary sequences which result from the encryption systems to be tested. 

In the future, neural networks can be circulated on most encryption systems. 

    

Pseudo-randomness tests and evaluation tools are needed for use in new methods. Thus 

this thesis introduces neural network based predicting models to be more effective 

randomness measurement tools, with a higher accuracy than the existing statistical 

methods.  

 

2.7 Cloud computing 

Cloud computing (CC) stores and processes information in the cloud to protect information 

from risks to individual computers. It is becoming increasingly popular and is used when 

connecting a device such as a computer or smartphone through an internet provider. It also 

provides better information sharing. It also provides a significant amount of protection as 

it can only be accessed by authorised persons (who are allowed and need to guarantee 

access to private information), remotely from any location, hence the security needs to be 

in place for system and data protection [85]. Mobile cloud computing, which combines 

cloud computing with mobile devices and wireless channels to provide solutions for 

mobile devices through web apps, is discussed in the following section. 
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Cloud computing has several components including software, platforms and infrastructure 

as a service (SaaS, PaaS and IaaS). SaaS is Software as a Service such as email and a 

virtual desktop with software applications the user can access. PaaS is a Platform as a 

Service, and the environments required for users such as the operating system needed for 

communication, such as a web server. IaaS is Infrastructure as a Service, where the service 

provider has infrastructure environments such as data center storage. Cloud clients include 

applications used by clients through their devices such as web browsers and mobile apps. 

Figure 2.2 shows cloud computing components and layers [86].  

 

 

Figure 2. 2 Cloud computing structure and layers 

 

Cloud services can be accessed at any time and at any place. There are many cloud 

computing providers including EC2 by Amazon [87], Azure provided by Microsoft [88] 

and Google App Engine (GAE) [89].  

 

Cloud computing can reduce costs for organisations and individuals by saving money on 

infrastructure and maintenance. In addition, cloud computing provides flexibility as clients 

use the cloud resources as needed such as storage size, memory and number of central 

processing units (CPUs), and can customise resources for new tasks. Thus, clients are not 

attached to specific hardware forever. Clients do not need to worry about support as this is 

the task of the cloud provider [90]. All these advantages made cloud computing an 
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important and increasingly popular solution for customers, as it is difficult for them to 

individually invest the huge amounts of money and effort required to gain the benefits 

provided by large cloud computing companies. 

 

Cloud computing requires strong security. To use cloud computing resources in a secure 

manner, clients need to understand the cloud security parameters for better 

implementation. Cloud providers need to understand and address clients’ needs for high 

security. Therefore, cloud computing presents great security challenges including 

authorisation and the authentication of the client [91]. 

 

Researchers [91] presented a quantitative framework for the current security challenges in 

practical cloud computing. They classified security concerns based on cloud architecture, 

and individual needs and threats that can damage the cloud components, and provided 

methodological solutions to mitigate these issues.  

 

Cloud computing is an important tool for medical data storage and management, and 

medical data is considered to require the highest security. Study [92] provide a framework 

to secure medical data, by ensuring the authorisation and authentication in IoT devices 

used in cloud computing, which supports eHealth applications by ensuring the privacy and 

security for such sensitive data. As it is important that access to medical data is only 

granted to authorised medical practitioners, another study [93] provides a timing 

searchable encryption technique for securing IoT applications.  

 

Current applications that depend heavily on security such as the blockchain can benefit 

from the improvement of lightweight encryption, as it needs a secure network that benefits 

from IoT technology including cloud computing and mobile cloud computing [94]. 

 

2.8 Mobile cloud computing: applications, security and current 

challenges  

Mobile cloud computing combines cloud computing with mobile devices and wireless 

channels to provide solutions for mobile devices through web apps [95]. It is a large and 

rapidly growing field of cloud computing, particularly with the recent increase in the use 

of mobile devices and forecast growth. The number of devices worldwide is expected to 

reach 38 billion by 2020 [96]. Improvements in communication networks such as Wi-Fi, 
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4G and the imminent 5G, as well as the continuous improvement in cloud computing and 

in IoT in general, will be reflected in improvements and increasing use of mobile cloud 

computing and its applications such as communications. Mobile cloud computing faces 

similar challenges as cloud computing such as security, and encryption, authentication and 

authorisation methods need to be improved and adapted for mobile cloud computing.  

 

Mobile cloud computing offers solutions for transferring data, information and storage. It 

is also important to offload extensive computation to the cloud, to overcome obstacles for 

small devices such as battery life, to save energy, and to overcome short bandwidth and 

wireless connectivity problems [97]. 

 

Mobile cloud computing enables mobile device users to use more applications connected 

to the cloud such as social communication apps (Facebook, twitter, etc), and positioning 

apps (Google Maps) and makes communications and business easier and faster [95], such 

as banking using smartphone apps, sharing media and using devices for e-learning and e-

commerce.  

 

It is vital to address security in both cloud computing and mobile cloud computing. 

However, most of the current security protocols require extensive operations that consume 

small devices’ limited resources. Hence, there is a strong need to establish a lightweight 

security protocol tailored to provide the security required for such small devices [98]. 

 

There are many research directions to address mobile cloud computing security, such as 

using well known encryption methods such as RSA, MD5 [99] and ECC [5]. However, 

there are new approaches to take advantage of improvements in machine learning and 

neural networks as in [100] as they provide two layers for authentication using a virtual 

machine for intrusion detection. Nevertheless, as they focus on the authentication part, 

neural networks can be used in other security applications such as a public key exchange 

[101]. Therefore, more extensive research is required on neural networks to introduce more 

security tools for mobile cloud computing. 

 

To address the gap in lightweight encryption to secure mobile cloud computing 

applications, the thesis introduces the FEATHER protocol. FEATHER has better 

encryption speed and consumes less battery power than existing security protocols. 
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2.9 RFID technology 

RFID technology uses radio wave frequency to transfer data, and is an essential part of 

IoT. RFID technology has revolutionised the way objects such as people, animals and 

goods can be tracked and identified through RFID tags [6]. RFID enables data to be 

transferred without direct contact, like contactless credit cards [6]. Ongoing improvements 

in designing smaller and more efficient RFID tags will help adapt this technology for more 

and efficient applications [102]. It is essential that RFID tags have high security [103] as 

authentication and authorisation are needed for most applications. From a lightweight 

hardware perspective, lightweight encryption is the best way to secure RFID components 

[104]. This thesis uses lightweight encryption within a security protocol, which works in a 

proposed prototype device that does not need the internet to be present. 

 

Implementing a system and security protocol for RFID technology is challenging, as it is 

a very constrained hardware environment, with low computation ability. There is a large 

demand to have this security protocol when there is no internet connectivity, which is an 

even larger gap as most security protocols are internet dependent. To address these gaps, 

the thesis introduces a lightweight security cryptosystem that consists of a lightweight 

secure protocol and lightweight prototype device to implement the protocol, named Near 

Field Secure Data Extractor (NFSDE). 

 

2.10 Summary 

Cryptography has a long history of use for encryption. There are two important types of 

cryptographic designs: asymmetric and symmetric cryptography. The effectiveness of 

modern cryptography involves the design of cryptographic algorithms based on 

assumptions of computational hardness. Linear feedback shift registers ( ) have 

been used as generators of random numbers in stream ciphers. A5/1 and A5/2 are examples 

of -based stream ciphers commonly used in GSM cell phones, whereas E0 ciphers 

are -based stream ciphers used in Bluetooth. Both the A5/1 and A5/2 have various 

disadvantages for cryptanalysis. However, in general, the linearity of  facilitates 

easy cryptanalysis that leads to attacks. One of the most common cryptographic attacks is 

the time–memory–data trade-off attack, which involves an attacker attempting to create 

conditions related to a space–time trade-off, using one or multiple parameters of data 

available in real time. 

https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
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The shrinking generator, a type of pseudo-random number generator, is used in stream 

ciphers. This system uses two : the A sequence, which generates output bits; and 

the S sequence, which controls output. Both the A and S sequences clock so that when the 

S bit is at 1, the S bit is the output, and vice versa. Random number generators can be 

applied in cryptography if the seed is kept secret. They allow both the sender and receiver 

to obtain the cipher key, by automatically generating the same set of numbers. These 

random number generators can also generate pseudo-random numbers that can be applied 

in computer programming. Finally, random number generators can be used to develop 

simulations such as Monte Carlo method simulations. 

 

As the pseudo-randomness of binary sequences generated by pseudo-random number 

generators is an essential part of any security protocol, cryptanalysis methods including 

mathematical and statistical analysis can be used to ensure the encryption methods are 

valid for implementation.  Improving and analysing existing cryptanalysis methods is a 

critical, active and ongoing research area. 

 

Pseudo-random number generators need to be tested in terms of design. One test method 

is the black-box method by taking care of binary (key/IV) input and output (keystream) 

without considering the internal cipher structure, giving generalisation, so the concern is 

the pseudo-randomness of binary sequences produced by the pseudo-random number 

generator which can be applied to any cipher, either IV-based or IV-less ciphers. Therefore 

Algebraic Normal Form (ANF) based tests and neural networks are important 

measurement and testing tools if implemented and designed correctly for testing.  

 

Improving and optimising existing successful cryptosystems still suffers from a research 

gap, particularly for newer and growing users in mobile cloud computing and for small 

devices. Using lightweight cryptosystems in field mobile cloud computing requires 

extensive and in depth research. There is a lack of research on optimised lightweight 

cryptosystems in the field of RFID technology and applications such as in eHealth, and in 

the role of these cryptosystems in the case of unreliable internet connectivity. 

 

This thesis recognises and addresses the current literature including the security challenges 

of applications such as the IoT due to the growing use and need for research in mobile 

https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
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cloud computing and RFID technology to continue to enhance this field which is 

dramatically changing communication and information transfer. 

 

In summary, it is necessary to implement and analyse different lightweight synchronous 

stream ciphers in real-life IoT applications, including RFID technology and mobile cloud 

computing, to enhance security in important and emerging fields such as eHealth, elearning 

and blockchain. Therefore, better cryptanalysis methods are required, and optimisation of 

lightweight cryptosystems requires in depth research. There is a need to combine data 

analysis, security and application with efficient lightweight protocols to overcome the 

research gaps in this area. In the following chapters, this thesis presents solutions for these 

gaps including new randomness tests in Chapter 3, proposed neural network based 

prediction models in Chapter 4, the proposed MICKEY 2.0.85 as a new optimised version 

of MICKEY 2.0 in Chapter 5, the FEATHER security protocol for mobile cloud computing 

in Chapter 6, and NFSDE for securing IoT based devices in eHealth in Chapter 7.    
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Chapter 3: Randomness tests on synchronous lightweight 

stream ciphers 

 

3.0 Chapter overview 

This chapter offers discussion about randomness tests, which were adapted and 

implemented using the shrinking generator and self-shrinking generator. Section 3.2 

provides the mathematical basis, Section 3.3 discusses synchronous stream ciphers, 

Section 3.4 discusses self-synchronous stream ciphers, Section 3.5 discusses IV-less 

stream ciphers, Section 3.6 discusses shift register, Section 3.7 discusses Unique Window 

Size, Section 3.8 discusses the  -monomial test and Section 3.9 discusses the shrinking 

generator, Section 3.10 discusses the self-shrinking generator, Section 3.11 provides 

comparison between shrinking generator and self-shrinking generator results, Section 3.12 

discusses other form of d-monomial test and results, Section 3.13 discusses the data 

distribution, and introduces the statistical modelling for predicting UWS, and Section 3.14 

concludes the chapter. 

 

3.1 Introduction 

The chapter provides an explanation of IV-less synchronous stream ciphers, with a focus 

on the shrinking generator and self-shrinking generator. This chapter presents the results 

found in finding the flaws with lightweight stream ciphers. It uses techniques that 

implement randomness with statistical tests including pseudo-randomness generators, 

primitive polynomials and Unique Window Size ( ) as a nonlinear complexity 

measurement tool. The Algebraic Normal Form ( ) based test is used for the cipher 

keystreams in order to find any biases. A multilinear regression model is used to predict 

the , with investigations for the best fit distribution for the . This chapter 

emphasises the randomness tests method as a cipher strength measurement that identifies 

how strong the encryption algorithms are. This enables the users of these cryptographic 

methods to evaluate the ciphers for themselves and avoid poor implementations.  

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
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3.2 Mathematical basis  

This section provides mathematical preliminaries required for the foundations of the tests 

used for cipher evaluation in terms of their strength. The aim is to aid the explanation of 

the chapter content and tools used for cipher evaluations. It explains binary fields which 

are the basic foundation stone of the arithmetic of cryptographic algorithms,  based 

tests, which combine the algebraic and statistical approach as explained in this chapter, as 

well as statistical properties required by a binary sequence to avoid any undesirable baises, 

and the regression statistical based model.  

 

3.2.1 Finite field  

Definition 3.1: Finite field can be defined as a set that accepts addition, subtraction, 

multiplication and division.  

 

Theorem 3.1: Assume  is a field and  mod  is defined, where  are positive integer 

numbers, and  is a prime number. F is considered finite only if the number of the elements 

is , and  is called a binary field if . The binary field is the basic element of the 

mathematical operation of encryption tools such as Linear Shift Register ( ) For 

more information about the field and its application see [105]. 

 

3.2.2 Algebraic normal form 

 is a Boolean representation for the function, as the keystream sequence needs to be 

converted to its  representation. An explanation for  is as follows: 

 

Definition 3.2: If we consider  is a map from  with  binary input bits into one output 

bit in , the  representation of  is: 

. 

The logical Boolean operations which can be performed in  are ,  and 

, but the  tests only consider the  operation. 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D%250
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https://www.codecogs.com/eqnedit.php?latex=z%250
https://www.codecogs.com/eqnedit.php?latex=q%250
https://www.codecogs.com/eqnedit.php?latex=q%5Ez%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D%250
https://www.codecogs.com/eqnedit.php?latex=q%3D2%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cmathbb%7BF%7D_2%5En%7D%250
https://www.codecogs.com/eqnedit.php?latex=n%250
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3.2.3 Truth table 

The truth table is a mathematical table used specifically in Boolean algebra which is 

suggested to calculate functional values arguments with logical expressions, each with a 

set of values according to the Boolean variables taken. In particular, the truth table can be 

used to see if the expression is given true at all input values or not and the possible values 

are true or false in Boolean algebra are 1s or 0s, hence creating a table that can determine 

if the given argument is valid. 

 

Definition 3.3: Assume we have a function  and the truth table for a binary sequence 

, where    has a binary output. 

 

3.2.4 Möbius Transform 

In this study Möbius Transform is used to convert Boolean function  from the truth table 

representation to its  representation in order to calculate the -monomial (see the 

explanation for -monomial test in Section 3.8) then to apply the -test. For the relation 

between Möbius Transform and , see [106]. If  is the characteristic function of 

coefficients of the function , then , where   is the Möbius Transform. 

 

3.2.5 Hypothesis testing 

When the behaviour or character of a large population (with size ) is the subject of study, 

scientists often use hypothesis testing on a subset of that population. This subset, known 

as a sample of the population  ( ), is chosen, and this data is taken to represent the 

whole population for the purpose of the analysis. Because the experimental results are used 

to make inferences from the sample, it is important to ensure that any findings that are 

made from the sample can be generalised to a high degree of validity for the population 

[106], [107]. For example, it could be important to determine if the sample Mean 

approximates the population Mean or two populations have a similar mean based on two 

samples from these populations. Since the hypothesis test can provide this information, it 

is an important tool in scientific research. 
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Null hypothesis H0 

In hypothesis testing, the null hypothesis suggests that the determined population and the 

tested sample are similar. If there is an observed difference, this may be due to 

experimental error (in sample selection, or extraneous variables), or due to chance. If the 

null hypothesis is confirmed, there is no advantage to modifying the testing procedure. 

 

Alternative hypothesis H1 

In the hypothesis test, the alternative hypothesis is accepted if the null hypothesis is 

rejected. Therefore,  is the value which differs from the  value. 

 

Type I error occurs when  is rejected while it is true, while Type II error occurs if  is 

accepted while it is false and the  is true. 

 

P-value in hypothesis testing 

The -value is a fundamental statistical term represented by a number that is used to 

evaluate statistical measurements. The  -value indicates the probability the null 

hypothesis is rejected if the study hypothesis is true. That is, the observed effect is due to 

the changes in the model, and not due to experimental error or chance alone.  

 

-value indications can be classified as follows [106], [107]: 

: There is a very valid indication to reject . 

: There is a valid indication to reject . 

: The evidence to reject  is very weak. 

: No indication to support  rejection. 

 

A -value of  is an acceptable level for a sample, as it shows that the study’s 

hypothesis is true against the null hypothesis. 

 

3.2.6 Chi-square test 

A chi-square test, written as ( ), is a statistical test used for random variables and the 

hypothesis method which can be applied to samples which can represent a larger 

distribution.  
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Definition 3.4 [108]: The  test of Goodness of fit is used to find if it is possible to reject 

. 

 

The formula for the  test is: 

 

 

where  is the observed value and  is the expected value. 

 

3.2.7 Balance theory 

The keystream output should be balanced to avoid any bias which may lead to an attack. 

By using a function which can give the appearance of an unbiased keystream, the Boolean 

function can be considered balanced when its output with probability is close to 50% for 

1s in the keystream. The balanced Boolean function is essential to avoid a biased keystream 

appearance [109]. The randomness test will reveal any bias in the keystream, and detect if 

the keystream was unbalanced. 

 

3.2.8 Solomon Golomb for MLS 

Maximum Length Sequence (sequence with length ) is essential in order to 

guarantee pseudo-randomness. When using the pseudo-random number generator it is 

necessary to generate such a sequence [106], [107], [110]. Golomb [111] states the 

properties required for MLS as the following: 

 

a) Balance property  

In a binary sequence the number of 0s and 1s should be approximately equal. If there is a 

sequence with maximum length  there are  number of 1s and  

number of 0s, so the number of 1s = the number of zeros + 1 as the term in the sequence 

contains only zeros does not exist. 

 

b) Run property  

If there is a sequence , we can consider the runs is a subsequence containing consecutive 

1sor 0s. Should be as Solomon Golomb rules for  which started the runs of ‘1’ or ‘0’ 

should adhere to the following properties. 
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Consider  a binary sequence: 50% of the runs with length 1, 25% of the runs with length 

2, 12.25% of the runs with length 3, etc. 

For example, 1 is run of length 1, 0 is run with length 1, 11 is run with length 2, 00 is run 

with length 2, etc. 

 

c) Correlation properties 

The binary sequence has a good correlation property as the coefficients are either 1 or 0 

only. For a statistical explanation for the binary sequence and Solomon Golomb for MLS 

correlation property, see [111]. 

 

3.2.9 Linear complexity and nonlinear complexity 

Assume we have an  with length , that generates a binary sequence. If the  is the 

smallest length, then  is the shortest  which can generate such a sequence, that is 

the linear complexity is . On the other hand, nonlinear complexity is similar with the 

difference that  is replaced by the  with the shortest length  that can 

generate a given binary sequence [112]. The linear complexity was defined for both  

and  as seen in this chapter. 

 

3.2.10 Maximum order complexity  

Maximum order complexity of a given binary sequence can be defined as the degree of the 

shortest , which generates this sequence. For more explanation about maximum 

order complexity, see [113], [114]. The Unique Window Size ( ) is a type of 

maximum order complexity pseudo-randomness test, as demonstrated in this chapter. 

 

3.3 Synchronous stream ciphers 

In synchronous stream ciphers, the internal state is updated independently from the 

ciphertext and plaintext, so that the updated state depends on the previous state and the 

initial state uses the key as a seed [16]. One advantage of synchronous stream ciphers is 

that if errors occur in a bit or in ciphertext, this will affect only one bit of plaintext after 

decryption. Another advantage of this kind of stream cipher is to give users more speed, 

which is important when work is time-consuming [115]. On the other hand, there are some 

disadvantages of synchronous stream ciphers. Attacks can happen by insertion or deletion, 
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which may reveal the plaintext [115]. Additionally, synchronisation between the sender 

and recipient should be maintained at all times as this process will accrue mostly over a 

noisy channel and this may cause loss of some bits. Users should therefore employ 

different methods of resynchronisation depending on the protocol used in every process. 

Examples of synchronous stream ciphers from the eSTREAM project [65] include Trivium 

[116] and Grain [117] ciphers among others (see Chapter 5) and the MICKEY 2.0 cipher 

(see Chapter 6). Other examples are considered. This chapter focuses on the shrinking 

generator and the self-shrinking generator. Figure 3.1 summarises the general design 

principles for this kind of stream cipher.  

 

Definition 3.5: Let  be a keystream output,  

Let  be the state at time , with  being the initial state. Then for each iteration  

we can describe the process as follows: 

                                                            (3.1) 

 is the keystream function 

                                                        (3.2) 

 

 is the ciphertext,  is the  operation and   is the message. 

                                                         (3.3)      

 is the update function. 

 

 

 

                                  Figure 3. 1 Synchronous stream ciphers general design 
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As there is no use of bits from plaintext or ciphertext, the keystream is  with the 

plaintext (message) to get the ciphertext in the encryption process, while at the decryption 

stage the ciphertext is  with a keystream according to the cipher algorithm used to 

obtain the original message. 

 

3.4 Self-synchronous stream ciphers 

In this kind of stream cipher, the internal state is updated depending on the ciphertext. The 

advantage of using self-synchronous stream ciphers is that there is no need for 

synchronisation all the time between the sender and receiver [118]. One disadvantage of 

self-synchronous stream ciphers is that if errors accrue in the ciphertext during the 

transmission phase, this will affect  bits from the plaintext after decryption. Furthermore, 

if errors accrue in the ciphertext, they can be detected, which in turn can lead to an attack. 

 

A block cipher working in cipher-feedback mode (CFB) can be considered a self-

synchronous stream cipher. Figure 3.2 summarises the general design principles for this 

type of stream cipher. To describe the operations within self-synchronous stream ciphers, 

refer to equations 3.1, 3.2 and 3.3 in Section 3.3: the change will be  in 

the initial state and  in the update state. In these conditions, the 

change will be in equations 3.1 to 3.3 [16]. 

 

 

                Figure 3. 2 Self-synchronous stream ciphers general design 
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3.5 IV-less stream ciphers 

The loading phase uses a key (which should be kept secret), using the internal cipher 

function to generate the keystream, as shown in Figure 3.3. The difference with IV-based 

stream ciphers (ciphers that use IV) is using an IV which is mixed with a key to create 

more confusion, making it harder to solve. This chapter examines the shrinking generator 

and self-shrinking generator as IV-less stream ciphers, while Chapter 5 discusses 

MICKEY family ciphers as IV-based stream ciphers. 

 

 

Figure 3. 3 IV-less stream ciphers 

 

The truly random number generator (TRNG) is used to produce truly random sequences of 

bits. This could be a physical object such as mouse movement, or tossing a coin  times, 

that if repeated will be impossible or very unlikely to produce the same sequence of bits. 

 

The pseudo-random number generator (PRNG) is an algorithm used to generate sequences 

of bits with random appearance and similar properties as the TRNG [8], [118]. There is a 

need for the pseudo-random number generator as it is easy to study and implement, 

whereas the truly random number generator requires a physical source and connection to 

hardware in order to generate a truly random bits sequence. The TRNG can also be very 

costly. One example of a pseudo-random number generator is a primitive polynomial used 

on . The pseudo-random number generator can be applied where randomness is 

needed, such as in gambling machines where randomness is needed to make it hard to find 
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correlations within the sequence bits and therefore make the machines more resistant to 

prediction of their outcomes.  

 

3.6 Linear Feedback Shift Register (LFSR) 

All bits on  can be represented as a linear function from their previous states’ bits. 

Let us consider the primitive polynomial which has the degree 5. If 

, then the  with this polynomial output sequence 

bits are as follows: 

00001110011011111010001001010110000111001101111101000100101011. Here 

(00001) is used as a seed (key). 

 

The  function is initialised with bits called a seed (also called the key) and then 

shifted according to the function which is used. An -bit loaded into the shift register will 

have  values with random appearance. We can obtain the maximal length if a 

primitive polynomial is used, discussed at the end of this section.  quickly produces 

the output as it has very few logical arguments using  gates and the bits controlling 

the input bits called taps. The positions of taps will influence the output bits so that the tap 

is positioning  operations to be performed on certain places to get the sequence of 

bits.  

  

Advantages of  include clear algebraic analysis and easy hardware implementation, 

and the ability to produce sequences with long periods. The advantages of using the 

 are similar to those of Trivium and Grain ciphers: hardware, high linear 

complexity [105], and harder to predict the sequence generated by it. It is hard to predict 

the period with , and statistical properties are hard to analyse [119]. The structure 

and properties of  are discussed in Chapter 5 with the use of the MICKEY 2.0 

cipher. 

 

3.6.1 Primitive polynomials and LFSR 

Primitive polynomials are an essential part of  as the primitive polynomial will 

produce a sequence of bits that has a maximal length . The number of binary 

primitive polynomials of degree  of ( ) is given by  where  is the 
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Euler totient function. Table 3.1 lists the number of all primitive polynomials for Boolean 

functions with degrees from 4 to 35. 

 

     Table 3. 1 Number of primitive polynomials per degree (degree 4 to 35) 

 

Degree Total Number Degree Total Number 

4 2 20 24,000 

5 6 21 84,672 

6 6 22 120,032 

7 18 23 356,960 

8 16 24 276,480 

9 48 25 1,296,000 

10 60 26 1,719,900 

11 176 27 4,202,496 

12 144 28 4,741,632 

13 630 29 18,407,808 

14 756 30 17,820,000 

15 1,800 31 69,273,666 

16 2,048 32 67,108,864 

17 7,710 33 211,016,256 

18 7,776 34 336,849,900 

19 27,594 35 929,275,200 

 

Consider a shift register with n-bit and pseudo-random moves happening between  

values (  length). These moves can occur quickly since there is minimal 

involvement of combinational logic (logical gates) and the shift register will therefore 

navigate the sequence precisely as before once the final state is achieved. In this case, the 

 (  ia the highest power in the polynomial) and 1 occurs in primitive polynomials, and 

the former can be used as shift register output, whereas the latter can be used as shift 

register input. For implementation, it is important to discover the primitive polynomial for 

-bit  that is associated with it. For example, the internet tap tables can list taps 

such as  (taps at 0, 1, 4) that correspond to  [17], [119]. The taps 0, 1 and 

4 have been used in this case since they match powers of  in primitive polynomials. 

However, there are tap tables that omit 0 and 4 because they are assumed to be naturally 

present. The recorded taps are normally connected with one primitive polynomial, however 

several polynomials exist with the same degree. This results in diverse tap tables 

demonstrating distinctive numbers. For example,  and a primitive polynomial 

. Moreover, every degree has different primitive polynomials that 

must fulfill other mathematical and numerical conditions. For instance, the most critical 
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property of these mathematical conditions is that their reciprocals form primitive 

polynomials. For example,  is termed degree 4 and its reciprocal is 

 (10011 and 11001, which are both primitive) [16]. 

 

3.6.2 General attack on LFSR based stream ciphers 

If the attacker has a good number of bits from the ciphertext and its corresponding 

plaintext, they can apply this information to find the  output and try to find a 

minimal sequence producing the same output. This may reveal the original  

function using the Berlekamp–Massey algorithm [120]. To minimise the risk of this attack, 

it is possible to use nonlinear combinations of  bits on internal states or to use more 

than one  so that one is controlling the output of the other (as in ). Another 

method is to use an Alternating Step Generator, where irregular clocking for  is 

used [119], [120]. 

 

3.7 Unique Window Size (UWS) 

The pseudo-randomness tests are based on the maximum order complexity. The goal of 

this test is to examine the sequence generated by the targeted cipher if it is complex enough, 

such that it is hard to find a certain pattern that allows it to be simulated by the possible 

shortest . The larger  is better, thus it is hard to find the  that can 

generate the same sequence. This kind of test investigates the situation when every state in 

the keystream is unique by applying a slide window. Let  be the keystream sequence. 

Now we have sliding window , as  there will be repetition, so we start with 

, then increase by 1. If the state is repeated, then . See the following 

example for illustration. 

 

Example of finding the UWS 

This is an example of how to find a unique window size. Assume we have a binary 

sequence: 

  = 1001011010… 

 

Then we are looking for a sliding window where every state is unique (no repetition), so 

we start with size 3 then 4, etc until every state is unique then that will be . We start 
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with window size  as with size  there will be always repetition as following 

(first row is the sequence ): 

 

1 0 0 1 0 1 1 0 1 0 … 

1 0 0 
 

 
0 0 1 

 

 
0 1 0 

 

 
1 0 1 duplicated  

0 1 1 
 

 
1 1 0 

 

 
1 0 1 

 

 
0 1 0 

 

With sliding window size = 3, 1 0 1 was duplicated. 

 

Now we try the next size which is 4: 

 

1 0 0 1 0 1 1 0 1 0 0… 

1 0 0 1 
 

 
0 0 1 0 

 

 
0 1 0 1 

 

 
1 0 1 1 

 

 
0 1 1 0 

 

 
1 1 0 1 

 

 
1 0 1 0 

 

 
0 1 0 0 

 

 

With sliding window size , there is no duplicate. 

The time complexity of the  test is linear which depends on the keystream size. 

The following is the algorithmic description for : 

 

 

 

 

 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=w%3D3%250
https://www.codecogs.com/eqnedit.php?latex=w%3D2%250
https://www.codecogs.com/eqnedit.php?latex=s%250
https://www.codecogs.com/eqnedit.php?latex=w%3D4%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250


52 
 

Algorithm 3.1 

STATE Given a periodic bit sequence B[i] with period P, the UWS algorithm calculates 

the UWS. 

STATE Given: B = Periodic bit sequence, P = Period of B 

STATE Calculate: L = Minimum subsequence length such that all L-bit subsequence are 

unique 

STATE Initialise L with 1 

STATE REPEAT 

FOR {each bit index,  of } 

 STATE Test 

     FOR {each bit index, , of  greater than } 

          IF { -bit subsequence of  starting at  = -bit subsequence of  starting at } 

                  STATE INCREMENT  

                  STATE CONTINUE the next REPEAT loop 

           ENDIF 

      ENDFOR    

ENDFOR     

STATE UNTIL all L-bit subsequences of B are unique  

STATE Returns L               

 

3.8 The d-monomial test 

The -monomial test is a random statistical test, in which the algebraic normal form (

) is used to represent the Boolean function used in the keystream generated by  and 

. This test was introduced by Filiol in 2002 [121] to detect the biases in the keystream 

in some chosen stream ciphers such as  and , and also in the hash function. 

Filiol observed that the  for the pseudo-random binary sequence contains a 

monomial with  weight following an approximate normal distribution as follows: 

                                         (3.4) 

 

In 2006 Saarinen [122] applied this test in some IV-chosen stream ciphers and found the 

relationship between detectable biases on keystream and gate complexity. Englund et al. 

[34] applied this test using polynomial characterisation and introduced other IV-chosen 
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stream ciphers based on -monomial tests which they named the monomial distribution 

test and maximal monomial test. 

 

3.8.1 Running d-monomial tests 

We start with a truth table representation of the Boolean functions to the  

representation by using Möbius Transform. Next, the -monomial C program calculates 

the number of monomials of weight  in the  of a Boolean function. Multiple 

functions can be analysed by providing their  in separate rows in the file, so each 

row in the input file contains the  of a single Boolean function. Then, we apply the 

 (goodness of fit) test to find if the keystream passes the -monomial test and is 

monomial. 

 

Example 

In the following example, we apply the monomial on  of four Boolean functions. 

The first row is: 

                    0101 

                    1001 

                    1011 

                    0011 

where 0101 corresponds to a Boolean function with two input 

bits:  . Note that the coefficients of each term in the 

expression correspond to the  of the function. Now, from the expression, the ANF 

of the function has one monomial of degree  as only one term of , and one 

monomial of degree  as only one term of  with two multiplied variables. 

 

As mentioned earlier for Saarinen and Filiol’s adoption for -monomial tests, see [121] 

and [122], as well as the other approach in [34]. However, the treatment of this test here is 

that each bit of the  and  keystream is considered a Boolean function which is a 

representation of all the variables obtained by different keys as the initial input of 

.  

Definition 3.6: The ( ) Boolean function as a , let  elements of the vector , then: 

                                (3.5) 

Then  is transformed as: 
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                                                                   (3.6) 

Such that  polynomials is the  representation of . 

So  is monomials ( ) permutations, that is  tests based on finding the non-zero bits in , 

in other words,  the Hamming weight (the longest monomial in ) [123]. 

 

3.9 The shrinking generator 

The shrinking generator ( ) [24] is an IV-less synchronous stream cipher. It has simple 

design features where the internal structure of the  contains two .  

works as input and  as controlling bits (see Figure 3.4). Both  must be 

primitive polynomials. The selection rule is that if the bits of   are  then the 

input bits 1 or 0 of   will be selected, and if the bits of  are  then the 

input bits of  will not appear in the  outputs. Consider the following example: 

 

For  we choose a primitive polynomial  and if the key is (001) 

then the  output will be 1010011.  

 

Let , a primitive polynomial for . If the key is (0001) then the 

 output will be 101011001000111. The  keystream will be: 11010… 

 

The following example for two  with their polynomials shows how the SG 

keystreams were generated. 

 

LFSRA  ,  

Output:       

1 0 1 0 0 1 1 

 

LFSRB    ,  

Output: 

1 0 1 0 1 1 0 0 1 0 0 0 1 1 1 

 

SG keystream output: 

(1,1) (0,0) (1,1) (0,0) (1,0) (1,1) (0,1) (0,1) (1,0) (0,1) (0,0) (0,0) (1,1) (1,1) (1,1) . . . . 
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1        -       1       -      0       1       -        -      0       -       -        -      1       1       1 . . . 

 

 

 

Figure 3. 4 Shrinking generator design 

 

3.9.1 Shrinking generator period 

To explain the  period, consider the following: 

Definition 3.7: Let  and  be the periods of  and  

respectively, where  is the degree of  and  is the degree of , then the 

period of  is . 

 

3.9.2 Linear complexity 

Definition 3.8: For the linear complexity ( ) of the  keystream, the lower bound is 

 and  is greater than the lower bound, and the upper bound is , 

and  is less than or equal to the upper bound, so  is located within tight boundaries. 

                                                                                         

3.9.3 Attacks on shrinking generator 

One interesting attack on  is the fast correlation attack by Golic [124]. This represents 

an important conjecture that the  output sequence can be a good target for correlating 

attacks with some ' initial states, without the need to go through all of them. This 

is further investigated by Zhang et al., through studying the  with some known 

connections [125]. 
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In addition, Golic et al. introduced a statistical distinguisher which reduces the time 

complexity for the computations. The idea is based on reconstructing the bits which 

clocked in  in a regular way. The resulting sequence of bits should satisfy the 

recurring low weight polynomial which is constructed from multiple , where 

 was chosen randomly [126]. 

 

Another interesting observation by Kdahl et al. [127] proposed an attack and observation 

by investigating the low weight polynomial which can generate the . They found 

that most of the bits on the  output can be represented by the linear recursion with 

more occurrence than random ones, which in turn can give an estimation of the occurrence 

of bits. Furthermore, that can give some prediction of bits distribution on the given 

generation sequence. 

 

3.9.4 UWS on shrinking generator 

By applying Unique Window Size to find the minimal length for the  keystream to 

make sure that every state is unique, the results showed that identifying the  can lead 

to finding the  pairs’ weakness. This, in generating the keystream that is pseudo-

random, can in turn help understand which  pairs should be avoided. In addition, 

the  is linked to maximum order complexity (as opposed to linear complexity), thus 

yielding experimental evidence of possible weaknesses in the  keystream against 

attacks which may use this measure. This is another possible area for further research. 

 

As discussed, the  consists of two . The C code for the  was used to generate 

the keystream, then another C code was used to calculate the  by using super 

computation. EC2 was used to run the C codes, as these computations are time consuming. 

Figure 3.5 shows the distribution for the  for  of degree 19 and Figure 3.6 shows 

.  
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Figure 3. 5 Unique window size 19 distribution for Shrinking Generator 

 

 

Figure 3. 6 Unique window size 20 distribution for Shrinking Generator 

 

The shrinking generator design takes into consideration how to build a cipher with a simple 

structure and yet still have good cryptographic properties. Since this cipher appeared, there 
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have been many attacks targeting it but no attack has successfully recovered the key when 

the  pairs were chosen carefully. However, the attacks reveal some weaknesses 

and our results also confirmed weaknesses in the keystream when multi  tests were 

applied [128]. Some statistical dependencies were also revealed by applying  tests. 

More details of these results are given in sections 3.12, 3.13 and 3.14. 

 

3.9.6 d-monomial test results for SG 

By applying statistical randomness tests on  in order to find a weakness in the 

keystream, using the -monomial test, results were obtained. The -monomial test was run 

for  degrees 16–19, in order to find the passing rate using the  test. See Table 3.2, 

and for more extensive results with variations on  initial input, see Appendix 3.1. 

 

 

Table 3. 2 d-monomial test implemented on Shrinking Generator with degrees 16–

19 

 Degree Number of 

 
Pairs 

Number of  Total Number of Fails at 

 

Passing 

Percentage 

16 50 409600 198895 51.441% 

17 50 819200 510001 37.744% 

18 50 1638400 932719 43.071% 

19 50 1114112 655568 41.158% 

 

3.10 The self-shrinking generator 

The self-shrinking generator consists of one primitive polynomial working as  and 

the selection rule is within this . If the  output pairs are (1,0) the  

output will be 0 or if the pair is (1,1) the output will be 1, otherwise the output will be 

neglected, as shown in Figure 3.7. The self-shrinking generator was designed by Meier and 

Statfelbach, as described in their initial paper [114]. 

 

For example, if the  primitive polynomial is , then the  

output will be 10010… 

The following illustration for LFSR with its polynomial shows how the SSG keystreams 

were generated. 
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,  

Output: 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 

SSG output: 

 

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 

  
1 0 0 1 

 
0 

 

 

 

 

                               Figure 3. 7 Self-shrinking generator design 

 

3.10.1 The period 

 uses one  with an output sequence  with length . Within the 

 there are two decimated sequences: one is the output  and the other one 

is the controlling sequence  which generates  keystreams with the period 

. 

 

3.10.2 Self-shrinking generator linear complexity 

The linear complexity  is , where  is the length of the keystream 

[25], so  in  is more complex than in . In this thesis, the relation between the 

 keystream and the primitive polynomial degree was found to be as follows: 

 

The relationship between degree and LC is estimated to be: 

                    (3.7) 

https://www.codecogs.com/eqnedit.php?latex=LFSR(x%5E4%2Bx%2B1)%250
https://www.codecogs.com/eqnedit.php?latex=S_%7Bt-1%7D%5Coplus%7BS_%7Bt-4%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_t%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=2%5En-1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_%7B2t%7D%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_%7B2t%2B1%7D%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=2%5E%7Bn-1%7D%250
http://www.texrendr.com/?eqn=LC%250
http://www.texrendr.com/?eqn=LC%3C2%5E%7B%5C%5Cleft%20%5C%5Clfloor%20N%2F2%20%5C%5Cright%20%5C%5Crfloor-1%7D%250
https://www.codecogs.com/eqnedit.php?latex=N%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=ln(LC%2B1)%3D-0.33%2B0.33*degree%250


60 
 

 

This can be rewritten as: 

                                        (3.8)   

 

See Appendix 3.2 for the complete explanation with scatterplots. 

 

SSG linear complexity profile results and observation 

To perform the  profile test is vary from of the , by considering the keystream as a 

binary sequence, and subsequences  which will be calculated by their , that 

is the  profile. In this case   = first bit,  = first 2 bits,  = first 3 bits,....,  = the 

whole  bits. Appendix 3.2 has a computation for  keystream string from primitive 

polynomial; from degree 4 to 8. 

And the relation between  profile and the degree can be represented as: 

                                                     (3.9) 

This can be rewritten as: 

                                                                         (3.10) 

 

3.10.3 Attacks 

Several types of attacks have already been performed on . One of these attacks relies 

on some known bits of the keystream and involves trying to establish an algorithm which 

simulates a sequence that can produce the same bits. By producing this sequence, an 

attacker can establish the key. This attack is presented in the work of Zenner et al. [129], 

who state that the algorithm takes about  steps and the key length is . Another 

kind of attack is proposed by Debraize et al. [130]. Their attack is performed with a 

feedback polynomial which has a Hamming weight of at most 5, and they perform some 

guesses on the internal bits of  and use the SAT solver to solve the system. 

 

Zhang et al. [129], in their guess and determine attack, aim to simulate the initial state and 

reduce the time complexity to  where  is the keystream length. Their attack 

requires reasonable keystream length. 
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Some statistical dependencies on  are summarised. Computations were run for all 

primitive polynomials to find the unique window size up to degree 25, and non-exhaustive 

computation from degree 26 up to degree 35 as can be seen in [128]. 

 

In addition,  seeds were changed. First, the d-monomial test was applied, 

performing the test for  and applying it to all possible combinations of  

and all initial states from degree 7, applying three different scenarios in order to vary their 

initial states. Varying percentages keystream bits  of failing the -monomial test from 

 to  were failed with significance level . When 50  pairs from 

degrees 16 to 19 were chosen, the same kind of failure rates continued at the significance 

level . 

 

3.10.4 Statistical tests on SSG 

This section presents results obtained on the shrinking generator ( ) and the self-

shrinking generator ( ). The computations for the monomial based test and  

were done mostly with fast computing power using the Victorian Partnership for Advanced 

Computing as well as using  from Amazon Web Service ( ) for more extensive 

computations. 

 

3.10.5 UWS test on SSG 

As  is based on maximal order complexity [113], [114], this thesis tries to find within 

the binary sequence (keystream) if every state of bits is unique, by using the sliding 

windows. The statistical randomness tests expose the flaws in the keystream which in turn 

show the poor choice of polynomials that generate such a keystream. Thus caution in the 

choice of the (polynomials) is critical. 

 

The findings show that based on the unique window size of the  outputs and the 

imbalance property, the choice of  primitive polynomials on the SSG should avoid 

certain polynomials, regardless of the degree of the polynomial. This is because certain 

 patterns derived from such polynomials produce biased  outputs. For example, 

out of 48 primitive polynomials of degree 9, three should be avoided. These extreme 

polynomials of degree 9 include: 
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                         1)  

                         2)  

                         3)  

  

The above examples of degree 9 polynomials were not suitable for , and certain 

primitive polynomials of all degrees may also produce extreme results to be avoided 

because they affect the randomness appearance of the  output.  

  

Regarding primitive polynomials of degree 9, each  of degree 9 generates an output 

length of 256. Because there are 48 primitive polynomials of degree 9, the total  

windows will generate 48 x 256 windows. If the degree of the polynomial in the potential 

computation is increased, repeated output segments will grow exponentially.  

 

It is worth investigating the primitive polynomials for  with certain weights as shown 

in Figures 3.10 and 3.11, which was done for all weight counts as seen for  in 

Table 3.3 and with only weight 5 in Table 3.4, because the certain weight is easier to 

analyse, with less computation effort. 
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Table 3. 3 Unique Window Size 21 for Self-Shrinking Generator counts and 

probability, with all weights 

UWS21 UWS21 Count P(UWS21) 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

56 

58 

62 

63 

85 

32 

1522 

9835 

19746 

20229 

14697 

8729 

4790 

2538 

1237 

639 

355 

160 

75 

32 

28 

13 

6 

2 

3 

1 

1 

1 

1 

0.000377929 

0.017975246 

0.116154101 

0.233205782 

0.238910147 

0.17357568 

0.103091931 

0.05657124 

0.02997449 

0.014609316 

0.007546769 

0.004192649 

0.001889645 

0.000885771 

0.000377929 

0.000330688 

0.000153534 

0.000070862 

0.000023621 

0.000035431 

0.00001181 

0.00001181 

0.00001181 

0.00001181 

 

 

Table 3. 4 Unique Window Size 21 for Self-Shrinking Generator counts and 

probability, with weight = 5 

UWS UWS Count P(UWS) 

36 

37 

38 

39 

40 

41 

42 

43 

46 

2 

21 

38 

36 

32 

13 

16 

5 

1 

0.012195122 

0.12804878 

0.231707317 

0.219512195 

0.195121951 

0.079268293 

0.097560976 

0.030487805 

0.006097561 

 

The same implementation as  is done for the . The histogram in Figure 3.8 shows 

the  for the  key streams, the  range from length 39 up to 106, and 

 length concentrates between 42 to 45, so the number of all possible simulations is 

356,960. In Figure 3.9, the plot for  degrees is from 4 to 24 and the number of 
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primitive polynomials is 901,934. In addition,  is plotted by choosing the  

with weight = 5 and see how they fit against  with all weights including 5 in Figure 

3.10 and Figure 3.11. The variation is small. Therefore, other kinds of tests on  other 

than  must be considered, thus the need to apply the -monomial based tests. 

Appendix 3.3 provides some statistical analysis for  with . 

 

 

Figure 3. 8 Unique window size 23 distribution for Self-Shrinking Generator 

 

 

Figure 3. 9 Self-Shrinking Generator degrees from 4 to 24 vs Unique Window Size 
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Figure 3. 10 Unique Window Size 19 for Self-Shrinking Generator with weight 5 

and all weights 

 

 

 

 

Figure 3. 11 Unique Window Size 19 for Self-Shrinking Generator with weight 5 

and all weights, with smooth line 
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Appendix 3.4 provides more results for  and , counting all weights, as well 

as a histogram showing the calculations for primitive polynomials of degree 14, for weight 

versus . 

 

Let us take an example for degree 12. Out of 144 polynomials, there are about 10 out of 

2048 weak keys (initial seeds). Overall, 680 out of 144 x 2048 keys are weak, resulting in 

a bias keystream which can be identified. It is very computationally difficult to find weak 

polynomial and key combinations for much higher degrees as higher degrees generally 

produce better random appearance keystream [128]. 

 

For degrees 2 to 24 for  as one set, Table 3.5 summarises how many of each  

were repeated.  

 

 

Table 3. 5 Total count of each Unique Window Size occurrence for degrees 4 to 24 

for Self-Shrinking Generator 

UWS Count UWS Count UWS Count UWS Count UWS Count 

4 2 14 15 24 312 34 8856 44 117 

5 1 15 14 25 453 35 10376 45 56 

6 3 16 24 26 617 36 10889 46 22 

7 1 17 55 27 785 37 8789 47 10 

8 3 18 60 28 995 38 5854 48 7 

9 8 19 75 29 1577 39 3303 49 6 

10 6 20 71 30 2472 40 1818 50 3 

11 7 21 110 31 3064 41 1004 55 1 

12 6 22 220 32 3730 42 492 58 1 

13 15 23 259 33 5940 43 286 
 

 

 

3.10.6 The d-monomial test on SSG 

Table 3.6 shows, for degree 6 and degree 7, the number of bad, weak and failing 

polynomials with different initial seeds (keys). Table 3.7 shows other computations for all 

possible variations of keys, as for degrees 6, 7, 12 and 14. 
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Table 3. 6 Finding weak polynomials with degrees 6 and 7 with different initial seed 

(key)[128] 

Degree 

 

No. of bad 

 

No. of 

Failing  
   

6 2 1 0 0 1 

6 2 1 0 1 0 

6 1 2 0 2 0 

6 Total number of weak polynomials is 5 out of 6 

7 2 1 0 0 1 

7 1 1 1 1 0 

7 2 2 1 0 1 

7 5 1 1 0 0 

7 1 3 1 0 2 

7 Total number of weak polynomials is 11 out of 18 

 

 

Table 3. 7 Finding weak polynomials with degree 6, 7, 12 and 14 with all initial seed 

(key) 

Degree 

  

No. of  Number of 

 

Number of 

Passing  

Percentage of 

Passing  

6 6 216 186 86.10% 

7 18 1152 1136 98.60% 

12 144 294912 294236 99.80% 

14 756 6193152 6186899 99.90% 

 

 

3.11 Comparison between Shrinking Generator and Self-Shrinking 

Generator results 

Table 3.8 shows that for degree 7 for  and  the passing rate for  is 

approximately 98.6% and for  it is about 67.3%, which shows that  is weaker than 

. 
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Table 3. 8 d-monomial with degrees 7 to 15 with full keystream string for Shrinking 

Generator and Self-Shrinking Generator results for comparison 

 

Degree 

Number 

of 

 

Pairs 

Number 

of  

Number of 

Fails at 

 

Total 

Number of 

Passes 

Passing 

Percentage 

 

Passing 

Percentage 

7 24 768 251 505 67.310% 98.6% 

8  72 4608 1561 2255 66.124% 
 

9 72 9216 3121 4329 66.135% 
 

10 216 55296 27847 27359 49.640% 
 

11 624 319488 55203 198895 82.721% 
 

12 648 663552 339627 206071 48.817% 99.8% 

13 2520 5160960 2831437 2083684 45.137% 
 

14 3840 15728640 7938000 6542587 49.531% 99.9% 

15 3840 31457280 18213724 13183968 42.100% 
 

 

3.12 Other d-monomial based tests and results 

This section provides some ANF based tests which show some variations of the d-

monomial test. The monomial distribution calculates the frequency of each monomial with 

a certain weight over a list of Boolean functions. 

 

The -monomial test is looking for a monomial of certain degree ( ) per polynomial. In 

contrast, the monomial distribution test is looking for all monomials with degree  across 

all functions in  [34], [121]. 

 

The maximal distribution test finds the maximal degree monomial per polynomial in 

. Table 3.9 shows results for degrees 7, 8 and 9, with the number of observed maximal 

monomials vs the number of functions (polynomials). This test is simple and indicates if 

the key produces a proper mixing of monomials, which in turn can illustrate the strength 

of a given  pair. 
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Table 3. 9 Shrinking Generator exhaustive testing results for maximal monomial 

test for combined LFSR lengths 7 to 9 

  

Observed with 

Fixed  

Observed with 

Fixed  

Number of 

functions 

  

0 12 32 

  

0 14 32 

  

0 14 32 

  

0 16 32 

  

0 66 128 

  

0 66 128 

  

0 70 128 

  

0 80 128 

 

 

3.13 Data distribution 

Usually the sequences of data that are generated using  or  would be a discrete 

array of data. Most of the data columns or variables follow a pattern, such as one of the 

probability distributions: normal, log-normal, gamma, beta, Poisson, binomial, negative 

binomial or hyper-geometric. Figure 3.12 compares some types of distributions. It is useful 

to eliminate the type of distributions that do not apear to be good candidates, and reduce 

them to the best few candidates. One of the most important population data distributions 

is the normal or Gaussian distribution. If data follows this distribution, or could be 

transformed to follow a normal distribution, then parametric statistical methods can be 

used to further analyse the data as most of the parametric methods are based on the 

assumption of normality of data [34], [107], [121]. One of the advantages of parametric 

methods is that they are very strong and powerful compared to the non-parametric 

methods. 

 

The normal distribution provides a frequency distribution along a bell shaped curve. This 

distribution has two parameters: mean and standard deviation. The importance of the 

normal distribution is to study and analyse various statistical phenomena, and in particular 

to find the probability of a specific event and its occurrence. 
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3.13.1 Statistical modelling: Predicting UWS 

To predict or model any variable, the inherent probability distribution of that variable must 

be known. A goodness of fit test is conducted on several or most of the probability 

distributions that could relate to this kind of data, based on the plot or best guess. Easyfit 

software [131] runs goodness-of-fit tests on most of the statistical probability distributions 

and ranks the most suitable distributions in preferential order. Easyfit and the “fitdistrplus” 

package in R software [131], [132] were used to manually check the preference criteria 

using graphs and goodness-of-fit test results on the most expected probability distributions. 

 

One of the data sequence variables, the Unique Window Size of degree 20 (UWS20), was 

used to test the process of prediction modelling or forecasting. UWS20 was plotted and 

found it to be skewed (Figure 3.12). Using the “descdist” command in R, a graph was 

produced for data fit and the distribution of UWS20 approximately follows any one of the 

log-normal, normal, gamma or Weibull distributions (Figure 3.13) which was also 

supported by the Easyfit software. R was then used to approximate the probability 

distribution by using goodness-of-fit tests and graphs (Figure 3.14). By comparing the 

cumulative density functions of these distributions, it can be seen that the lognormal 

distribution has better fit than other kinds of distributions. 

 

 

Figure 3. 12 Unique Window Size 20 different kinds of distributions for Shrinking 

Generator 
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Figure 3. 13 Comparison of cumulative density functions of observed and 

theoretical distributions, Unique Window Size 

 

 

Figure 3. 14 Unique Window Size 20 lognormal distribution for Shrinking 

Generator 
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Figure 3.14 and the Easyfit software distributional preference showed that the distribution 

of UWS20 approximately follows a lognormal distribution. More detailed statistical 

observation showed the lognormal was the best probability distribution based on goodness 

of fit (see the table in Appendix 3.5, as well as plots and figures for comparison of different 

statistical distributions). 

 

Definition 3.9: The distribution function of the lognormal distribution is: 

                              (3.11) 

 

Where  is the mean, and  is the standard deviation(sd),  is the variable  and  its 

variance. 

 

Using the Bartel rank test, Cox Stuart test, rank test and runs test showed that the sequence 

of data ( ) is actually a non-random sequence (p-value <0.001) as shown in Table 

3.10. 

Table 3. 10 Three randomness tests for Shrinking Generator with Unique Window 

Size 20 

Test Statistic P value Decision  

(alternative hypothesis) 

Bartels Ratio test -83.926 < 2.2e-16 non random 

Cox Stuart test 8957 < 2.2e-16 non random 

Runs test -66.186 < 2.2e-16 non random 

 

This indicates that this sequence of data can be predicted using statistical models. 

Two methods were used to learn about the pattern and predict the sequence: (1) generating 

a theoretical lognormal sequence (simulated UWS20) from the mean and standard 

deviation of the observed data (e.g., UWS20) of the same length and comparing the 

accuracy of prediction, and (2) using a linear regression method to predict and check the 

accuracy of the predicted sequence including validation and calibration. 
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Method 1 

Definition 3.10: The lognormal variate (X), and  the standard normal variable is defined 

as: 

 

                                        (3.12) 

 

which follows the probability density function:  

 

 

Using R software, the mean ( ) and standard deviation ( ) of the observed  were 

3.70 and 0.09 respectively. Then,  commands in R software were used to generate 

equal numbers of observations (70,416) from the lognormal distribution using the above 

mentioned mean and standard deviation in Figure 3.14. The difference between observed 

 and simulated  was calculated and the accuracy compared, with the 

difference between the observed and simulated predicted  being 0. The accuracy 

was 7.8%. It would be higher if the accuracy is allowed to be flexible e.g., within 1 or 2 

units of the observed . This was expected, as  was found to be non-

random and hence a random sequence could not entirely predict the sequence.  

 

Method 2 

The linear regression model was used where the outcome was “observed ” and 

explanatory variables were input degree, input weight, control degree, control weight, 

input polynomials and control polynomials. Each of the input and control polynomial 

variables had up to 17 degrees of polynomials and hence produced 17 separate variables 

based on the possible terms in a primitive polynomial of degree 17. For  with degree 

20, the highest  degree is 17 and the lowest is 3 for primitive polynomials 

combination.  

 

The first step in method 2 was to extract 34 variables from the input and control 

polynomials and add them with four other independent variables (input degree, input 

weight, control degree and control weight) to form a pool of independent variables. The 

input and control polynomial variables extracted from mathematical formulas (which were 

initially used to generate ) are binary variables and are recorded in binary form, 

either in “Yes” or “No” depending on whether that degree of polynomial was present in 
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that equation or not. It is not unusual to include a mix of continuous, discrete and binary 

variables among the independent or predictor variables as long as the outcome or 

dependent variable is numerical (continuous or assumed as such) [107]. In the following 

step, a simple linear regression model was run on each of these 38 variables to find 

univariate significance, in order to find suitable candidates for the multivariable linear 

regression model. It appears that, out of all the variables, input degree is the strongest 

predictor, as it has the highest R square value and accuracy rate. Interestingly, it is highly 

correlated with control degree and, as such, the two cannot be included in the same model. 

This means that control degree and input degree as variables are correlated, or input degree 

= (control degree), so only one of them is necessary. 

 

To run a multivariable model with all the suitable predictors altogether, multicollinearity, 

the correlation between the predictors or independent variables, was checked. One of the 

assumptions of linear regression is that the independent variables are not correlated. 

Although most of the variables were highly correlated, three of them were so highly 

correlated (almost perfectly correlated with one or more of the independent variables) that 

they could not be included in the same model due to multicollinearity. Hence, these three 

variables were discarded: control degree, input14 and input17. Then the rest of the variables 

were put in a backward elimination stepwise regression where all the variables are included 

in the multivariable linear regression model and then variables that have p-values higher 

than 0.05 are discarded. From the stepwise regression 11 variables were discarded (input2, 

input3, input4, input5, input6, input7, input8, input9, input10, input15, input16) and the rest of 

the 24 variables were kept in the multivariable model for predicting  as they were 

all significant. After putting all of the chosen variables in the final model, the prediction 

model is: 

 

= 
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The R square of the above model is 0.2605 which is the prediction performance of the 

linear regression model. It indicates that 26% of the variation in the predicted UWS20 can 

be explained by the multivariable linear regression model. The prediction accuracy was 

11.66% and it increased to 37.04%, 61.78% and 78.54% with 1 unit, 2 units and 3 units of 

deviation from the observed UWS20 respectively. For example, if UWS=40 then within 1 

unit prediction, , and 2 unit  .. etc. Appendix 3.6 

shows the most effective variables on the prediction based on  value. 

 

3.13.2 Sensitivity analysis 

To run sensitivity analysis, three datasets were randomly produced containing almost 50%, 

25% and 10% of the original dataset. 

 

Running the model with 50% of the data 

After running the model with 50% of the data ( ), the following model and 

prediction performance of adjusted R square = 0.2587. The prediction accuracy was 

11.85% and it increased to 37.25%, 62.12% and 78.62% with 1 unit, 2 units and 3 units of 

deviation from the observed UWS20 respectively.  

 

Running the model with 25% of the data 

After running the model with 25% of the data, the following model and prediction 

performance of adjusted R square = 0.2560. The prediction accuracy was 11.33% and it 

increased to 47.23%, 60.74% and 77.15% with 1 unit, 2 units and 3 units of deviation from 

the observed UWS20 respectively. 

 

Running the model with 10% of the data 

After running the model with 10% of the data, the following model and prediction 

performance of adjusted R square = 0.2643. The prediction accuracy was 11.22% and it 

increased to 36.81%, 62.12% and 79.03% with 1 unit, 2 units and 3 units of deviation from 

the observed UWS20 respectively.  

 

The sensitivity tests show that even a dataset reduced to 10% produces similar prediction 

capability or accuracy as the full dataset. The model does not lose its prediction 

performance due to loss of data, but the dataset still needs to be considerably large, more 

than 1% of data, for a better performing model. 

https://www.codecogs.com/eqnedit.php?latex=39%5Cleq%20UWS%20%5Cleq%2041%250
https://www.codecogs.com/eqnedit.php?latex=38%5Cleq%20UWS%20%5Cleq%2042%250
http://www.texrendr.com/?eqn=R%5E2%250
https://www.codecogs.com/eqnedit.php?latex=n%20%3D%2033800%250
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As another sensitivity analysis, ,  and  were modelled, with 

similar prediction performance (adjusted R square) and accuracy. 

 

Lastly,  was modelled using around 50% of the data and the  was 

approximately 26.6% which means modelling can be done with less data and still achieve 

similar accuracy, which will reduce the computation complexity. 

 

3.14 Conclusion 

This chapter introduces the importance of randomness and the potential to use the pseudo-

random number generator as a powerful tool to obtain a sequence of bits that look random 

with good application for cryptographic usage. In addition, it discussed using  as a 

tool for a pseudo-random number generator and how the choice of primitive polynomial is 

important to gain a good security level. 

 

It discussed the shrinking generator and the self-shrinking generator as IV-less based 

synchronous stream ciphers and explained how they also implement , including a 

description of how they are designed and how they work. 

 

Finally, it provided statistical test results for  and  and discussed the weaknesses 

of both  and . These tests are valid to implement in similar ciphers, which can 

help improve the tests and also enhance the ciphers’ strength by finding their flaws to 

overcome them at the design stage. In addition, the prediction for  was modelled 

using a multivariate linear regression model and will use a superior prediction method with 

a higher prediction rate by implementing the neural network models in Chapter 4. 

 

The following chapter presents a new prediction and randomness method based on the 

proposed neural network models which had high accuracy for predicting the  for the 

binary sequences which represent the keystream for  and . 

 

 

 

 

https://www.codecogs.com/eqnedit.php?latex=UWS19%250
https://www.codecogs.com/eqnedit.php?latex=UWS18%250
http://www.texrendr.com/?eqn=UWS17%250
http://www.texrendr.com/?eqn=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=R-square%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
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Chapter 4: Proposed neural network-based prediction models 

 

4.0 Chapter overview 

This chapter provides discussion about proposed neural network prediction models as a 

new tool for randomness tests, which were implemented using the shrinking generator and 

self-shrinking generator. Section 4.1 gives a general introduction, with transition from 

Chapter 3. Section 4.2 provides a brief introductory background on neural networks, and 

section 4.3 discusses the related work on neural networks and security. Furthermore, 

section 4.4 details neural network importance for the unique window size with neural 

networks. Section 4.5 details the neural network prediction model implementation, while 

section 4.6 provides mathematical background. Additionally, section 4.7 provides Python 

usage for building prediction models, section 4.8 offers results analysis, and section 4.9 

concludes the chapter. 

 

4.1 Introduction 

Neural networks are widely used in various fields and have applications in cryptography. 

However, there is a lack of research regarding measuring randomness for a given binary 

sequence. Because the binary sequence is the building block of any secure cryptosystem, 

as mentioned in Chapter 3, the keystream generated by the shrinking generator (SG) and 

self-shrinking generator (SSG) ciphers was used to calculate the unique window size 

(UWS). UWS is important for ensuring the cipher has high nonlinear complexity by using, 

for example, the Berlekamp–Massey algorithm [133], which works by finding the shortest 

feedback shift register (FSR) that can generate the same sequence. Chapter 3 also discussed 

how UWS is important for ensuring the cipher has high nonlinear complexity, which works 

by finding the shortest FSR that can generate the same sequence, such as with the 

Berlekamp–Massey algorithm, which is important for preventing simulations.  

 

The neural network model proved its importance in measuring the effectiveness of the 

cryptosystems used in this study, especially in the field of information protection and 

confidentiality, where it was used as a predictive tool. It has also demonstrated its 

superiority as a randomised test when compared to the tests presented in Chapter 3. 
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Although the multilinear regression model was introduced earlier in Chapter 3, it is worth 

noting  the importance of the knowledge it provides of the significance of independent 

variables on the prediction, illustrating the weaknesses in the selection of the primitive 

polynomials pair for the SG. However, its effectiveness with the prediction increases by 

adding ±1 to the output prediction data and is even better with ±2. Hence, there is the need 

to test the possibility of more accurately predicting the UWS by applying the neural 

network model. Therefore, this chapter focuses on the following main questions: 

1. How can neural networks be applied as a prediction method for the nonlinear 

complexity of a binary pseudo-random sequence? 

2. How can randomness tests be applied to find weaknesses in a given stream cipher? 

3. How can this study contribute to real-world applications in terms of security? 

4. How can this study inspire further new directions in research? 

The neural network model is enforced to predict nonlinearity and pseudo-randomness 

levels for given binary sequences. Being able to predict the maximum order complexity is 

important for identifying if the sequence has a random appearance [114]. 

Using the calculation of UWS as the maximum order complexity tool, which was explained 

in Chapter 3, can establish the measurement of pseudo-randomness for a given binary 

sequence due to the following: 

 

1. Use the UWS as a maximum order complexity measurement tool for the binary 

sequences generated as keystreams by the SG and SSG. 

2. Implement the neural network models to predict the UWS in order to evaluate the 

keystream (binary sequences) strength, hence, providing a solid indication of the 

strength of the ciphers generated by the SG and SSG as keystream(s). In addition, 

this method could be generalised for other ciphers’ keystreams, as well as applied 

to their internal components, such as linear feedback shift registers (LFSRs) and 

nonlinear feedback shift registers (NFSRs), which can also produce a binary 

sequence, and then calculate the UWS and implement the neural network model 

for prediction. This may inspire other uses of neural network models in 

cryptography and in security in general, such as communications security. This 

would help cipher designers evaluate a cipher’s efficiency in producing a highly 

pseudo-random keystream as well as provide users with the option of an optimal 

encryption method [134]. This, in turn, enhances the evaluation methods for a given 

binary sequence in general. The results are very promising, as they have both high 

levels of accuracy and a very small error margin. 
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4.2 Background 

The neural network model, in principle, simulates how the human brain works by learning 

from collected information and data to deal with future incoming data. The neural network 

model uses an algorithm to learn from input data in order to predict expected outputs in 

the future [135]. The many applications of neural network models and varieties include 

those used for climate forecasting [136]; stock market price prediction [137]; health care, 

for forecasting diseases such as cancer [138]; image recognition [139]; pattern recognition 

[140]; and for production in the music industry [141]. 

 

There are two main approaches for training an artificial neural network: supervised training 

and unsupervised training. Through unsupervised training the network adapts its 

parameters in order to form a structure representing the training data. On the other hand, 

in supervised training, as in [135] the protection of information shown by the example of 

selecting secret keys, the algorithm used in the neural network model is applied by entering 

the given information, obtaining the output, and comparing the input and output data with 

the expected data. The model is then developed to reach the nearest result so that the 

prediction is highly accurate, with possible errors minimised, and the process continues 

until the model is adapted [135]. 

 

The ability of the neural network to learn by processing incoming data and producing 

predicted outcomes makes it attractive for applications in cryptography [142]. Because any 

cryptosystem has different mixes of components such as the generation of secure 

keystreams, protection of keys, and ensuring the security of communications, neural 

networks can be considered for implementation on different levels of a given cryptosystem, 

taking into consideration the particular cryptosystem’s design and special properties. 

Recently, the importance of finding and calculating a UWS to measure the nonlinearity of 

the keystream, as explained in Chapter 3, has become apparent. Through this, the extent of 

the pseudo-randomness of binary sequences produced by the ciphers to be studied is 

known, which in this case are SG and SSG. In addition, the predictability of UWS, as 

mentioned in Chapter 3 and this chapter, allowed applying the neural network model as a 

predictor of UWS, and good results with a high accuracy ratio were obtained, as shown in 

Section 4.8. 
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This contributes to the study of binary sequences, which are essential for use in ciphers 

and, in turn, that extends to security in general and also contributes to research being 

conducted in these areas. Neural networks have great potential for predicting attacks on 

encryption systems or devices. It is necessary to know the importance and quality of the 

given data and then how to design neural network models that are able to learn and predict. 

Other uses of neural networks beyond establishing and sharing keys include designing 

symmetric ciphers [143]. 

 

4.3 Related work on neural network and security 

In terms of public cryptography methods, available keys are typically created using the 

Diffie–Hellman algorithm, developed in 1976 [144]. These keys can be used to create 

discrete algorithms through unsafe connection channels in public networks, but this makes 

it difficult for devices with limited capabilities to deal with them, especially with the choice 

of many keys. This led to the study of the circulation of these keys through general 

communication channels when using an interactive neural network model [145]. In 

addition, there is investigation into the implementation of an interactive neural network to 

produce secret keys on public channels by implementing the DES algorithm [146]. 

 

When implementing a neural network for public cryptography, two multi-layer neural 

networks can be used, where one model provides the defined data, and the other one learns 

from that data in order to establish a general classification pattern. The idea is to then make 

the two models interact. Although communication can be recorded by an attacker, because 

the encryption key was generated over public networks, it cannot be calculated [147]. The 

advantage is that this makes communication faster than other asymmetric encryption 

methods, but that does not guarantee there will not be a feasible algorithm facilitating an 

attack. 

 

One of the important applications in the field of cryptography using the neural network 

model is the implementation of a random algorithm with a time variable for the production 

of a binary sequence used to cover plaintext, which has the aim of protecting the 

transmission of information through an unprotected network [148]. In a similar study, the 

aim was to use a neural network model to design a symmetric cryptosystem using a neural 

network model that has a matrix permutation process and classifying the data based on 

their randomness properties, ultimately producing a new coding technique. This has been 
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tested and found to be an effective system by using the permutation process through the 

matrix as a secret key [149]. 

 

With neural network protection systems, machine learning helped by engineering 

(designing specific hardware to facilitate the algorithm learning) may produce 

cryptographic systems that provide higher data flows, while ensuring protection by 

communicating with the cloud server. This is particularly critical for protecting sensitive 

economic or medical data, as examples of cloud server needs [150]. 

 

It is possible to design an asynchronous network model that works on two devices, where 

the first random weight can be used as the secret encryption key. The weight is updated 

only if the values of the output devices are identical. The results of a study examining this 

idea showed its effectiveness when using a large common key size [151], where 

researchers implemented a recurrent neural network, and the cipher worked in two stages, 

where the first stage was extending the key, and the second stage was the encryption 

process. 

 

In searching for a study to facilitate the template for the web model, a classification 

algorithm was adopted to provide a larger framework for learning data and obtain a 

generalised model through testing datasets. This, in turn, is reflected through a learning 

phase with access to accurate classification, avoiding overfeeding of the classification. 

This has been applied to online combat phishing, and better results were obtained than with 

other methods, such as average harmonicity [152], providing more proof of the superior 

effectiveness of using neural network models for assessment and testing. 

 

Implementing neural network models for prediction of the UWS means it is another 

measurement tool for binary sequence randomness testing and will, therefore, evaluate the 

level of cryptosystem using these binary sequences. In order to guarantee a good binary 

sequence is generated by a pseudo-random number generator, in this case SG and SSG, it 

must be hard to distinguish the sequence from a truly random sequence and hard to predict, 

while using limited computational resources. Therefore, the neural network was used to 

predict the pseudo-randomness of the sequence and ensure it will be indistinguishable from 

a truly random sequence [16]. Conversely, a cipher using a pseudo-random number 

generator to generate a pseudo-random binary sequence, requires that the sequence be 
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evaluated to make sure the cipher is secure, using a truly random number generator, which 

requires physical resources, making it an impractical and costly method [153]. 

 

Predicting the pseudo-randomness of binary sequences and finding approximations of its 

complexity are important for determining if an FSR can produce the sequence or its 

subsequences [114]. The lower predictability of the UWS increases the complexity of these 

binary sequences as well as their pseudo-randomness, and thus it will be more resistant to 

attacks. It will also require a substantially more complex attack because the UWS requires 

that the sequence be nonlinear to ensure its effectiveness [154]. Also, a stronger UWS for 

the binary sequence is essential for ciphers that use NFSRs, which have become more 

common, so deep research into these kinds of encryption systems has become more 

attractive to developers [155]. Also important is the nonlinear complexity profiles, which 

can be determined by looking at the complexity of the subsequences of a given binary 

sequence.  

 

Given the NN model’s efficiency in generating results with high rates of accuracy [156], 

it will be important to further investigate the performance of the neural network model. 

Examining neural network models to establish a high correlation measurement tool for the 

automatic sequence is also worth investigating [157]. In addition, the predictions from the 

UWS can be added to the most recently introduced methods to gain more insight into the 

pseudo-random behaviour of binary sequences [158]. 

 

4.4 The importance of the neural networks for the UWS 

As already noted, UWS is a tool for measuring the strength and randomness of a given 

sequence to learn how to use the SG as a source for the binary sequence that is used to 

calculate the UWS. However, other ciphers can also be used as a source for the UWS. 

The possible choice for the two LFSRs of the SG and the one LFSR for the SSG is 

important; hence, neural network models are useful predicting tools for learning how the 

UWS is predictable, meaning that the choice of an LFSR can be avoided. Because the 

UWS is predictable, it can easily be simulated, which leaves it vulnerable to certain kinds 

of attacks, such as correlation attacks [124] and divide and conquer attacks [159]. 

 

The pseudo-random binary sequences are also important because, in this case, this 

sequence is the keystream, and this sequence is calculated by finding the UWS. Using the 
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neural network models for UWS prediction shows how neural networks are a strong 

cryptanalysis tool. This could be considered a black-box analysis approach. Typically, the 

keystream generated from the cipher’s LFSRs is needed. However, this could be handled 

by simulating the LFSR output and then applying the neural network model for predictions 

in order to determine generalisations about the cipher’s internal components that could 

lead to similar kinds of attacks as discussed above. 

 

4.5 Implementation 

This section introduces the proposed neural network models that were implemented for the 

UWS for the different degrees that resulted from the SG and SSG keystream. 

 

4.5.1 Model specifications 

Assume there is a neural network model with four independent variables (input) and one 

dependent variable (output). A sequential model is implemented with four layers used only 

for data input, and no computations will be performed in these layers. There are also four 

hidden layers using a rectified linear unit (ReLU) [159], [160] activation function. A 

sequential function is used to give the model the ability to learn layer-by-layer. For the first 

layer, it needs to know the shape of the data, and the other layers will recognise it 

automatically. The first hidden layer has 50 nodes, the second hidden layer has 20 nodes, 

the third hidden layer has 10 nodes, and the fourth hidden layer has five nodes. There is 

also an output layer with one node to make the shape of the desired output (the UWS) and 

also to classify the predicted datasets. The learning rate = 0.0001; the optimiser used is 

AdaGrad [161], an algorithm for gradient-based optimisation; and the batch size is 8. 

 

4.5.2 Terminology 

1. Batch size: It is difficult to feed in the entire sample at once, so it is divided into 

smaller parts called batches. The size of the batches is determined based upon the 

ability of the model to learn well. 

2. Iterations: The number of batches required for one epoch. 

3. Epoch: The complete dataset going through the neural network forward and 

backward one time. 
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4. Gradient descent: An iterative optimised algorithm to find the best fit for the model 

by processing the results multiple times until it determines the most possible 

optimal results. 

5. Learning rate: The step size the gradient descent needs to perform to gain the 

optimal results. 

 

4.5.3 Variables 

For the SG, the independent variables are input degree, input weight, control degree, and 

control weight, and the dependent variable is the UWS. For the SSG, the independent 

variables are the two LFSR degrees and weights. 

 

The backend used Keras [162] with TensorFlow [163], which are Python (version 3) [164] 

packages for data analysis. In order to use the neural network model, the UWS calculations 

was conducted with EC2, provided by Amazon Web Services [165]. The characteristics of 

the server components were based on the number of CPUs and the memory used with 

Linux-based instances. Ubuntu 16.04 was used to issue mathematical commands and 

Filezilla to investigate communication between a PC and the instance of EC2 [166] on the 

server. The operations were completed for different grades of UWS, and then the previous 

model was calculated to get the prediction for UWS. 

 

4.6 Mathematical background 

As the neural network has the neuron as the main data processing unit, it has a particular 

task of checking how data obeys a given condition: 

         𝑌 = ∑(𝑊𝑖 ∗ 𝑋𝑖) + 𝑏𝑖                                                       (4.1) 

where 𝑋𝑖 is the input data to be checked by the neuron for correctness and is then converted 

to single input 𝑌, and every input X is combined with weight 𝑊𝑖 (the weight depends on 

how the 𝑋𝑖 is important or how much influence it has on the model) to be fed to another 

neuron in the following layer with the associated weight. But to make it work, the 

activation function must decide if the neuron will activate or not. Here, ReLU was used as 

an activation function. An example of neuron work is illustrated in Figure 4.1, which is an 

example with two independent variables (inputs) of 𝑋1 and 𝑋2, and the dependent variable 

(output) 𝑌, where W1 and W2 are the weights of the independent variables. The equation 

will be  𝑌 = 𝑓(𝑋1 ∗ 𝑊1 + 𝑋2 ∗ 𝑊2 + 𝑏), and b is the bias vector.  
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Figure 4. 1 The output of the neuron 

 

4.6.1 Mean square error (MSE) 

Mean square error (MSE) is a statistical tool used to evaluate the performance of an 

estimator. The lower the value of MSE, or the nearer to zero, the more accurate the model 

is considered to be. The MSE values can be used to compare two or more models. 

If 𝑋�̂�  is the value of the given data prediction, where 𝑋𝑖 is the actual value: 

       𝑀𝑆𝐸 =
1

𝑛 
∑ (𝑋𝑖 − 𝑋�̂�)
𝑛 
𝑖=1                                                          (4.2) 

where n is the number of data inputs for the UWS simulated data. 

The lower the MSE, the lower the difference between the predicted value and the actual 

value, and then the weight Wi are updated until the possible minimum MSE. 

 

4.6.2 Rectified linear unit (ReLU) activation function 

The ReLU [160] is a nonlinear activation function used in numerous models because it can 

be implemented widely in a deep learning network. As the formula suggests, the negative 

value is set to zero. While ReLU can be used for datasets that have both negative and 

positive values, the discrete datasets here have only positive values, which makes this 

activation function even more effective.     

     R(x)= max(x,0)                    (4.3)  

And based on equation (4.1),  

              𝑅(𝑥𝑖) = 𝑥 𝑖𝑓 𝑥𝑖 × 𝑤𝑖 + 𝑏 > 𝑑              (4.4),         and d is a predefined value.  

When the neuron reaches it, the activation function R(xi) will be decided and R(xi) = x. 

Otherwise, if  (4.4) is not satisfied, then R(xi)=0. The ReLU helps the model to transfer 

faster, and it is computationally uncomplicated, so it helps reduce costs. Figure 4.2 shows 

the ReLU graph. 
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Figure 4. 2 ReLU activation function graph 

 

4.6.3 Mathematical representation for the neural network models 

For the input value   for SG and the independent variables, and it is a 

matrix of size 𝑁𝑥∗𝑟, with N being the number of training examples and r being the number 

of features. In this case, this would be four features. Let  𝑀𝑛∗𝑚 be a matrix with n rows 

and columns. Therefore, the matrix 𝑋𝑖  would be  𝑋𝑁∗𝑟 .𝑊𝑖 with the weight matrices such 

that each row x and each column y denotes the connection of the previous layer’s neuron 

X to the next layer’s neuron y. Additionally, bi is the bias vectors that span the total number 

of rows of Wi, and there are five layers, so i=1 to 5. Also, let us introduce the broadcasting 

operation, or the basis vector bi, such that it duplicates the vector for as many columns as 

there are in Wi, which is denoted as [b1]*. This allows us to add the bias vector for every 

example’s transformed output at each layer. Also let hi represent the raw output after each 

layer and let R(.) represent the nonlinear activation function applied after the output of 

each layer. In this case, this is represented as the ReLU activation function. Applying the 

activation function to the raw output produces yi, which gets sent to the next hidden layer. 

The above operations are chained for each hidden layer until the final output layer. 

Therefore: 

 

 

 

http://www.texrendr.com/?eqn=%7BX_1%2CX_2%2CX_3%2CX_4%7D%250
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Layer 1: Dense (100 neurons) 

h1= W1 * Xi +[b1]*  ,   Mn*m       for      W1= M100*4 ,    X = M4*1, b1=M100*1 

Then: 

                                                  y1=R(h1) 

 

Layer 2: Dense (50 neurons) 

h2= W2 * y1+[b2]*,           W2= M50*100,      y1= M100*1,   b2=M50*1 

Then: 

                                                   y2=R(h2) 

 

Layer 3: Dense (20 neurons) 

 

h3= W3 * y2+[b3]* ,         W3= M20*50  ,    y2= M50*1,     b3=M20*1 

Then: 

                                                   y3=R(h3) 

 

Layer 4: Dense (10 neurons) 

h4= W4 * y3+[b4]*,          W4= M10*20 ,     y3= M20*1,   b4=M10*1 

Then: 

                                                     y4=R(h4) 

 

Layer 5: Dense (1 neurons) ➞ Output layer 

h5= W5 * y4+[b5]*             W5= M1*10 ,   y4= M10*1,    b5=M1*1 

 

y5=R(h5) = predicted UWS 

 

In general, to change the feature space of the input layer, the columns are simply 

subsampled to extract the relevant features, and the number of input neurons into the neural 

network changed. 

Let us define a subset of indices  𝐼 = {𝑖1, 𝑖2, . . . 𝑖𝑝}  representing unique columns of the 

input matrix X to be extracted. To extract the index at position j, this is denoted as I(j). 

Define this new input matrix as X', and further introduce the notation of extracting out all 

the rows for a single column as X(:, i), where i is the column of interest in matrix X to be 

extracted. 
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Therefore, the new matrix X' is formed such that X'(:, j) = X(:, (Ij)), for j=1,2,…p. The 

neural network can be retrained using this feature subset stored in X', ensuring that the 

number of input neurons is the same size as the number of features in this new matrix X'. 

The notation for propagating information forward into the network remains the same, 

conditionally dependent on the number of features represented in the input neuron 

changing to accommodate the reduced feature set. 

 

Explicitly: 

Layer 1: Dense (100 neurons) 

h1 = W1 * Xi+[b1]* ,    Mn*m    for   W1= M100*|I|  ,   Xi =  M|I|*1,   b1=M100*1 

Then: 

y1 = R(h1) 

|I| is the cardinality of the set of indices I. For example, this could be 2, which represents 

two indices and thus two features (as in SSG). The rest of the notation for the other layers 

remains the same. 

 

4.7 Python for model building 

The Python language has a diverse open source community. The following libraries in the 

code, available for free, are used: 

• Pandas: This library helps read a dataset and do basic data manipulation. 

• Scikit-learn: This library helps split and scale the dataset to meet the requirements. 

• Keras: This library helps train the dataset on the neural network architecture. 

Figure 4.3 is an example of NumPy (the Python library supports multi-dimensional arrays 

and matrix manipulations) and Keras implementation using the formatted data and with 

the neural network architecture as proposed. 

Figure 4.3 section 1 examines the desired value for prediction in the dataset and determines 

the smallest and largest values. This helps undo the preprocessing performed on the data 

to scale the data so that each feature has a range of [0, 1]. Figure 4.3 section 2 uses Scikit-

learn to transform the data so that each feature is scaled to the [0, 1] range. The desired 

value for each sample in the dataset is also extracted as it is embedded with the data and is 

in the last column. It pulls out the column with the desired value as a separate variable and 

deletes the last column in the original dataset for compatibility with Scikit-learn and Keras. 

Figure 4.3 section 3 thus defines the neural network model in the same order of 

presentation for each of the layers as explained above. It defines 100, 50, 20 and 10 neurons 
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and 1 neuron in the same order, with each activation function being the ReLU function. 

The model is configured for training such that the loss is the MSE, and the AdaGrad 

optimiser is the parameter optimisation rule used [167]. The model is then trained using 

the training data and expected output values, and the network used to test accuracy on a 

validation dataset. Finally, Figure 4.3 section 4 uses the predicted values, unscales them to 

their original ranges for each feature, and calculates the average deviation for the predicted 

and true values in the validation dataset. Figure 4.3 section 5 measures the feature 

importance in the dataset. Specifically, if the columns are reshuffled and retrained on the 

same data, this will determine how sensitive each feature is to the learning and shows how 

much the output is influenced. Specifically, one pair of columns is changed while the other 

columns remain fixed. Features that have very little sensitivity can be safely removed from 

the dataset without any loss of generalisation. Features that have a greater sensitivity are 

quite important and contribute to the overall accuracy of the model. 
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# Section 1 
rangetop = dataset['MinW'].max() #getting the max value of y 
rangebot = dataset['MinW'].min() #getting the min value of x 
rangel = rangetop - rangebot  #getting the range of values in y 
  
# Section 2 
scaler = MinMaxScaler() #defining a scaler object 
X = scaler.fit_transform(dataset) #creating a dataset with all the values with min max normalization 
y = X[:,4] 
#y = dataset.iloc[:,4].values #extracting the output variable from the dataset 
X = np.delete(X,4,1) #extracting the input variables from the dataset 
  

  
# Section 3 
model = Sequential() #defining the model as sequence model -- it is used so that we can define model layer by layer 
model.add(Dense(100, input_dim=4, kernel_initializer='normal', activation='relu')) #defining the len of input 

dimensions, ouput neurons for hidden layer as 100, activation function as relu 
model.add(Dense(50, kernel_initializer='normal', activation='relu')) # defining the hidden layer 2 with 50 nodes 
model.add(Dense(20, kernel_initializer='normal', activation='relu')) # defining the hidden layer 3 with 10 nodes 
model.add(Dense(10, kernel_initializer='normal', activation='relu')) # defining the hidden layer 4 with 5 nodes 
model.add(Dense(1, kernel_initializer='normal', activation = 'relu')) #defining the ouput layer as 1 node 
adagrad = optimizers.Adagrad(lr=0.001, epsilon=0.0001, decay=0.0) 
model.compile(loss='mean_squared_error', optimizer= 'adagrad', metrics = ['mse']) #defining the loss function as mean 

squared error and the learning rate optimisation technique as adam optimiser 
model.fit(X_train, y_train, epochs=5, batch_size=8, callbacks=[stop_here_please], validation_data = [X_test, 

y_test])  #fitting the data to train the model 
  
# Section 4 
y_pred = model.predict(X_test) #getting the prediction for the test data 
y_predscaled = [int(i*rangel + rangebot) for i in y_pred] #unscaling the predictions 
y_testscaled = [float(i*rangel + rangebot) for i in y_test] #unscaling the test 
dev = [] 
for i in range(len(y_pred)): 
    dev.append(abs((y_predscaled[i] - y_testscaled[i]))/y_testscaled[i]) 
    #dev.append(abs((y_predscaled[i] - y_testscaled[i]))/y_testscaled[i]) 
1 - sum(dev)/len(dev) #getting the accuracy number 
#Average deviation from the actual to the predicted is 5.6% on average (across the test dataset) 
  
# Section 5 
perm = PermutationImportance(model, random_state=1, scoring = "neg_mean_squared_error").fit(X_test, y_test) 
eli5.show_weights(perm, feature_names = dataset.columns.tolist()[:4]) 
Figure 4. 3 Python code using Keras for the neural network model for SG (for SSG, 

the input in Section 2 is changed to two inputs) 

 

Table 4.1 shows the model structure for SG taken from Python code, as well as some 

sample inputs for an SG cipher that were fed into the models in order to predict UWS24, 

which is shown in Table 4.3. 
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Table 4. 1 Shrinking Generator unique window size 24 model summary 

Layer (Type) Output Shape Parameter # 

dense_1 (Dense) (None, 100) 500 

dense_2 (Dense) (None, 50) 5050 

dense_3 (Dense) (None, 20) 1020 

dense_4 (Dense) (None, 10) 210 

dense_5 (Dense) (None, 1) 11 

                                 Total parameters: 6,791 

                                 Trainable parameters: 6,791 

                                 Non-trainable parameters: 0 

 

4.8 Results analysis 

This section reviews the results obtained for the predictions and the results for the SG and 

SSG ciphers. 

 

4.8.1 Shrinking generator (SG) results 

The SG results were obtained by implementing neural network models for UWS (20, 21, 

23 and 24), as shown in Table 4.2, and with a sample of 10 inputs for UWS24 for SG, as 

shown in Table 4.3 for illustration. 

 

Table 4. 2 Shrinking generator model results for the new neural network models, 

including results for degrees 20, 21, 23 and 24 

 
UWS20 

Model 

UWS21 

Model 

UWS23 

Model 

UWS24 

Model 
 

Number of layers 3 4 4 4 

Number of nodes (10, 5, 2) (50, 20, 10, 5) (50, 20, 10, 5) (50, 20, 10, 5) 

Learning rate 0.0001 0.001 0.0001 0.0001 

MSE 0.0088 0.0138 0.0033 0.0019 

Training set 56,333 196,502 713,395 770,997 

Validation sample 14,084 49,126 178,349 192,750 

Total parameters 6,791 6,791 6,791 6,791 

Prediction percentage 96.01 94.07 95.39 95.42 

 

Table 4.2 shows how accurate the predictions are, with accuracy around 95% and with 

error margin MSE <0.008 and MSE = 0.0019. UWS24 has the largest dataset, and hence, 

the model is better able to learn.  
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Table 4. 3 Unique window size 24 chosen 10 input samples for the shrinking 

generator 

Input degree Input weight Control degree Control weight UWS 

2 

7 

8 

9 

10 

11 

5 

4 

3 

6 

3 

5 

5 

5 

5 

7 

3 

3 

3 

5 

22 

17 

16 

15 

14 

13 

19 

20 

21 

18 

3 

11 

11 

9 

9 

5 

11 

11 

13 

9 

96 

51 

28 

43 

43 

56 

52 

43 

47 

39 

 

 

4.8.2 Self-shrinking generator (SSG) results 

The SSG results for neural network models degrees UWS21 to UWS25, and one neural 

network model for UWS from degree 4 to 20, all in one dataset, are shown in Table 4.4. 

The independent variables used to predict the 10 input UWS25 samples for SSG are shown 

in Table 4.5. 

 

Table 4. 4 Neural network model for a self-shrinking generator, with different 

unique window size degrees 

 

UWS 

model for 

degrees 4 to 

20 

UWS21 

model 

UWS22 

model 

UWS23 

model 

UWS24 

model 

UWS25 

model 

Layers 4 4 4 4 4 4 

Nodes 100, 50, 20, 

10 

100, 50, 

20, 10 

100, 50, 

20, 10 

100, 50, 

20, 10 

100, 50, 

20, 10 

100, 50, 

20, 10 

Learning 

rate 
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

MSE 0.0012 0.0014 0.016 0.0046 0.0098 0.0052 

Training set 58232 67737 96025 285568 221184 1036800 

Total 

parameters 
6591 6591 6591 6591 6591 6591 

Validate 

sample 
14558 16935 24007 71392 55296 259200 

Prediction 

percentage 
96.05 96.66 89.61 90.14 97.01 97.14 
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Table 4. 5 Unique window size 25 for the chosen self-shrinking generator (SSG) 

input sample 

Polynomial weight     UWS 

3 

5 

5 

3 

5 

5 

9 

5 

7 

5 

51 

51 

47 

47 

45 

46 

51 

50 

46 

46 

 

The data for UWS21 to UWS25 was modelled in one model each and, for comparison, all 

data from UWS4 to UWS20 was included in one model to study the behaviour of the model 

when the data is merged into one dataset. 

 

4.8.3 Comparison of the shrinking generator (SG) and self-shrinking generator 

(SSG) results 

Although SG is weaker than SSG, as found in Chapter 3, the UWS could be predicted by 

implementing the neural network models for both ciphers with close accuracy, which is 

more evidence of the strength and effectiveness of neural networks as a predictor and 

measurement of the actual ciphers. 

 

4.8.4 Influences of model features 

The influence of the independent variables on the other variables for UWS24 (SG cipher) 

is shown in Table 4.6. 

 

Table 4. 6 The importance of independent variables for the neural network model 

using unique window size 24 for the self-shrinking generator  

Feature Influence of feature 

Input_Weight 0.0062 ± 0.0004 

Input_Degree 0.0088 ± 0.0005 

Control_Degree 0.0171 ± 0.0001 

Control_Weight 0.0000 ± 0.0000 
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The analysis strongly supports that control_degree is the most important feature in 

deciding the value of the dependent variable (the influence value is highest at 0.0171), 

followed by input_degree, input_weight and control_weight. Thus, any changes to control 

degree data (randomly reordering the data) will have the most impact on the final output 

of UWS prediction, producing the worst prediction. Conversely, doing the same with any 

other independent variable, the prediction will suffer less. 

 

4.8.5 Comparison of the neural network models and linear regression results in 

Chapter 3 

Comparing the results of the predictions based on the neural network models demonstrates 

the neural network model’s superiority to the multilinear regression model in Chapter 3. 

In a general sense, the neural network can be used as a measurement tool for binary 

sequence randomness, which can help in two main research directions. First, the same 

models can be used with some modifications in similar ciphers. Second, this can further 

enhance neural network modelling for testing the appearance of cipher randomness with 

different methods other than testing of the keystream, as in this research. 

As previously shown in Chapter 3, the maximum order complexity is an important tool for 

investigating pseudo-randomness behaviour. UWS can determine the minimum window 

size, which guarantees that every subsequence is unique. Thus, the research evaluated how 

the cipher generated this sequence is strong and has statistical properties that are necessary 

for cipher pseudo-randomness, which will help to evaluate the attack complexity required 

to simulate the sequence. A further step the research can take after calculating the UWS 

for different degrees is to predict it, which will reflect the ability to predict the cipher 

pseudo-randomness property. 

 

The neural network model showed its effectiveness as a tool for predicting UWS. This has 

an important role for investigating the effectiveness of the random binary sequences 

resulting from an encryption system. Neural network models can add another randomness 

testing tool to help establish how strong a cipher is and whether it is sufficient to use, as 

done here for the SG and SSG ciphers, by using the keystream as a binary sequence. Hence, 

the models can be adapted for different ciphers, which is another advancement in 

cryptanalysis methods, as well as in security in general. The use of neural network models 

designed and applied to SG and SSG ciphers opens the way for their application, with some 

modifications, to test other ciphers. 
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Comparing the multilinear regression model in Chapter 3 with the neural network model 

in this chapter revealed that the neural network model was better than multilinear 

regression, which confirms its importance in the field of cryptography and security in 

general. The use of neural network models as a randomness measurement tool and for 

investigating and developing generalised models for a standard test of different 

cryptosystems is also worth studying. 

 

4.9 Conclusion 

The calculation of UWS, which is a form of maximum order complexity, shows the level 

of pseudo-randomness of a given binary sequence, as done in this chapter with the SG and 

SSG cipher keystreams as pseudo-random binary sequences. Hence, it can be a strong 

indicator of the level of cipher security and resistance against attacks. 

 

By using the neural network model to predict the UWS, this chapter showed how the 

pseudo-randomness of a given cipher can be predicted well with the neural network model, 

revealing it as a new measurement tool for cipher security. As well, the neural network 

prediction models were far more effective in prediction than the multilinear regression 

models in Chapter 3. 

 

There are several future research directions. Firstly, using UWS and neural networks for 

the internal cipher components of, for example, SG with two LFSRs each, can generate a 

binary sequence by calculating the UWS and applying a neural network as a predictor to 

investigate the internal ciphers’ strength, which enhances the entire structure of cipher 

security. Secondly, using this method in other ciphers, with some modification of models, 

which depends on the targeted ciphers’ internal structure, will expand applications. 

Thirdly, converting the image data into a binary sequence and then applying the neural 

network model to predict the outcome will help in fields such as facial recognition, which 

is an active research area with many applications. 

 

The following chapter demonstrates the implementation of the MICKEY 2.0 cipher in 

mobile cloud computing. SG and SSG and the MICKEY 2.0 cipher are all lightweight 

synchronous stream ciphers suitable for small hardware devices such as RFID tags and 

microprocessors. The differences include their structures, where SG and SSG are IV-less 
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stream ciphers, and MICKEY 2.0 is an IV-based stream cipher. MICKEY 2.0 is more 

secure than SG and SSG, and the existing body of literature reports a number of attacks on 

SG and SSG. For MICKEY 2.0, the main attack is a differential fault attack [168]. In 

addition, SG and SSG show weakness based on the statistical analysis and the results in 

Chapter 3 and this chapter, but there have been no successful statistical attacks with any 

complexity against MICKEY 2.0, as shown in the next chapter. 
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Chapter 5: Proposed lighter and faster MICKEY 2.0 reduced 

variant for low cost implementations 

 

5.0 Chapter overview  

This chapter is devoted to the thesis proposed lightweight secure protocol. Section 5.1 

offers a general introduction for lightweight encryption methods, with security challenges, 

Section 5.2 provides optimisation methodology, Section 5.3 provides the randomness test 

designed by the US National Institute of Standards and Technology (NIST), Section 5.4 

provides the power consumption estimator, Section 5.5 provides the MICKEY cipher 

family design principles, Section 5.6 provides the reduction process, Section 5.7 provides 

the NIST tests results, Section 5.8 provides the proposed cipher performance test, Section 

5.9 provides the power consumption testing, Section 5.10 presents the cryptanalysis for the 

proposed cipher, Section 5.11 discusses the results and analysis, and Section 5.12 

concludes the chapter. 

 

5.1 Introduction 

Transferring information over different networks, especially insecure networks, using 

mobile devices and RFID technology must overcome security issues to maintain data 

security Not all encryption methods are suitable in these situations as some methods 

require high computation power, storage and power consumption. Lightweight encryption 

methods must be implemented, where lightweight means smaller size and power use. A 

greater range of lighter encryption methods are needed for even smaller devices such as 

tiny microcontrollers like those with 16 bit and smaller devices with less computational 

capability which also need to consume less power. With advances in IoT technology and 

networking, there is a pressing need for lighter secure encryption to be used in the devices 

used in such technologies such as the small 16-bit Raspberry Pi. 

 

To design secure and lighter ciphers based on secure existing ciphers, MICKEY 2.0 is 

chosen as a base as it has more resistance to attacks, and performance and high throughput. 

This chapter proposes a lighter MICKEY 2.0 based version, named MICKEY 2.0.85, based 

on the internal registers length, to meet the need for less power consumption, and fewer 
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gate equivalents (GEs) to be more suitable for smaller devices and reduce the overall cost 

as the chip size will be small and cheap.  

 

The challenge is how to develop lighter ciphers while maintaining a high level of security. 

The efficiency and security of a new cipher are evaluated by using randomness tests to test 

security and methods to test the speed of keystream generation and power consumption 

and then comparing results to existing ciphers.   

 

The pseudo-randomness of the binary sequences, which is the keystream generated by the 

cipher, is an important part of cipher security. In study[169] provides an important insight 

linking the authentication and encryption with IoT device communications by 

implementing an artificial intelligence approach to ease authentication management. In 

another study[170] provides further insight about the security challenges on small devices 

and in IoT with communications networks including cloud computing.  

 

Lightweight stream ciphers have been an active research area for the last 20 years, due to 

the increasing usage of network communications which use some small hardware within 

their main components [171].    

 

The number of gate equivalents (GEs) is important in hardware structure, influencing both 

performance and power consumption. Smaller devices have fewer GEs. Therefore, 

designing new ciphers or even optimising or modifying existing ciphers to be adaptable 

for such devices is challenging. In designing encryption methods for small devices, 

designers must consider the possible required number of GEs [172]. 

   

Optimising the popular AES cipher for use in IoT technology has been a focus in recent 

literature. For example, [173] introduced a 32-bit AES for implementation in small devices 

by tweaking the S-box structure to reduce the original required size of the device hardware 

by 20%. Another cipher “PRESENT” [174], which is a block cipher targeted at IoT 

technology and sensor networks which requires fewer GEs, aims to introduce an alternative 

to AES and Data Encryption Standard (DES), however, some cryptanalysis and recent 

attacks based on linear attacks, as shown in [175], were able to establish an attack on 

PRESENT in round 28 with key = 80-bit and key = 128-bit. In study [176] which provides 

an overview of the recent investigation of lightweight cryptographic methods. 
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The chapter makes several contributions. First, it proposes a lighter version of the 

MICKEY 2.0 cipher and tests it for pseudo-randomness. Second, it shows how the 

algorithm was altered for new MICKEY 2.0.85, with fewer GEs. Third, it shows by tests 

how MICKEY 2.0.85 is faster and consumes less power than MICKEY 2.0, with a passing 

rate which is quite high and slightly better than MICKEY 2.0. Fourth, by applying 

cryptanalysis methods it shows that the MICKEY 2.0.85 cipher is resistant to attacks. 

Methods for reducing power and time can inspire more research in security applications. 

This lightweight stream cipher with enhancements will be more efficient for use in IoT 

technology, including RFID and near field communication. 

 

This chapter presents and evaluates the novel proposed and lighter secure version of 

MICKEY 2.0, named MICKEY 2.0.85 based on the internal registers’ length. MICKEY 

2.0 is a lightweight synchronous stream cipher with good throughput, fast encryption and 

suitable for hardware security, and the design and overall concept are presented in this 

chapter.  

 

5.2 The proposed cipher and the design optimisation methodology 

In order to find an optimal lightweight encryption system, this study follows the best 

scientific methodology to ensure the validity of the study framework. Several experiments 

are required to select the best MICKEY 2.0 interior possible modifications. Randomness 

tests were performed to confirm the validity of the proposed variant and the level of 

confidentiality that it can provide was also analysed.  

 

Study hypothesis 

The initial hypothesis which proposed an optimised version of MICKEY 2.0 which is 

lighter and faster and still has randomness property is achievable. The reduction is in the 

two internal shift register sizes. To achieve the optimised version, the research questions 

are: 

 

1. How can MICKEY 2.0 ciphers be optimised, and how can lighter versions be proposed 

to avoid shortcomings in implementation in small devices?  

2. How can cryptanalysis be tested to provide sufficient confidence in the proposed novel 

MICKEY 2.0 reduced variant cipher to ensure validity for use? 
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This study used the following methodology. 

 

1. The number of bits were reduced by 15 bits for both MICKEY 2.0 registers, so the new 

internal state was reduced from 200 bits (100 bits for each register) to 170 bits. The reason 

and the process are explained in the algorithm in Section 5.6. 

2. A suite of randomness tests suite designed by the US National Institute of Standards and 

Technology (NIST) was implemented to evaluate the required statistical properties of the 

reduced version. The passing rate was calculated to compare the new version with 

MICKEY 2.0 and MICKEY 1.0. 

3. Power consumption was estimated by using Xilinx Power Estimator (XPE) [177] to see 

how MICKEY 2.0.85 can consume less power. MICKEY 2.0.85 was compared to 

MICKEY 2.0 and another reduced variant of other ciphers such as the Trivium cipher 

(Micro-Trivium). 

4. C code was used to test the encryption speed for MICKEY 2.0.85, compared to 

MICKEY 2.0. 

5. Randomness, power consumption and encryption speed for MICKEY 2.0.85 were 

compared to the original MICKEY 2.0, to evaluate the overall performance and security 

of MICKEY 2.0.85. The proposed version should be lighter, faster, require fewer GEs and 

consume less power, and pass the randomness tests. 

6. Levenshtein Distance and Cosine similarity attacks were used to show how MICKEY 

2.0.85 is resistant against statistical attacks.  

 

5.3 NIST randomness test 

The NIST suite of 15 different randomness tests [27] is carefully designed to catch any 

biases in the sequences that need to be tested. These tests are still trusted for randomness 

testing as NIST determined the standard requirements for encryption methods, which are 

sufficient for security evaluation based on passing the randomness tests [178]. 

 

NIST tests provide a standard test customised for lightweight cryptography methods 

including authentication, hash functions, ciphers and data management, as well as the 

hardware implementation guidance [179]. Cipher designers need to take into consideration 

the pseudo-randomness of the keystream, which needs to satisfy the statistical properties 

to ensure the cipher is a pseudo-random number generator. The NIST test suite plays an 

important role [178], because if a cipher passes these tests it means the cipher has met the 
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requirements to be valid for use. For instance, [180] test a chaotic system based cipher 

which consists of two NFSRs, by implementing NIST tests to measure the validity of their 

cipher which targeted small devices.  

 

Another study [181] implemented multiple pseudo-random number generator sources, by 

taking their keystream and altering them to be suitable for IoT small devices, and their 

NIST test results provided a good success rate. NIST randomness tests help improve IoT 

technology, as the tests can evaluate security, based on the encryption methods. [182] used 

NIST tests to analyse the pseudo-randomness of some chosen algorithms, to evaluate their 

performance based on encryption speed, and to measure the performance using different 

microcontrollers. 

 

5.4 Power consumption 

With increasing growth in small devices such as mobile phones, as well as increasing 

dependency on wireless communications which rely on small microcontrollers and RFID 

technology, security remains a massive challenge. Lightweight encryptions that consume 

less power which are adequate for such constrained technology and proposed lightweight 

ciphers are needed to satisfy the power consumption limitations. Therefore, it is important 

to use a power estimator to measure cipher usage. This study used Xilinx Power Estimator 

(XPE) [177] which is a useful tool to estimate power consumption. Many studies have 

implemented this estimator, including [183].  

 

5.5 MICKEY 2.0 internal design 

MICKEY 1.0 was first submitted by the designers Babbage and Dodd to the eSTREAM 

project [184]. It is designed for use in hardware as it is a lightweight synchronous stream 

cipher, however it can also be implemented in software. The key and IV are both 80-bit, 

and 80-bit for each R (Linear register) and S (Nonlinear register). It is described in full in 

[184]. However, In [185] found that there is a detectable weakness in the state 

convergence. The designers then developed a stronger version, MICKEY 2.0 [186], to 

solve this issue. The MICKEY 2.0 [186] cipher consists of two shift registers with a length 

of 100-bit each, R (Linear register) and S (Nonlinear register). Each stage in the internal 

state contains only one bit. Figure 5.1 summarises the MICKEY family cipher design. The 

(Key, IV) loading is indirect as the mixing is done before clocking, which is different from 
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ciphers such as Trivium that allow direct loading, therefore, there is a pre-clocking phase 

before loading into registers. 

 

Loading bits 

The MICKEY 2.0 cipher accepts 80-bit for key(K), and 80-bit and for initialisation 

vector(IV).  

Let C= ciphertext, P = plaintext and Z = keystream 

       K=K0,K1,K2,...,K79 

        IV=IV0,IV1,IV2,...,IV79 

       Z=Z0,Z1,Z2,...,Z79 

     C=  Z xor P (mod 2) 

Every (K,IV) generates up to 240bit (maximum length). The length of K and IV should be 

the same. It is possible to reuse the same K. However, it is not acceptable to reuse the IV 

with the same K. 

 

R register clocking: Clock_R=(R, INPUT_bit_R, CLOK_bit_R). Figure 5.3 and Section 

5.6 provide an explanation. 

 

S register clocking: S register internal structure consists of controlling components: 

COMP0, COMP1, FB0 and FB1, each of 100 states, and controlling taps (positions) as in 

tables (5.1-5.10) where if there is 1 that is the bit control position. Figure 5.4 and Section 

5.7 provide an explanation. Figure 5.1 summarises the general structure of the MICKEY 

family cipher. 

 

 

Figure 5. 1 MICKEY cipher family general internal design 
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The principle of the MICKEY family of ciphers is that the CLOCK_KG drives both 

CLOCK_R and CLOCK_S in order to perform the XOR operation for the bits positions 

that form the keystream, as shown in Figure 5.2. 

 

 

 

Figure 5. 2 The core logical process for the MICKEY cipher family 

 

CLOCK_KG produces the keystream bit by performing the XOR operation on the first bit 

of the register R (R[0]) with the first bit that comes from the register S (S[0]). The bits 

positions are advanced for both R and S, by clocking both CLOCK_R and CLOCK_S 

functions. In the initialisation stage there is mixing of the key and the IV bits by CLOCK_R 

in such a random way. Figure 5.2 shows the selected values of (N,M,Q) which are selected 

to be scattered through R and S. The mechanism to advance the register R is shown in 

Figure 5.3. 
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Figure 5. 3 Process flow for the linear register (R) 

 

Figure 5.3 shows the flowchart for the CLOCK_R clocking in order to mix the bit position 

of the register R, by determining if the current XOR bit is 0 or 1 according to the previous 

bit and the position of the taps on the R_MASK. For MICKEY 2.0.85, the number of bits 

of both R and the taps on R_MASK were reduced and reorganised as shown in Section 

5.6.  

 

For the register S, the principle of clocking can be seen in the flowchart in Figure 5.4. The 

bits positions are determined in a more random way, determined based on the current state 

of S. The mixing parts of S are the functions COMP0, COMP1, FB0 and FB1 which ensure 

the random appearance of S bits. 
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Figure 5. 4 Process flow for the nonlinear register (S) 

 

Figure 5.4 shows that for the nonlinear register S the way of clocking is by the CLOCK_S 

function to control the bits positions in a very mixed way to ensure bits confusion among 

the S register. The CLOCK_S function implements internal controlling randomiser 

sequences which are COMP0, COMP1, FB0 and FB1, which add more complexity to the 

output of the S register, which also works to randomise the bits generated by the R register. 

Therefore, the S register as a whole adds more complexity to the R register output, by 

adding more nonlinear complexity of the keystream generated by the MICKEY family of 

ciphers. 

 

To be more precise, within the CLOCK_S the functions COMP0 and COMP1 are the 

controlling randomisers for the S register bits that control bits from FB0 and FB1. 

Furthermore, the sequences FB0, FB1, COMP0 and COMP1 bits arrangement were done 

carefully and expertly chosen in such a way to have appropriate positions, which results in 
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randomness of both the S output and the keystream. Section 5.6 provides more detail on 

the FB0, FB1, COMP0 and COMP1 precise arrangements. 

 

To ensure the randomness of the keystream, the initial design by the MICKEY 2.0 

designers [186] was done by ensuring the initial state of the internal clocking functions and 

controlling sequences guaranteed the appearance of randomness as much as possible. For 

the proposed MICKEY 2.0.85 cipher in this thesis, the bits in the internal structure were 

adjusted by multiple experiments with a target to avoid any biases or predictability. As 

there were multiple bits selections and arrangements, many trials were conducted on the 

NIST randomness tests. The experiments were repeated until an optimal bits arrangement 

was achieved which passed the NIST tests. 

 

5.6 Reduction process 

To explain the thesis reduction approach and how reductions were achieved, the MICKEY 

2.0 algorithm is described, together with the MICKEY 2.0.85 algorithm.  

 

5.6.1 MICKEY 2.0 and MICKEY 2.0.85 algorithms  

(Some contents of the this section were published as a part of this thesis in [23]) 

In the MICKEY family of ciphers, the basic concepts of producing the keystream rely on 

clocking operations. Clocking is the main part of the algorithm that drives the rest of the 

functions, including the clocks functions in both registers R and S which change the state 

of bit positions separately, or together considering each register’s current state. For the 

initial inputs, the position of controlling bits either changes the bits positions by performing 

the XOR operation, or shifts it based on the specific bit in the register. Critically, these 

operations are performed in such a way to ensure the positions change rather unpredictably. 

 

The complexity of the hardware electronic circuits is determined by GEs. If the number of 

GEs is large, that will affect the speed performance and consume more power. Thus, 

reducing the number of GEs will improve overall performance of lightweight devices. 

Appendix 5.1 for MICKEY 2.0 and Appendix 5.2 for MICKEY 2.0.85 illustrate the GE 

counting approach and the reduction of GEs for MICKEY 2.0.85, and compare both 

ciphers. The following is an algorithmic description for MICKEY 2.0 and MICKEY 

2.0.85: 
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Algorithm 5.1: CLOCK_R 

The CLOCK_R function forwards the linear register. 

The CLOCK_S function forwards the nonlinear register. 

The CLOCK_KG function generates a keystream by joining both CLOCK_R and 

CLOCK_S. 

The function CLOCK_R advances the position of the linear register and determines 

whether or not the current XOR mask bit is 1 or 0 based on previous operations and the 

R_MASK. 

CLOCK_R: 1: Initialisation of the Internal Register (Single XOR) 

CLOCK_R 2: Loop (Conditional) Feedback Bit Logically Assigns Linear Register Bit 

(Within Loop) 

MICKEY 2.0: for i = 0 to 99 

MICKEY 2.0.85: for i = 0 to 84 

CLOCK_R 3: Linear (R_MASK) Logic to Invert Bit (Single XOR) (Within Loop) 

MICKEY 2.0: for i = 0 to 99 

MICKEY 2.0.85: for i = 0 to 84 

CLOCK_R 4: Multiple Related Operation (Single MUX) – Conditionally executed based 

on control bit. 

CLOCK_R 5: Multiple Related Operation (Single MUX) – Conditionally executed based 

on feedback bit. 

With the nonlinear register (S), the correspondence between bit and position is more 

arbitrary, but it is driven by the state of the linear register. The internal data structures 

COMP0, COMP1, FB0 and FB1 are also arbitrary (random) bits. 

The function CLOCK_S advances the position of the nonlinear register. Using four 

internal and random structures (COMP0, COMP1, FB0 and FB1) the current bit position 

is far more nonlinear. 

 

Algorithm 5.2: CLOCK_S 

CLOCK_S: 1 Initialisation of Internal (Nonlinear) Register (Single XOR) 

MICKEY 2.0: For i = 0 to 99 

MICKEY 2.0.85: For i = 0 to 84 

CLOCK_S: 2, CLOCK_S: 3: Bitwise operations on internal structures 3 XORs and One 

AND (gates) 

CLOCK_S: 4: Conditional Logic on Feedback and Control Bit (Single MUX) 

MICKEY 2.0: For i = 0 to 99 
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MICKEY 2.0.85: For i = 0 to 84 

CLOCK_S: 5: Change Nonlinear Register (Single XOR) 

CLOCK_KG invokes CLOCK_R and CLOCK_S for the purpose of determining the 

appropriate XOR bit for each bit position within the generated keystream. 

CLOCK_KG: 1-5: Simple Initialisations: (4 XOR, 1 AND) 

The IV and key were used along with the internal masks to initialise the registers in the 

function ECRYPT_keysetup, ECRYPT_ivsetup. By arbitrarily mixing the bits of the key 

and the IV, the initial state of both the linear and nonlinear registers will be unpredictable. 

MICKEY 2.0: IV_i 1: For i = 0 to 79: Initialise on IV (Single MUX) 

MICKEY 2.0: IV 2: For i = 0 to 80: Initialise on Key (Single MUX) 

Therefore, the MICKEY algorithm works as follows: 

 

Algorithm 5.3: MICKEY algorithm 

MICKEY 2.0: Process (Single MUX to represent Logic): 

1. Initialise the internal state using: IV, key and CLOCK_KG (which uses CLOCK_R 

and CLOCK_S) to mix in the IV and key bits based on the internal driver structures. 

(R_MASK and COMP0, COMP1, FB0, FB1) 

2. For each bit in the message invoke CLOCK_KG. 

a. CLOCK_KG invokes CLOCK_R, which advances the linear bit and masks it with 

R_MASK to determine its final value. 

b. CLOCK_KG also invokes CLOCK_S, which may or may not advance the nonlinear 

bit depending on the linear position and the values of (COMP0, COMP1, FB0 and FB1). 

c. CLOCK_KG determines the keystream bit by XORing the current linear and nonlinear 

registers and ANDs them with 1. 

d. Ciphertext Generation: The current plaintext message bit is XORed with the current 

keystream bit, which becomes the ciphertext output [23]. 

 

Tables 5.1–5.10 show the controlling bits position for R_mask, COMP0, COMP1, FB0 

and FB1 for ciphers MICKEY 2.0 and MICKEY 2.0.85, to highlight the change of bit 

positions for MICKEY 2.0.85 from MICKEY 2.0 
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Table 5. 1 MICKEY 2.0 R_mask 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 
 

1 1 1 1 
  

1 
  

1 1 
  

1 
  

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 1 1 1 
  

1 
  

1 
        

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
 

1 1 
  

1 1 
   

1 
 

1 
 

1 
 

1 
 

1 
 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 1 1 
 

1 1 1 1 1 
   

1 1 
      

1 

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

Value 1 1 1 
    

1 1 1 1 1 1 
 

1 1 1 1 
  

 

 

Table 5. 2 MICKEY 2.0.85 R_mask 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 
 

1 1 1 1 
  

1 
  

1 1 
  

1 
  

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 1 1 1 
  

1 
  

1 
        

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
 

1 1 
  

1 1 
    

1 
 

1 
 

1 1 
 

1 1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 1 1 1 
   

1 1 
    

1 1 1 1 1 1 
 

1 

BIT 80 81 82 83 84 
 

Value 1 1 1 
  

 

 

Table 5. 3 MICKEY 2.0 COMP0 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 
    

1 1 
   

1 
 

1 1 1 1 
 

1 
  

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
 

1 
 

1 
 

1 
 

1 
 

1 1 
 

1 
  

1 
    

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
   

1 
 

1 
 

1 
 

1 
    

1 
 

1 
  

1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 1 1 1 
  

1 
 

1 
 

1 1 1 1 1 1 1 1 1 
 

1 

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

Value 
 

1 1 1 1 1 1 
 

1 
 

1 
      

1 1 
 

 

 

Table 5. 4 MICKEY 2.0.85 COMP0 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 
    

1 1 
   

1 
 

1 1 1 1 
 

1 
  

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
 

1 
 

1 
 

1 
 

1 
 

1 1 
 

1 
  

1 
    

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
   

1 
 

1 
 

1 
 

1 1 1 1 
  

1 
 

1 
 

1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 1 1 1 1 1 
 

1 1 1 1 1 1 
 

1 
 

1 
    

BIT 80 81 82 83 84 
 

Value 
  

1 1 
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Table 5. 5 MICKEY 2.0 COMP1 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 
 

1 
 

1 1 
  

1 
 

1 1 1 1 
  

1 
 

1 
  

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
 

1 1 
 

1 
 

1 1 1 
 

1 1 1 1 
   

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 1 
 

1 1 1 
    

1 
   

1 
 

1 1 1 
  

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
 

1 1 1 1 1 1 
 

1 
 

1 1 1 
 

1 1 1 1 
  

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

Value 
 

1 
    

1 1 1 
   

1 
  

1 1 
   

 

 

Table 5. 6 MICKEY 2.0.85 COMP1 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 
 

1 
 

1 1 
  

1 
 

1 1 1 1 
    

1 
  

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
 

1 1 
 

1 
 

1 1 1 
 

1 1 1 1 
   

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 1 
 

1 1 1 
    

1 
   

1 
 

1 1 1 
  

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
 

1 1 1 1 1 1 
 

1 
 

1 1 1 
 

1 
     

BIT 80 81 82 83 84 
 

Value 1 1 
   

 

 

Table 5. 7 MICKEY 2.0 FBO 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 1 1 
 

1 
 

1 1 1 1 1 1 1 1 
  

1 
 

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 1 1 1 1 1 1 1 1 1 
  

1 1 
      

1 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 1 1 
  

1 
  

1 
 

1 
 

1 
  

1 
 

1 1 1 1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
 

1 
 

1 
 

1 
         

1 1 
 

1 
 

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

Value 
  

1 1 
 

1 1 1 
  

1 1 1 
  

1 1 
   

 

Table 5. 8 MICKEY 2.0.85 FB0 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 1 1 
 

1 
 

1 1 1 1 1 1 1 1 
  

1 
 

1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 1 1 1 1 1 
    

1 1 1 
  

1 
  

1 
 

1 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
 

1 
  

1 
 

1 1 1 1 
 

1 
 

1 
 

1 
    

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
       

1 1 
 

1 1 1 
  

1 1 1 
  

BIT 80 81 82 83 84 
 

Value 1 1 
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Table 5. 9 MICKEY 2.0 FB1 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 1 
 

1 1 1 
    

1 1 1 
 

1 
  

1 1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
   

1 
  

1 1 
  

1 
 

1 1 
   

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
    

1 1 
 

1 1 
   

1 
   

1 
  

1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
  

1 
 

1 1 
 

1 
 

1 
  

1 
 

1 
   

1 1 

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 

Value 1 1 
 

1 1 1 1 1 
      

1 
    

1 

 

Table 5. 10 MICKEY 2.0.85 FB1 

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Value 1 1 1 
 

1 1 1 
    

1 1 1 
 

1 
  

1 1 

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

Value 
   

1 
  

1 1 
  

1 
 

1 1 
   

1 1 
 

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 

Value 
    

1 1 
 

1 1 
   

1 
   

1 
  

1 

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 

Value 
  

1 
 

1 1 1 
 

1 1 1 1 1 
      

1 

BIT 80 81 82 83 84 
 

Value 
    

1 

 

 

5.7 Results of NIST tests 

This section presents results of the NIST tests for MICKEY 2.0, MICKEY 2.0.85 and 

MICKEY 1.0. MICKEY 1.0 failed 14 of 15 tests for the keystream and passed only one 

test of 15 for the ciphertext randomness test. The results confirm MICKEY 2.0.85 is secure 

as it shows a high level of randomness based on NIST tests. 

 

5.7.1 NIST test results for the keystream 

MICKEY 2.0 is a good encryption method and has a higher security level than other 

popular ciphers such as Trivium and Grain. It has more resistance to algebraic attack and 

fault analysis attack, for example [168]. MICKEY 2.0’s good attack resistance is due to 

the irregular mixing in the bits in the internal state. MICKEY 2.0 was used as a reference 

to measure the proposed reduced variant. This research used 410 (key, IV) difference pairs 

to generate 410 different keystream sequences with length 106 bits for both MICKEY 2.0 

and 410 sequences for MICKEY 2.0.85 ciphers for comparison, as MICKEY 2.0.85 needs 

to have a similar security level as MICKEY 2.0.  
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By applying the NIST pseudo-randomness test suite as shown in Table 5.11 and Table 

5.12, with 410 sequences and each sequence of length 106 bits, MICKEY 2.0.85 has a 

slightly better passing rate than MICKEY 2.0 with almost 100% in some of the tests, and 

a passing rate very close to 100% in the rest of the tests. Comparing the results in Table 

5.11 and Table 5.12 with MICKEY 1.0 as shown in Figure 5.5, MICKEY 1.0 only passed 

the linear complexity test. 

 

 

Figure 5. 5 Comparison histogram of NIST test passing rates for MICKEY 2.0, 

MICKEY 2.0.85 and MICKEY 1.0 

 

To further test MICKEY 2.0.85, 1350 sequences with length 106 bits each were generated. 

Table 5.13 shows the passing rate is high which confirms the security level of MICKEY 

2.0.85 and shows it has a good statistical randomness appearance. The NIST test results 

can be used as a standard indicator for the validity of the ciphers to be used. 

     

The results of running NIST randomness tests on MICKEY 1, MICKEY 2.0 and MICKEY 

2.0.85 ciphers showed that MICKEY 1 failed all tests except the linear complexity test 

with p-value = 0.162606 and a passing rate of 100%. Table 5.11 and Table 5.12 show that 

MICKEY 2.0 and MICKEY 2.0.85 passed all tests, with better results for MICKEY 2.0.85 

for tests Rank, FFT, Frequency, Overlapping Template, Universal and linear complexity 

with a pass rate of 100%. 

 

To optimise the cipher structure, the reductions of the versions were modified and every 

version was tested on the NIST tests to derive the most optimal possible secure version 

that has an optimal passing rate with the lowest number of GEs. 
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Table 5. 11 MICKEY 2.0.85: 410 sequences, each sequence with a length of 106 bits 

Tests Min  

P-value 

Max P-value Average Proportion 

Frequency 0.122325 0.739918 0.377364 1 

Block Frequency 0.350485 0.534146 0.381095 0.966667 

Cumulative Sum (Forward) 0.122325 0.911413 0.663548 0.966667 

Cumulative Sum (Backward) 0.739918 0.739918 0.739918 0.983333 

Runs 0.350485 0.534146 0.381095 0.983333 

Longest Run 0.350485 0.350485 0.350485 1 

Rank 0.122325 0.534146 0.228988 1 

FFT 0.213309 0.534146 0.289644 1 

Non-Overlapping Template 0.458868 0.500555 0.466752 0.98705 

Overlapping Template 0.066882 0.739918 0.627745 1 

Universal 0.122325 0.534146 0.259599 1 

Approximate Entropy 0.534146 0.911413 0.785657 1 

Random Excursions 0.574584 1 0.726513 0.988839 

Random Excursions Variant 0.499518 0.929764 0.700181 0.996032 

Serial 1 0.122325 0.213309 0.137489 1 

Serial 2 0.350485 0.739918 0.446001 1 

Linear Complexity 0.122325 0.911413 0.269004 1 

 

 

 

Table 5. 12 MICKEY 2.0: 410 sequences, each sequence with a length of 106 bits 

Tests Min  

P-value 

Max P-value Average Proportion 

Frequency 0.035174 0.911413 0.397568 0.997561 

Block Frequency 0.122325 0.911413 0.428437 0.997561 

Cumulative Sum (Forward) 0.066882 0.911413 0.788651 0.997561 

Cumulative Sum (Backward) 0.017912 0.911413 0.68968 0.997561 

Runs 0.066882 0.911413 0.400601 0.995122 

Longest Run 0.122325 0.739918 0.373471 1 

Rank 0.122325 0.911413 0.273754 0.997561 

FFT 0.122325 0.911413 0.323092 0.995122 

Non-Overlapping Template 0.451814 0.528983 0.473251 0.986487 

Overlapping Template 0.066882 0.911413 0.639514 0.995122 

Universal 0.066882 0.911413 0.29319 0.995122 

Approximate Entropy 0.213309 0.991468 0.815439 1 

Random Excursions 0.679305 1 0.899804 0.995427 

Random Excursions Variant 0.598409 1 0.867777 0.996296 

Serial 1 0.066882 0.911413 0.271612 1 

Serial 2 0.122325 0.911413 0.397487 0.995122 

Linear Complexity 0.008879 0.911413 0.247633 0.992683 
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Table 5. 13 MICKEY 2.0.85: 1,350 sequences, each sequence with a length of 106 

bits 

Tests Min  

P-value 

Max P-value Average Proportion 

Frequency 0.004301 0.911413 0.247507 0.932593 

Block Frequency 0.035174 0.991468 0.408853 0.999259 

Cumulative Sum (Forward) 0.008879 0.911413 0.475431 0.931852 

Cumulative Sum (Backward) 0.066882 0.991468 0.438661 0.931852 

Runs 0.017912 0.911413 0.350936 1 

Longest Run 0.035174 0.991468 0.569959 0.997778 

Rank 0.008879 0.991468 0.562409 1 

FFT 0.017912 0.911413 0.334836 0.997778 

Non-Overlapping Template 0.45673 0.544193 0.506632 0.99076 

Overlapping Template 0.066882 0.991468 0.684628 0.996296 

Universal 0.035174 0.911413 0.444997 0.997037 

Approximate Entropy 0.035174 0.911413 0.513536 0.998519 

Random Excursions 0.545207 1 0.724354 0.994351 

Random Excursions Variant 0.438734 1 0.717153 0.972019 

Serial 1 0.017912 0.991468 0.538686 0.999259 

Serial 2 0.035174 0.991468 0.313621 0.995556 

Linear Complexity 0.008879 0.911413 0.614827 0.999259 

 

5.7.2 NIST test results for the ciphertext 

Tables 5.11, 5.12 and 5.13 summarised the results for the keystream generated by the 

ciphers. It is also useful to test the pseudo-randomness of the ciphertexts generated by 

those ciphers, as there are specific ciphertext attacks [187], [188]. The results for MICKEY 

1.0, MICKEY 2.0 and MICKEY 2.0.85 shown in Table 5.14 and Table 5.15, using 13 MB 

bits for each cipher for comparison, shows how the proposed cipher has good pseudo-

randomness properties.  

 

By running NIST randomness tests on MICKEY 1.0, MICKEY 2.0 and MICKEY 2.0.85 

with 13 MB ciphertext files for each cipher, MICKEY 1.0 failed all tests except the linear 

complexity test with p-value = 0.162606 and pass rate of 100%. Table 5.14 and Table 5.15 

show MICKEY 2.0 and MICKEY 2.0.85 passed all tests, with better results for MICKEY 

2.0.85 compared to MICKEY 2.0 for the Rank, FFT and Serial tests with a pass rate of 

100%. 
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Table 5. 14 MICKEY 2.0 NIST test results for ciphertext with 13 MB bits length 

Tests P-value average Proportion 

Frequency 0.090936 1 

Block Frequency 0.637119 1 

Cumulative Sum (Forward) 0.048716 1 

Cumulative Sum (Backward) 0.437274 1 

Runs 0.090936 1 

Longest Run 0.000648 1 

Rank 0.437274 0.9230769 

FFT 0.162606 0.9230769 

Non-Overlapping Template 0.301262 0.9885655 

Overlapping Template 0.964295 1 

Universal 0.437274 1 

Approximate Entropy 0.162606 1 

Random Excursions 0.42722271 1 

Random Excursions Variant 0.59290552 1 

Serial 1 0.834308 0.9230769 

Serial 2 0.275709 0.84615384 

Linear Complexity 0.437274 1 

 

 

 

Table 5. 15 MICKEY 2.0.85 NIST test results for ciphertext with 13 MB bits length 

Tests P-value average Passing rate 

Frequency 0.437274 1 

Block Frequency 0.637119 1 

Cumulative Sum (Forward) 0.090936 1 

Cumulative Sum  (Backward) 0.437274 1 

Runs 0.437274 1 

Longest Run 0.275709 1 

Rank 0.437274 1 

FFT 0.437274 1 

Non-Overlapping Template 0.331186 0.989604989 

Overlapping Template 0.275709 1 

Universal 0.048716 1 

Approximate Entropy 0.048716 1 

Random Excursions 0.61271597 1 

Random Excursions Variant 0.90774056 1 

Serial 1 0.090936 1 

Serial 2 0.090936 1 

Linear Complexity 0.275709 1 
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5.8 MICKEY 2.0.85 performance tests 

As one of the performance measurements is the speed of generating the keystream, 

multiple speed tests measured in microseconds were conducted to record the encryption 

time for both MICKEY 2.0 and MICKEY 2.0.85. The hardware used was an Intel i3 

processor which has a speed of 2.53 Ghz. A file of 39,900 bytes of plaintext for encryption 

with random 10 bytes of key and 10 bytes of IV was used. Tests were run 10 times, each 

encryption time measured, and the average calculated to determine the accurate speed. The 

test process was: 

 

1. Record the starting time S. 

2. Use the 39,900 bytes plaintext as input. 

3. Record the end time E. 

4. Calculate E-S. 

 

Table 5.16 shows MICKEY 2.0.85 was 23.36% faster than MICKEY 2.0. 

 

Table 5. 16 Improvement in the encryption speed for MICKEY 2.0.85 compared to 

MICKEY 2.0 

 
Elapsed time in microseconds 

Bytes encrypted MICKEY 2.0 MICKEY 2.0.85 

39,900 719,041 496,029 

39,900 640,037 514,030 

39,900 670,038 499,028 

39,900 670,038 528,030 

39,900 648,037 485,028 

39,900 646,037 512,030 

39,900 661,037 510,029 

39,900 649,037 520,030 

Average 662,912.75 508,029.25 

Improvement percentage over MICKEY 2.0 0 23.364% 

 

 

MICKEY 2.0.85, which has fewer GEs, has faster encryption speed which will reduce 

power consumption, and be suitable for smaller devices such as microcontrollers and RFID 

readers and tags. Even small improvements in speed will considerably improve 

performance in constrained devices and applications. This research direction is important 

for further and continuous improvements as digital devices with smaller size and memory 

capacity will be used more frequently.  
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5.9 Power consumption testing 

To evaluate the power consumption of MICKEY 2.0.85, Xilinx Power Estimator (XPE) 

[177] was used. It is compared to MICKEY 2.0 and Micro-Trivium [189] which is a lighter 

version of Trivium. Table 5.17 shows MICKEY 2.0.85 has the lowest power consumption 

of the four ciphers. The values for Trivium and Micro-Trivium were obtained from [189].  

 

Table 5. 17 Power consumption for MICKEY 2.0.85 and other ciphers 

Cipher Number of GEs Power consumption 

(microAmps @ 100KHz) 

MICKEY 2.0 3,131 0.574 

MICKEY 2.0.85 2,741 0.481 

Trivium 3,091 0.681 

Micro-Trivium 2,696 0.517 

 

The relationship between the number of GEs and the power consumption for all four 

ciphers in Table 5.17 is explained by the polynomial of degree 3 as given below: 

      

Let G= number of GEs, and P= Power Consumption 

The relationship between G and P for all ciphers in Table 5.17 is modelled using 3rd degree 

polynomial as following: 

 P=-0.0000000271175791*G3+0.000234730685*G2-0.675800572*G+647.741649 

    

For MICKEY 2.0.85 and MICKEY 2.0, the relationship between the number of GEs and 

the power consumption can be represented as a linear model as given below: 

 

       P=0.00023846*G-0.17262308  

 

For MICKEY 2.0 and MICKEY 2.0.85, R2 = 1 for both models which indicates clearly 

that the models are accurate, as there is a high correlation and all observed values can be 

represented by these models. R2=1-errors, here errors= 0, which indicates the high 

determination of the model coefficients. 
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5.10 Cryptanalysis 

The NIST tests provide a standard evaluation of the cipher pseudo-randomness as standard 

efficiency requirements. However, including more attack analysis for MICKEY 2.0.85 

compared to MICKEY 2.0 adds another level of proposed cipher usage feasibility, as it 

ensures more security. Analysis of two types of attacks is presented: many time pad attack 

and cosine similarity attack. 

 

5.10.1 Many Time Pad Attack 

A repeated key attack, which may be called a many time pad attack, is a type of attack 

when the same key is reused. Assume we have the same key (K) used to encrypt message 

𝑚1 𝑎𝑛𝑑 𝑚2 and the attacker has access to the ciphertexts for the two messages 𝐶1𝑎𝑛𝑑 𝐶2. 

 

The XOR functions as the following: 

      

   𝑚1⊕𝐾 = 𝐶1       (5.1)   

   𝑚2⊕𝐾 = 𝐶2       (5.2) 

    

Then from 5.1 and 5.2 

 

𝐶1⊕𝐶2 = 𝑚1⊕𝐾 ⊕ 𝑚1⊕𝐾       (5.3) 

    
𝑦𝑖𝑒𝑙𝑑𝑠
→     𝑚1⊕𝑚2 

 

It is not secure to reuse the same key with different messages, as some of the solution is 

mixed with IV. However, from the previous example, multiple messages were encrypted 

with the same key, then if the attacker gains access to a sufficient number of the messages 

then the attacker can extract the plaintext from the given ciphertexts given that the same 

key was used. 

 

To simulate this attack the IV with the same key with different messages was used, by 

using multiple plaintext files with length ranging from 56 KB to 96 KB encrypted by both 

MICKEY 2.0.85 and MICKEY 2.0. Python code was used to perform multiple XORing 

operations of ciphertext with keystream for each message, then the Levenshtein Distance 

[175] calculated to find the similarity. 
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Calculating the Levenshtein Distance 

Let LD be the percentage of the Levenshtein Distance. If the LD between the calculating 

message 𝑚𝑝 and the original message 𝑚𝑜 by the attacker is LD = 0%, then 𝑚𝑝  and 𝑚𝑜  

are completely different. On the other hand, if LD between 𝑚𝑝  and 𝑚𝑜  is 100%, the 𝑚𝑝  

and 𝑚𝑜  are completely similar. Figure 5.6 shows the Levenshtein Distance between 

multiple 𝑚𝑝  and 𝑚𝑜  messages with length mentioned earlier. 

 

 

Figure 5. 6 Levenshtein similarity test for MICKEY 2.0 and MICKEY 2.0.85 

interrupted messages  

 

Figure 5.6 shows that MICKEY 2.0.85 is as random as MICKEY 2.0 by using the same 

number of intercepts for the same texts for both ciphers, showing they are very similar, 

with MICKEY 2.0.85 slightly better in resistance against the many reused key attacks. 

 

5.10.2 Cosine similarity attack (cryptanalysis) 

Cosine similarity [190] can be an effective tool to determine how similar two documents 

or texts are. Assume we have two texts represented as non-zero vectors v1 and v2 and their 

lengths are ||v1|| and ||v2 ||, and their dot products are v1  v2. 

Then: 

             Cos(v1,v2) = (v1  v2) / ||v1|| ||v2|| 

The similarity is cos(𝜭), 𝜭 is the angle between v1and v2 



120 
 

The similarity between the two texts = cos(𝜭) =  (v1  v2) / ||v1|| ||v2|| 

Comparing two texts is based on the value of 𝜭. If 𝜭 has small value, the texts are more 

similar and vice versa. If 𝜭 is close to zero, it implies the texts are very similar. Figure 5.7 

shows the cosine similarity between the two vectors v1and v2. 

 

The plaintext and ciphertext pair are used as numerical bits vectors, by calculating the 

cosine similarity of the two vectors, then finding the mean of the cosine similarity as the 

following: 

Cosine similarity = 1 − Cosine distance 

 

 

Figure 5. 7 Cosine similarity between two vectors V1 and V2 

       

Table 5.18 compares the cosine similarity results of MICKEY 2.0.85 and MICKEY 2.0 

for multiple plaintext and ciphertext pairs. The results were obtained by using 132 

sequences of length 106 bits for MICKEY 2.0.85 and MICKEY 2.0. MICKEY 2.0.85 has 

less similarity between the plaintext and ciphertext. For both MICKEY 2.0.85 and 

MICKEY 2.0 the Mean Cosine Similarity are far from zero, thus they are both immune 

from this kind of attack. 
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Table 5. 18 MICKEY 2.0.85 and MICKEY 2.0 results by applying cosine similarity 

Methods Mean Cosine Similarity STD Cosine Similarity 

MICKEY 2.0 0.8472 0.0225 

MICKEY 2.0.85 0.8418 0.0298 

 

5.11 Discussion of results and analysis 

The proposed MICKEY 2.0 variant called MICKEY 2.0.85 is suitable for RFID tag usage 

as the tags have limited size and power consumption. MICKEY 2.0.85 is also suitable for 

small devices and microcontrollers. In tests for encryption and read required time 

(microseconds as seen in Table 5.16) by an Intel i3 processor with speed 2.53 Ghz, 

MICKEY 2.0.85 was 23.36% faster. The result is a good security improvement for RFID 

technology and IoT technology in general. 

 

The scaled down MICKEY 2.0.85 version is 23.36% faster than the original MICKEY 2.0 

and uses 16.202% less power than MICKEY 2.0, which was achieved by reducing the 

number of GEs by 12.45% (as in Table 5.17). The suite of NIST randomness tests 

confirmed that MICKEY 2.0.85 was slightly more random than MICKEY 2.0, hence 

MICKEY 2.0.85 is resistant against attacks, especially statistical attacks which target the 

keystream, internal state and ciphertexts. 

 

Further reduction may be achieved, however it is important to ensure it does not 

compromise the security, and NIST randomness tests can help to evaluate that. The 

reduced version was based on many experiments and statistical evaluations to derive the 

optimal possible version. In MICKEY 2.0.85 the internal state was reduced by 30 bits to 

170 bits, as the MICKEY 2.0 internal state has 200 bits. Further reduction should be limited 

within the range of 160 bits to 170 bits, as the general security rule is the internal state 

should remain at least twice the key length. 

 

The methodology in this chapter for introducing a MICKEY 2.0 based version can inspire 

further improvement in lightweight cryptography. For example, the same methodology can 

be implemented to create lighter variants for other lightweight stream ciphers. Designing 

new lightweight stream ciphers is important with increasing use of IoT technology. 

Nevertheless, optimising and improving the current lightweight stream ciphers, which 

have a reasonable level of security, is still crucial. 
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The importance of statistical randomness tests is emphasised in the current literature, as 

well as in this study. Chapters 3, 4 and 5 show the use and value of statistical testing and 

modelling, including NIST tests, to investigate and provide detailed explanation and 

results. The tests showed how MICKEY 2.0.85 is resistant against two statistical based 

attacks. 

 

Another possible area worth investigating is the reduction in specific register. For example, 

for S the nonlinear register, a future research direction is to work around the internal state 

of length within the range of 160 bits to 170 bits, and make S length > R length and apply 

the NIST tests to measure the level of randomness. It may also be worth modifying taps 

positions in R-Masks, COMP0, COMP1, FBO and FB1 to determine the best version 

which satisfies desired randomness requirements, power consumption, fewer GEs and 

keystream generation speed, which has already been achieved in MICKEY 2.0.85. 

 

5.12 Conclusion 

This chapter has introduced a lighter, secure and faster version of MICKEY 2.0, called 

MICKEY 2.0.85, which uses less power, making it more suitable for IoT applications. All 

tests and performance measurements were applied to ensure MICKEY 2.0.85 is an optimal 

version that has a good trade-off between security and suitable features for IoT 

implementation. The proposed MICKEY 2.0.85 cipher is an important contribution to the 

current literature of lightweight encryption methods enhancement. 

 

The proposed version MICKEY 2.0.85 is compared to existing lighter versions of other 

stream ciphers such as Trivium as there are many reduced and optimised versions, 

including the recent Micro-Trivium. 

 

The following chapter implements MICKEY 2.0 in an IoT field of mobile cloud 

computing. It presents a secure protocol for mobile device communication over an insecure 

communication channel. 
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Chapter 6: Mobile cloud computing and FEATHER, a 

proposed lightweight security protocol 

 

6.0 Chapter overview 

This chapter develops a lightweight security protocol called FEATHER for use in securing 

mobile cloud computing communication. The outline the sections of the chapter are: 

section 6.1 the essential introduction, section 6.2 provides a brief background in cloud 

computing, section 6.3 introduces the proposed lightweight protocol FEATHER and its 

design principles, section 6.4 about the protocol implementation, section 6.5 provides the 

performance results with analysis, section 6.6 show how FEATHER is resistance against 

possible attacks, section 6.7 for the overall discussion, section 6.8 concludes the chapter. 

 

6.1 Introduction 

Cloud computing, and the related mobile cloud computing, are large and growing fields. 

The continuous and exponential [191] growth of mobile devices in quantity and quality 

means mobile cloud computing is gaining more attention as it serves important 

applications such as mobile learning, mobile commerce, mobile gaming, eHealth 

applications and web searching [9]. Furthermore, the limitations of personal computers 

and devices’ computation abilities generates the need for more powerful computation 

resources. Cloud computing facilities provide more powerful and affordable personal 

usage. As cloud computing providers are continually improving their services, new 

providers are likely to join this growing market which will create competition, which is 

beneficial for the service users, thus an essential requirement is the security of client data. 

 

Mobile cloud computing is an active and important research area as it supports people 

using the internet for communications, at any time and at any place, by using the storage 

and computer activities which can be done by adapting mobile cloud computing [192]. 

Mobile phones have become very widespread and are a major part of daily lives. According 

to “Statatisa” based on more than 22,500 sources, the number of mobile devices in 2015 

was 2.15 billion, 4.3 billion in 2016 and 4.57 billion in 2018, with a prediction of 4.78 

billion devices in 2020 [193]. With many devices connected to each other via big networks, 

there is a threat of attacks which requires the use of good security protocols. Because users 
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need to communicate confidentially, especially sensitive information transmitted through 

insecure communication channels such as Wi-Fi, 3G and 4G, encryption systems suitable 

for these devices are needed. It is important to design a protocol to ensure confidentiality 

and effectiveness, considering the following requirements: 

 

1. Speed 

2. Ensuring identity 

3. Ensuring confidentiality 

4. Compatibility with mobile devices 

5. Effective communication between cloud server and mobile devices through a 

communication channel which is not safe. 

 

Companies such as Google, Microsoft and Amazon provide platforms for cloud computing 

users. For example, Google provides services such as Google Maps which can be accessed 

from mobile phones for navigation and location searching and sharing [194]. Amazon 

provides services such as EC2 for computing and S3 for storage and they introduced 

services based on users’ demand to customise their service according to the users’ 

requirements [195]. Microsoft provides their version of cloud computing called Azura. 

Cloud computing related security concerns such as confidentiality, integrity and storage 

are important challenges [196]. 

 

In this age of advanced communications technologies and growth in using communications 

devices, the demand for privacy and security of systems to ensure the transfer of 

confidential information is also growing. Many cryptosystems meet this demand, however 

some of them need a large computation capability. Advanced Encryption System (AES) is 

widely used as it is considered a very strong and secure cryptosystem [197]. However, it 

is a “heavy” system which requires large computation resources and power consumption, 

and is not suitable for small devices with limited computation capacity such as mobile 

devices. 

 

As AES is the first choice to be used, and due to the need to use a similar cryptosystem in 

small devices, some researchers have introduced lightweight versions such as ALE [198] 

as AES needs more resources such as more central processing units (CPUs) and memory 

to generate the keystream. Some components in cloud computing such as embedded 

systems on cloud computing with 32-bit, 16-bit and 8-bit microcontrollers usually struggle 
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to keep up with real time demands for conventional methods of cryptography [199], 

therefore AES is not a good solution for many embedded devices in cloud computing that 

have a small computation ability. 

 

6.1.1 Cloud computing 

There is a current need to adopt a lighter encryption method in cloud computing, and 

lightweight stream ciphers can be implemented to provide the required security. 

Lightweight stream ciphers are schemes of encryption that include a decryption function 

as well as an encryption function with the capability of handling messages of arbitrary 

length. Thus, they are better than block ciphers such as AES that only handle inputs of a 

fixed length (flexibility is important). Due to their functionalities, they are well adapted to 

low bandwidth or noisy communications and thus are a good solution particularly in cloud 

computing. Speed, memory, number of CPUs and cost efficiency are important factors 

[200]. Chapter 5 proposed a MICKEY 2.0 variant, MICKEY 2.0.85, as the preferred choice 

rather than other lightweight stream ciphers as it needs less size and has less energy 

consumption, which in turn is cost efficient [201]. However, the protocol can be adapted 

to implement other lightweight ciphers such as Trivium or Grain. 

 

Lightweight stream ciphers are an important security tool for IoT applications, such as 

RFID tags, which have a very constrained environment which can adopt small and 

lightweight cryptosystems [202]. 

 

Now mobile device users can use the mobile device terminal to send files to a server to get 

a cryptographically secure keystream, and also use mobile communication with other 

mobile devices through Wi-Fi, 3G, 4G and the imminent 5G. This circle of 

communications between mobiles and servers also needs to be achieved in a secure 

manner. A secure protocol is needed which can be implemented in mobile devices for 

secure communication between mobile devices and between mobile devices and a server. 

 

6.2 Background for mobile cloud computing 

Data transfer between two mobile devices and transfer from a mobile device to the cloud 

needs to be done securely, as there are multiple communications through different 

channels, such as the Wi-Fi network, 4G and 5G. Because those channels do not provide 
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the necessary security, there is a need to establish a secure protocol for data transfer 

through this unsecure communication method. The privacy and integrity of files and data 

must be guaranteed and maintained in all aspects of communications. 

 

As mobile devices have limited computation power, it is hard to address all security 

cryptosystem tasks. Bahl et al. [203] published a short study based on cloud computing 

and mobile computing and debated the importance of leaving the offloading tasks to be 

done in an external application which can be carried out by an external server. They 

proposed a mobile cloud computing enterprise that consists of four elements: mobile 

devices, wireless core, Wi-Fi access point, and regional information centres (RDC). 

 

In addition to the limited computational capabilities in mobile devices, battery 

consumption due to heavy computation adds another challenge which makes mobile cloud 

computing a good solution. Kumar et al. [204] showed that mobile computing could save 

energy by offloading some tasks to the cloud server such as battery life and wireless energy 

which is used for transferring the data in some applications, however some applications 

are not energy efficient. 

 

Bahrami et al. [205] studied the adequacy of using AES in mobile cloud computing. and 

explained the cost and how cryptosystems such as AES are beyond the ability of mobile 

devices to handle. By studying the current methods provided they showed that, in the case 

of mobile cloud computing, when considering that mobile devices have limited resources, 

such as limited power energy, low speed processors and tiny RAM capacity, it is not a 

good approach to use AES as the encryption technique for each file once offload/download 

is done for every single transferred file. Therefore, they introduced a lightweight method 

such as pseudo-random permutation based on chaos systems [205]. Another solution for 

this challenge is lightweight security methods that provide a balance between maintaining 

energy efficiency and security. A lightweight security technique can be considered an easy 

operation, in this regard permutation, instead of using complicated and expensive 

operations when using secret key or public-key encryptions [206-208]. 

 

6.2.1 The advantage of using stream ciphers in small devices 

A stream cipher is a symmetric cryptosystem which uses the same key for encryption and 

decryption. Stream ciphers can transform data faster than other ciphers such as block 
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ciphers which is another branch of a symmetric cryptosystem, and also faster than ciphers 

in an asymmetric cryptosystem [16], [209].  

 

Stream ciphers are less secure than other symmetric and block cipher types of 

cryptosystems such as AES which is known as one of the most secure ciphers. The 

encryption process in AES involves permutations and a substitution process and a number 

of rounds which need more power and storage space. On the other hand, lightweight stream 

ciphers such as MICKEY 2.0, Trivium and Grain [210] need much less power and memory 

which is attractive for small applications and devices. When looking for suitable ciphers 

for small applications, widely used lightweight stream ciphers include E0 used in 

Bluetooth, RC4 in Web, and A5 family in GMS [16]. In addition, in a small device, such 

as a RFID tag, mobile and microcontroller, the large throughput generated by the cipher 

needs to be offloaded to the cloud even for more recent mobile devices due to the need to 

encrypt a large file quickly [211]. Furthermore, it can be used for noisy channels and cases 

with low bandwidth [212], making them the optimal choice for mobile cloud computing. 

Stream ciphers have advantages due to their high throughput property and low 

computational complexity. Lightweight stream ciphers [213] are a better choice than block 

ciphers as they need less memory and less hardware complexity. 

 

6.2.3 Using lightweight stream ciphers in cloud computing and mobile cloud 

computing 

Lightweight stream ciphers have several advantages for cloud computing. They provide 

fast encryption by generating the secure keystream faster than other popular ciphers such 

as AES. They need fewer computation facilities such as CPUs and memory required in the 

cloud which reduces the cost and the power consumption significantly. Microcontrollers 

in the server with 8-bits and 16-bits make it hard to achieve the heavy computation power 

using cryptosystems such as AES.  

 

In addition to the advantages of using lightweight encryption in cloud computing, 

additional benefits in mobile cloud computing include helping more mobile devices to 

communicate as the encryption is fast, consumes less battery power, and needs less 

bandwidth.  
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6.2.5 AES and CLOAK protocol 

CLOAK is a lightweight protocol based on the AES cipher which enables two mobile 

devices to communicate with each other, while leaving the keystream generation on an 

external server (AWS in their implementation) [214]. As CLOAK can get the keystream 

from either trusted or untrusted external servers, the main security concern in 

implementing the protocol is to protect the keystream. Security can be compromised by 

fetching the keystream from an external server and from communication media.  

 

Lightweight stream ciphers which can be used in mobiles include Trivium [116], Grain 

[117] and MICKEY 2.0 [215]. The advantage of using MICKEY 2.0 cipher over the others 

is that it is more resistant to statistical attacks [216], with no successful algebraic attack so 

far [217], [218]. It can also produce large throughput. The lightweight protocol developed 

here does not rely on the server to be secure and will not be compromised as in the CLOAK 

protocol which assumed the security of the server relies on the server provider [214]. Using 

MICKEY 2.0 in this lightweight protocol to provide a secure keystream is significantly 

faster than using AES for example, reducing the time needed by the server to generate the 

keystream which in turn reduces the time to transfer the data between the server and the 

mobile. If multiple mobile devices need to connect to the server at the same time, that will 

significantly reduce the overall time to transfer information between the mobiles and the 

server. The external server is usually used for complex operations that require large 

processing capacity and large computational capabilities. In this case, the lightweight 

protocol needs to offload producing a secure keystream task. 

 

It may use two external servers: one is to produce a keystream, and the second is to save 

the keystream to avoid a breach of the server. This adds another security dimension for 

sensitive information. 

 

6.2.6 Motivation and challenges 

To meet the security challenges, as well as the demand for a lighter security protocol to 

save time and address computation power, device hardware limitations and battery 

consumption, the research questions to answer are: 

1. How can MICKEY 2.0 be implemented efficiently to secure communication between 

mobile devices in mobile cloud computing? 
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2. How can the performance of a new security protocol be evaluated against the existing 

protocol? 

3. How can a clear justification be provided that the new proposed protocol is immune 

from possible attacks? 

 

The aims are to: 

• Implement MICKEY 2.0 efficiently to secure communication between mobile 

devices in mobile cloud computing. 

• Evaluate the performance of the new security protocol against the existing protocol. 

• Provide a clear justification that the new proposed protocol is immune from 

possible attacks. 

 

6.3 The lightweight protocol FEATHER 

This thesis research designed a MICKEY 2.0 cipher based protocol, called FEATHER, to 

strengthen confidentiality and protection during messaging between mobile devices as well 

as communication between devices and the cloud server, see Figure 6.1. The MICKEY 2.0 

cipher produced a secure keystream in the external server to reduce reliance on mobile 

devices which have limited computing power and memory. The role of mobile devices is 

only encryption and decryption which provides mobile devices with the ability to compute 

and reduce energy consumed by the device battery.  

 

 

Figure 6. 1 Communications between mobiles and external server – FEATHER 

protocol 
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A lightweight secure protocol is introduced to communicate between devices and the 

external server over the cloud, as well as design applications on mobile devices for the 

process of verification and encryption and decryption. The proposed protocol is faster and 

moves larger files compared to the CLOAK cipher [214]. The protocol also maintains a 

high level of security. A protocol was designed to achieve security through the application 

of the MICKEY 2.0 cipher with additional protection systems for identity verification such 

as hash functions, time stamp, and out-of-band password. 

 

A lightweight stream cipher is needed for important reasons such as generating the 

keystream faster, and using fewer resources, such as CPUs and memory, so more secure 

applications can be created to take advantage of advances in mobile cloud computing. If 

the keystream generated in the server is faster, it will allow more mobiles to get it from the 

cloud compared to a heavy encryption system like AES. Thus it will be more efficient and 

will greatly reduce costs. For example, using MICKEY 2.0 meets most of these needs. 

 

6.3.1 FEATHER protocol design principles 

The concept is that person A wants to share some secret information with person B. Person 

A might be using a mobile device and may want to share chat messages, image files, etc. 

Alternatively, Person A may have several simple IoT devices (microcontrollers) and want 

them to report back sensor data. Person A considers the information private or sensitive 

and wants to prevent a third part from intercepting the data. 

 

There are nine design principles for a lightweight protocol. 

 

Principle 1 Avoid implementing a heavy encryption method 

As some popular encryption algorithms, such as AES, require considerable resources in 

terms of CPU time and/or memory usage, the aim was to design a protocol that offloaded 

the more computing-intensive steps to a server in the cloud, while simplifying the steps 

carried out on the mobile device. Therefore, a lightweight protocol, from the viewpoint of 

the mobile device, can offload generation and storage of the keystream to a server using 

the MICKEY 2.0 algorithm. 

 

 

 



131 
 

Principle 2 Avoid relying entirely on the server 

It is important to avoid relying entirely on the server to ensure the security of the 

communication. Even if an adversary compromises the server, they cannot easily use the 

captured keystream data to decrypt messages directly. Therefore, the following is 

considered. Although the client receives a keystream from the server, the client does not 

use it directly. Instead, the client selects a few random values using primitive polynomials 

to apply the keystream to the plaintext to compute the encrypted data. 

 

Principle 3 Send messages between the client and server over the internet 

The protocol must assume an adversary may intercept messages, or an impostor may try 

to insert invalid messages in the client–server communication. One popular approach 

would be to use a key-exchange algorithm, such as Diffie–Hellman (which is vulnerable 

to a man-in-the-middle attack), or a more sophisticated Station-to-Station protocol [219], 

which avoids this vulnerability. Both of these approaches require significant computation 

that may not be appropriate for simple mobile or microcontroller devices. This protocol 

needs to assume the ability to send brief out-of-band messages using a different 

communication medium. For example, if the protocol is implemented on top of the HTTP 

protocol, a secret out-of-band message may be sent by email or SMS. In this protocol, an 

out-of-band message is sent from the server to the client to convey a one-time-pad, and 

from one client to another client to convey a file token and secret values (using primitive 

polynomials) used to step through the keystream. 

 

Principle 4 Focus authentication on unique security parameters 

For authentication, this protocol uses a “bring something, know something” technique. The 

protocol assumes each mobile device (or microcontroller device) has a universally unique 

identifier (UUID). It also allows each user to select a username that is not necessarily 

unique. These are combined using a hash function to generate a unique identifier (UID) 

for each user. At the initiation of the protocol, each user registers their UID and then 

communicates an encrypted copy of their secret password to the server. 

 

For subsequent communication, all messages between the client and server are validated 

using a digital signature based on hashing the message and the secret password. In this 

case the “bring something” refers to the device and its UUID and the “know something” 

refers to the user’s secret password. Since an adversary does not know the secret password, 
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it cannot generate a valid signature, so the client and server can reject messages with 

invalid signatures. 

 

Principle 5 Secure the communication between the client and the cloud server 

To secure the communication between client and server, they rely on a shared keystream. 

This shared keystream is first generated by the server when the client sends a message to 

register the user. In its response to the client, the server sends the shared keystream, 

encrypted with the one-time-pad, to prevent an adversary from capturing the keystream. 

 

Principle 5 Offload the keystream generation to the cloud server 

The server implementation may use any reasonable technique for keystream generation. In 

practice, a method is needed that is computationally efficient and still provides a reasonable 

level of security. To generate a new keystream for each user, the server must first create 

an initial key (or key+IV pair). 

 

Principle 6 Ensure client request for the keystream from the cloud has time 

authentications 

When the client submits a request to generate a new keystream, it includes a token and 

expiry time. There are two possible implementations. The server may simply generate and 

store a key, and then generate the actual keystream “on the fly” whenever it is requested. 

Alternatively, the server may generate the keystream right away and store it as a file, to be 

retrieved later when the client submits the corresponding token. The expiry time allows 

the client to limit the time the keystream is stored on the server. This reduces the 

availability of the keystream if an adversary tries to compromise the server.  

 

Principle 7 Ensure there are possible and flexible variations for secure data transfer 

To enhance the security of the protocol, the server never has access to the unencrypted 

data. The data is encrypted by the client, using a modified version of the keystream, and 

the modification is unknown to the server. When transferring encrypted data from one 

client to another, there are three main options available. 

 

1.      In one variation, since the data is securely encrypted, the file can be uploaded 

to any simple file server. This may provide an increased level of security, since it 

introduces a separation from the keystream server and the file server. In fact, clients 
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would be free to use a variety of different file servers to transfer encrypted data 

files, as long as these are communicated between the sender and receiver. 

 

2. In a simpler implementation, the clients can upload or download the encrypted data 

to the server, and are identified by a unique token. This token can be generated pseudo-

randomly to make it difficult to guess. Any other client can download the encrypted file, 

asynchronously, once it receives the appropriate token from the first client. Some 

efficiency can be gained if the file upload/download is implemented on the keystream 

server, since the same protocol mechanism could be used to download a keystream (given 

a token), or to download encrypted data (given a token). In fact, once a keystream is 

generated and stored as a file, the keys used to generate the keystream could be deleted, 

reducing the vulnerability of the protocol. 

 

3. In the third option, the encrypted data could also be transferred directly and 

synchronously from one client to another. This approach could make sense when a pair of 

clients wish to send and receive a number of smaller messages, as in a secure chat session. 

This can be accomplished first by generating and downloading a keystream, and then 

sending encrypted messages back and forth, without requiring an intermediate file server. 

 

Principle 8 Modify the keystream to further enhance the security 

For efficiency, the client uses a keystream generated by the remote server, but for security, 

the keystream is modified in a way unknown to the server. In particular, the client 

randomly selects a small number of parameters that describe a particular pseudo-random 

permutation of keystream values. By sharing these secret permutation parameters with the 

other client through an out-of-band communication, the other client will be able to decrypt 

the encrypted file. 

 

Principle 9 Ensure data in the cloud server is tied to expiry time 

The security of the protocol is enhanced by reducing how long information is retained 

before being deleted. Both the keystream and encrypted files have an associated expiry 

time, after which the server deletes them. This reduces the information that is exposed if 

the server is ever compromised. 
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6.4 Protocol implementation 

This communication protocol enables mobile devices with limited computational resources 

to share encrypted files with the help of an external server with greater computing, storage 

and bandwidth resources. 

 

The protocol uses two communication channels. The first channel is assumed to be 

insecure, such as the internet, using HTTP to transport messages between the mobile 

devices and the external server. The second channel carrying “out-of-band” messages is 

assumed to be secure and could be implemented using SMS messages to mobile devices, 

with possible alternatives of email. 

 

The first channel allows mobile devices to initiate six actions, by sending a message to the 

external server and receiving a response. 

 

The second out-of-band channel is used to send and receive three kinds of secret 

information: 

• a one-time-pad, which could use a more secure parameter instead with justification 

• a file id 

• a token id (and some additional parameters). 

 

The protocol also uses a cryptographic hash function, such as SHA-256 which outputs a 

32 byte hash value. For distinct pairs of strings s, t, we have H(s) != H(t) (with very high 

probability). 

 

Messages in the protocol are simply concatenated key=value pairs of parameters. 

Each of the 11 possible parameters is identified by a unique character: 

 a = action 

 s = status 

 c = code (error code) 

 u = uid 

 p = phone 

 f = token or file 

 d = data 

 n = number 
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 e = expire 

 t = timestamp 

 x = signature 

 

The timestamp is Unix time in seconds, and can help prevent “replay attacks”. The 

cryptographic signature is a hash of the entire message string (before the signature is 

added) and is used to authenticate messages. 

 

The six actions and messages are: REGISTER, UPDATE, VALIDATE, GENERATE, 

UPLOAD, and REQUEST. 

 

1. REGISTER 

The person using the mobile device app provides a username (eg, “Jason”). The device 

hardware is also assumed to have a unique hardware identifier (eg, DeviceID). The mobile 

app combines these strings using a hash function to get a unique id that can be sent to the 

external server, without revealing any private information. 

 

 uid = H(device-identifier, username); 32-byte value 

 

The mobile device also has a telephone number at which it can receive an out-of-band 

message via SMS. 

 

The person registers an account on the external server by sending a message: 

 

 a = register 

 u = uid 

 p = phone 

 t = timestamp 

  

When the external server receives this message, if no account exists for that uid, a new 

account is created, and this message is sent back: 

 

 s = OK 

 t = timestamp 
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If an account already exists for that uid, the server responds: 

 

 s = ERROR 

 c = code (indicating type or error) 

 t = timestamp 

 

If an account already exists for the given uid, the person needs to pick a new username, to 

create a different uid. 

 

 ONE-TIME-PAD via SMS 

 

Following a successful REGISTER message, the external server sends a one-time-pad to 

the mobile device via an out-of-band channel using SMS to the phone number provided. 

The person would need to cut-and-paste this string into the mobile device app to be stored. 

 

2. UPDATE 

In the mobile device app, the person also provides a password (eg, “MySecret”) which 

provides a type of “bring something, know something” security. 

(bring something = mobile device; know something = username, password) 

 

The user’s simple password is combined with the uid to create a “hashed password”, which 

will be sent to the external server. 

 

 pass = H(uid,password) 

 

The hashed password is encrypted using XOR with the secret one-time-pad. The entire 

message (before the signature) is hashed to create a cryptographic signature for 

authentication. 

 

 a = update 

 u = uid 

 d = XOR(pass, OTP) 

 t = time 

 x = H(message) 
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The external server confirms the validity of the message by recomputing the signature, and 

then decrypts and stores the hashed password in the account. The response is either OK, 

or ERROR. 

 

3. VALIDATE 

This message is optional, but useful for debugging purposes when implementing this 

protocol for the first time. The mobile device sends the following message asking the 

external server to confirm the hashed password and signature are valid. 

 

 a = validate 

 u = uid 

 d = XOR(pass, OTP) 

 t = time 

 x = H(message, pass) 

  

The external server decodes the hashed password, recomputes the signature, and responds 

with OK or ERROR. 

 

4. GENERATE 

The mobile device provides a unique 32-byte token and asks the external server to generate 

a new encryption key that will be used to generate a keystream of “number” bytes that will 

be stored until a given “expire” time. The unique token is created by hashing the uid, expire 

and timestamp. 

 

 token = H(uid,expire,timestamp) 

 

The token is XOR-encrypted with the shared-keystream. The message sent to the server 

has these parameters: 

 

 a = generate 

 u = uid 

 f = XOR(token,shared-keystream) 

 n = number (of bytes in the keystream) 

 e = expire 

 t = timestamp 
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 x = H(message, pass) 

  

The external server generates a random MICKEY 2.0 key (20 bytes of key+IV). There are 

two implementation-dependent choices: 

• The server can simply store the 20-byte in association with the token and generate 

the keystream on-the-fly when requested, or 

• The server can generate and store the keystream, and then discard the 20 byte key. 

With this option, the token becomes equivalent to a file-id and the keystream 

becomes equivalent to the file contents. 

 

5. UPLOAD 

The mobile device asks the external server to store a file by providing a 32-byte file-id, the 

encrypted contents of the file, and an expiration time, after which the file will be deleted. 

The unique file-id is created by hashing the uid, filename, expire and timestamp. 

 

 file = H(uid,filename,expire,timestamp) 

 

The file-id is XOR-encrypted with the shared-keystream. The mobile device sends a 

message with these parameters: 

 

 a = upload 

 u = uid 

 f = XOR(file, shared-keystream) 

 d = XOR(file-contents, token-keystream) 

  

The external server stores the file and response with OK, or else ERROR if something 

went wrong. 

 

6. REQUEST 

A mobile device can request a token-keystream or encrypted file contents by providing the 

appropriate 32-byte token or file-id. The message has these parameters: 

 

 a = request 

 u = uid 

 f = XOR(token, shared-keystream) 
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or f = XOR(file, shared-keystream) 

 t = timestamp 

 x = H(message, pass) 

  

The external server uses the token (or file-id) to look up the requested data and sends it 

back to the mobile device. 

 

 s = OK 

 d = XOR(token-keystream, shared-keystream) 

or d = XOR(file-contents, shared-keystream) 

 t = timestamp 

 x = H(message, pass) 

  

The protocol assumes the first mobile device (the sender) is able to communicate the 

“token” and “file” to the second mobile device (the receiver) through a secure out-of-band 

channel, here assumed to be sending an SMS message. 

 

In addition, it is important the communication remains secure even if the external server is 

compromised by an adversary. Therefore, the token-keystream is not used directly to 

encrypt the file contents, since someone with access to the server could easily decrypt the 

file. 

 

Instead, the first mobile device must pick several random numbers R1, R2, R3, ... that are 

used to walk through the bytes of the token-keystream in a deterministic but difficult to 

predict order. These sets of random numbers must also be communicated to the second 

mobile device through a secure out-of-band channel. For example, for a token-keystream 

with length N=2k-1, which is a prime number, the index of the next byte to be used could 

be calculated: 

 

 index(i) = R1 mod N 

 index(i+1) = (R2 * index(i) + R1) mod N 

Appendix 6 provides a sample of previous FEATHER operations. 

 

The mobile app was designed by using Android studio, then the app was transferred as a 

file to be converted as a mobile local app. The code was written in Java on the Android 
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studio platform which works on the major operating systems of Windows, MacOS and 

Linux. Tables 6.2–6.5 show the computations by the app after it was installed in five 

different Android-based devices. Table 6.1 summarises the devices’ specifications.  

 

6.5 Results and analysis 

The protocol performance is measured based on two items: the overall speed as presented 

in the following tables, and battery consumption. 

 

6.5.1 FEATHER speed performance 

Five different mobile devices with Android-based operating systems, shown in Table 6.1, 

were used to test the protocol performance. The total time from downloading the 

keystream, encryption and writing to storage was measured.   

 

Table 6. 1 Specifications of five mobile devices used to test FEATHER 

 
D-1 D-2 D-3 D-4 D-5 

Model 

Name 

LG V20 Huawei 

Nova 3e 

Samsung 

Galaxy S9+ 

Samsung 

Galaxy A6+ 

Lenovo M10 

Tablet  

OS Android 7.0 

Nougat 

Android 

8.1 with 

EMUI 8.0 

Android 9.0 P Android 8.0 

Oreo 

Android 8.0 

Oreo 

API 

level 

24 26 28 26 27 

CPU Quad-core 

2.15GHz + 

1.6GHz 

Quad-core 

2.36 GHz 

Octa-core 

(4×2.7 GHz & 

4×1.7 GHz) 

Octa-core 

1.8Ghz 

Octa-core 

1.8GHz 

Chipset Qualcomm 

Snapdragon 

820 

HiSilicon 

Kirin 659 

Qualcomm 

Snapdragon 

845 

Qualcomm 

Snapdragon 

450  

Qualcomm 

Snapdragon 

450 

RAM 4GB 4GB 6GB 4GB  3GB 

GPU Adreno 530 Mali-T830 

MP2 

Adreno 630 Adreno 506  Adreno 506 

  
Battery 3200 mAh, 

Li-Ion 

3000 mAh, 

Li-Polymer 

3500 mAh, 

Li-Ion 

3500 mAh, 

Li-Ion 

4,850 mAh, 

Li-Ion 

Polymer 

 

Table 6.2 shows the total time average for the five different devices. The LG V20 device 

was the slowest at 18.44169 seconds, however it was very fast for 8 MB file size. The 

Samsung Galaxy S9+ device had the fastest total time average (for Download, Decode and 
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Write) at 10.34381968 seconds. The total time for all five devices was 71.64568994 

seconds and the average was 14.329137988 seconds.  

 

Table 6. 2 Running 8 MB file 60 times and taking the average time (in seconds) for 

five different devices 

 
D-1 D-2 D-3 D-4 D-5 

Device 

Model 

Name 

LG V20 Huawei Nova 

3e 

Samsung 

Galaxy S9+ 

Samsung 

Galaxy A6+ 

Lenovo 

M10 

Tablet  

Download 18.08334 11.594383  10.162450 17.28501 13.083983 

Decode 0.13299 0.090583 0.08720308 0.1512014 0.1143399 

Write 0.22536 0.12371666 0.0941666 0.2327666 0.1841967 

Total time 18.44169 11.80868266 10.34381968 17.668978 13.3825196 

 

In the experiments, 15 different file sizes from 1 KB to 16 MB were used to measure the 

overall performance, as shown in Tables 6.3, 6.4 and 6.5. It is clear that FEATHER can 

handle large files, and 16 MB is sufficient to transfer documents and photos. These 

calculations use the Samsung Galaxy S9+, and a 16 MB file only needs about 19.0 seconds 

for the overall time which includes downloading the encrypted file from the external 

server, decryption time and storing it to the device (write). 

 

Table 6. 3 Running 1 KB to 16 KB files and calculating time (in seconds) 

File size 1KB 2KB 4KB 8KB 16KB 

Download 0.302 0.317 0.445 0.274 0.283 

Decode 0.00321577 0.00405 0.00138742 0.00310880 0.00486269 

Write 0.092 0.066 0.067 0.071 0.086 

Total time 0.39721577 0.38705 0.51338742 0.3481088 0.3738701 

 

 

Table 6. 4 Running 3 KB to 512 KB files and calculating time (in seconds) 

File size 32KB 64KB 128KB 256KB 512KB 

Download 0.324 0.38 0.424 0.743 1.001 

Decode 0.00102811 0.00158865 0.00231273 0.00852277 0.01105330 

Write 0.085 0.066 0.068 0.057 0.052 

Total time 0.41002811 0.44758865 0.49431273 0.80852277 1.0640533 
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Table 6. 5 Running 1 MB to 16 MB files and calculating time (in seconds) 

File size 1 MB 2 MB 4 MB 8 MB 16 MB 

Download 1.684 2.957 5.439 9.625 18.664 

Decode 0.03689342 0.02132185 0.03243165 0.08367915 0.15980173 

Write 0.057 0.085 0.092 0.106 0.19 

Total time 1.77789342 3.06332185 5.56343165 9.81467915 19.0138017 

 

6.5.2 Power consumption 

An Android-based application GSam Battery Monitor [220] was used to measure how 

much of the overall battery power FEATHER will consume using a Samsung Galaxy S9+ 

with a 3500 mAh Li-Ion battery. After running GSam and the mobile app for FEATHER, 

results found that performing the operations on ten files varying from 2 MB to 16 MB 

consumed less than 1% of all apps running in the background which consumed 1% of 

battery power so FEATHER consumes only 0.0001% of battery power.  

 

6.5.3 FEATHER vs CLOAK  

The proposed FEATHER protocol is lighter than CLOAK, and is also much faster. 

Comparing the file sizes 1 MB, 2 MB, 4 MB and 8 MB shows that FEATHER is faster. 

For example, in Table 6.6, total time for file size of 8 MB is 110 seconds for CLOAK, and 

about 9.8 seconds for FEATHER. Therefore, FEATHER will be even more practical if 

multiple devices need to communicate at the same time. In addition, FEATHER consumes 

80% less battery power than CLOAK. 

 

Table 6. 6 CLOAK and FEATHER protocols: total speed time for different files 

sizes 

File size/total time in second CLOAK FEATHER 

1 MB 20 1.77789342 

2 MB 30 3.06332185 

4 MB 60 5.56343165 

8 MB 110 9.81467915 
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6.6 Attack analysis 

This section provides an analysis of common attacks, and shows how FEATHER is 

resistant to these types of attacks. 

 

Man in the middle attack 

The attacker can interrupt the data, can inject information and can redirect the traffic. This 

can be between the two devices or between the devices and the external server, so it is 

working on the communication channel. This can be prevented from occurring by 

providing strong mutual authentication and end point authentication, as the FEATHER 

protocol does, and by using hashing for messages, which is met as all messages are 

wrapped in hash functions. Thus FEATHER is immune from man in the middle attacks. 

 

Insider attack 

On the server side, if an insider can gain access to the information, the only thing the insider 

can get is the keystream. However, the message will be included in a hash function, as well 

as the one-time-pad, another secure parameter such as timestamp and random number only 

known by the mobile device users. On the mobile side, the mobile will validate the 

messages received from the server and other mobiles. 

 

Denial of service attack 

The FEATHER protocol has steps in the external server to authenticate users before 

accessing the service by 1) authentication of users’ credentials, 2) updating the accessing 

parameters, and 3) validating the users’ messages and hash functions. As the verification 

by the server and devices is mutual, a denial of service attack is not applicable. 

 

Chosen IV-attack 

The keystream is generated by using MICKEY 2.0 and (key, IV) as the initial input. In 

FEATHER, the IV is not used more than once with the same key, thus FEATHER 

eliminates this threat by preventing reusing the IV, as well as by including the IV in the 

hash function, so an attacker choosing the IV will not result in the key being revealed. 

 

Two time pad attack 

Assume there are two messages m1 and m2, if the same key (k) is used that is called two 

time pad, and there are two ciphertexts (c1, c2) then   
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                    m1⊕ k that results in c1 and       

                    m2⊕ k that results in c2 

So it is easy for the attacker to perform the XOR operation for ciphertexts in order to reveal 

the plaintext as: 

                c1⊕ c2 that is, using statistical frequency analysis leads to m1⊕ m2  

 

In the FEATHER protocol, each file was encrypted by using a different keystream as well 

as a different one-time-pad for every session and time timestamp, thus this attack is not 

applicable. 

 

Impersonation attack 

This kind of attack can happen where the attacker gains access to a mobile and requests a 

response from the server. The server will validate and authenticate the request. As mobile 

users will be using a hash function including one-time-pad (as discussed in the protocol 

implementation), the server also will hash the keystream with one-time-pad among other 

user credentials, meaning this attack is not feasible with FEATHER. 

 

Brute force attack 

As the complexity of a brute force attack in key = 80 bit in general 280, the FEATHER 

protocol used a hash function. For example, using D-3 (a user may choose other stronger 

hash functions, and that will not affect the speed performance as the slower part is the 

downloading time), the computation power relies on the implementation, and adding other 

secure parameters such as using OTP, that is similar to the one-time-pad cipher, which 

substantially raises the computation power needed to break the protocol. 

 

6.7 Discussion 

In FEATHER, downloading is the most time consuming task compared to the CLOAK 

protocol. If it requires more than two mobile devices to communicate at the same time, the 

external server generating the keystream in the FEATHER protocol is much faster than 

CLOAK. This will reduce the overall time as the decoding time is just performing XOR 

on messages with the keystream which is fast. The mobile battery lifetime is also longer. 

The proposed lightweight security protocol FEATHER will help to provide confidentiality, 

authorisation and security for users in mobile cloud computing technology and IoT 
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technology. It also helps to reduce power consumption, which will improve mobile 

applications’ overall performance. The proposed lightweight protocol was analysed 

against possible known attacks, which showed it is secure for implementation. The 

MICKEY 2.0 cipher was used as a pseudo-random number generator, however the 

FEATER protocol can be adapted to use other IV-based lightweight synchronous stream 

ciphers. The proposed MICKEY 2.0.85 in Chapter 5, which is 23% faster in generating 

pseudo-random numbers, can also be used. However, even using MICKEY 2.0 in 

FEATHER is fast enough. MICKEY 2.0.85 is useful for other smaller applications. 

 

6.8 Conclusion 

Security in mobile cloud computing is critical and is a demanding challenge. 

Improvements in this field are essential for the IoT. By developing a new lightweight 

security protocol, the FEATHER protocol will reduce cost and reduce time used in the 

external server. Therefore, it will increase the number of devices communicating at the 

same time, and will enhance mobile cloud computing applications. It will help external 

server providers serve more users, and assist more new cloud providers to join this market 

to meet growing consumer demands. The FEATHER protocol is an important step to fulfill 

the requirements for secure mobile cloud computing with internet connectivity.  

 

The following chapter continues the implementation of lightweight encryption in small 

hardware with a real-world application. It presents a secure system including prototype 

device and secure protocol for communications without internet connectivity using 

MICKEY 2.0 and the proposed variant MICKEY 2.0.85 presented in Chapter 5 as the 

optimised tools.  
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Chapter 7: Proposed security cryptosystem with proposed 

device for security application in eHealth without internet 

connectivity: Near Field Secure Data Extractor 

 

7.0 Chapter overview 

The FEATHER protocol developed in Chapter 6 requires internet connectivity. This 

chapter presents a lightweight cryptosystem with RFID technology that does not need 

internet connectivity. It provides security for extraordinary situations, such as emergencies, 

remote areas and pandemics, where internet connectivity is not accessible. 

 

Section 7.1 provides an overview of the chapter including the aim of the study and the 

contribution, Section 7.2 introduces the essential background, Section 7.3 presents the 

chosen scenario to demonstrate the proposed security cryptosystem, Section 7.4 

demonstrates the major processes for the prototype device with security protocol and 

discusses the proposed cryptosystem in an eHealth setting, Section 7.5 describes the major 

components of the prototype device, Section 7.6 outlines the RFID tag creation procedures, 

Section 7.7 discusses key management, storage and rotation, Section 7.8 discusses device 

processes, Section 7.9 discusses the emulation of the device and present device 

performance testing, Section 7.10 presents attack analysis, and Section 7.11 presents 

overall analysis and discussion, and shows other potential scenarios which may benefit 

from the cryptosystem. Section 7.12 summarises the research contributions and the 

importance of the proposed cryptosystem in security applications with RFID technology.  

 

7.1 Introduction 

This chapter describes the development of a prototype device called Near Field Secure 

Data Extractor (NFSDE), which has strong security and lightweight protocols for RFID 

tag communications [221]. RFID tags are widely used for recognition and authentication 

in sensor networks which are prominent in the internet of things (IoT). Older applications 

of the IoT suffered from an insufficient defence in low-power systems [222]. Poor or non-

existent IoT security has allowed devices to be seriously compromised via the internet 

[223]. In supermarket authentication, RFID tags require data to be transmitted without 

touch [224]. This ensures RFID tags are an easy and cost-effective validation method for 
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technologies such as pass keys, monitoring (such as product monitoring, shipping of 

products and goods) and transmitting data including package information descriptions and 

receiver directions. RFID systems offer an efficient alternative, and avoid human error 

because of the lack of manual interaction as RFID tags include prompt verification that 

can also be verified directly [225].  

 

Because of these benefits, RFID tags can improve healthcare, especially with an ageing 

population and the risk of medical errors by healthcare practitioners. Solutions should be 

sought to ensure medical information is stored safely and efficiently and to retain vital 

health documents in identification cards. Consumers have continued to ignore data 

protection and safety requirements because RFID tags are simple to use and cost-effective 

[226].  

 

Scientists have begun suggesting stream ciphers as an appealing security solution for low-

cost implementations [227]. Present stream cipher solutions typically lack authorisation, 

integrity and authentication by public key infrastructure asymmetric algorithms [228]. 

Stable key exchange  is a continuing problem in cryptography [229], [230]. While 

asymmetric algorithms should fix this issue, they need more computing resources than are 

available in small and constrained device systems. [231] selected these issues for a 

hardware solution and proposed custom hardware called Recryptor. For near-sensor IoT 

implementation, another study [232] used a specialised chip named Fulmine. This thesis 

research uses a radically different method to achieve the same goal. The approach is better 

as it uses off-the-shelf software and equipment, meaning the new method and device is 

more scalable and affordable, and available for common devices. The approach uses 

symmetric cryptosystems that are suitable for the modern key exchange approach to 

maintain privacy, authentication and integrity.  

 

MICKEY 2.0 is a lightweight stream cipher used in physical and portable applications and 

has different uses including hardware and software systems [233]. While MICKEY 2.0 

was developed to incorporate hardware, it is also suitable for software usage. Its efficiency 

and effectiveness were evaluated compared to Trivium and Grain (see [65] and [171] for 

more information). Banik [234] proved MICKEY 2.0 was not vulnerable to attacks as it 

uses an unusual combination to change its internal components, rendering it impossible to 

find R or S bits (R and S are both linear and nonlinear registers, see Section 5.5). 

Furthermore, the dynamic internal architecture offers a more robust randomness than 
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Trivium and Grain ciphers [235] to differential fault assaults. For the reasons stated earlier, 

users use the specific lightweight encryption MICKEY 2.0. There has been one recent 

encoding approach for portable, computerised devices [236] that examines eight 

lightweight different hash functions integrated in block cipher using software 

implementation. They used a passive cryptographic RFID (CRFID) to detect the basis of 

these encryption methods in their studies and proposed the MD5 hash feature as the most 

random among them.  

 

The aim of this chapter is to use a lightweight synchronous stream algorithm that fits RFID 

technology, recognising the need for low-cost, power and computation efficiency, while 

using RFID tags without internet access while taking advantage of and retaining the usual 

advantages of a public key infrastructure (see Table 7.1 for explanation). To accomplish 

this authentication framework, the chapter develops a prototype device named NFSDE, 

using the MICKEY 2.0 cipher and carried out a safe key–IV exchange. A prototype tool is 

developed. The proposed system’s device emulation includes a stable protocol for 

encryption. This device’s security relies on a reliable record keeper (R) and secure flash 

drive (USB).  

 

An example of use is a medical practitioner needing to access substantial medical records 

(for example, allergies and current conditions) where an individual (patient) is situated in 

a rural location or in a hazardous zone, and internet or cellular access is either not available 

or cannot be trusted. This medical case has been selected for this research as one example 

of how the product is used, because it has the good protection criteria and requirements as 

a demonstration method. For cases where connectivity is insecure, the definition should be 

used and modified for virtually any security sensitive application involving connectivity 

to protected networks. As internet access is not always possible, this new system can even 

be used to authenticate out-of-band for used devices. 

 

Main contributions  

1. This research proposes a protected RFID-based critical data security device named 

NFSDE. This tool is a concept which could be used directly or adjusted if desired by the 

customer. It may also be viewed as a reference for building specialised hardware with 

functionality compatible with the prototype system. 
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2. By applying the MICKEY 2.0 encryption, a secure eHealth (proof of concept) 

framework is suggested. The framework is easily adaptable for uses other than those in the 

health field. This includes a mechanism instead of using a public key infrastructure to make 

it easier to use various lightweight stream ciphers. 

3. The proposed cryptosystem is built using off-the-shelf hardware encryption and 

streamlined lightweight stream ciphers to improve RFID protection and offer comparable 

benefits to the public key exchange. 

 

4. It contributes to the creation of robust and secure key and initialisation vector (IV) 

sharing (multiple key) mechanisms as well as key management and key-update strategies 

for a secured RFID reader that are not focused on the internet or wireless communication. 

 

5. The process time of using NFSDE to retrieve 4 K of RFID content using MICKEY 2.0 

is a matter of milliseconds [221]. 

 

7.2 Background 

RFID security is challenging in current worldwide applications. RFID technology has 

become very widespread for authentication, monitoring and object tracking. It is now part 

of IoT technology. This technology uses radio waves to track objects. For instance in retail, 

it is used for goods scanning. A label containing the identification number can be scanned 

to get the price and name of the item and all related information. RFID tags can be in 

different forms including in cards, wristbands and keyfobs. Advances in technology are 

making tags smaller with more data storage capacity, and reducing the cost over time. 

 

Figure 7.1 shows the RFID main components of the RFID reader and RFID tags. Tags 

store the object information, while the reader checks and receives the tag information by 

implementing stored software. The antenna creates a magnetic range that detects tags. For 

more information about the RFID technology infrastructure, see [237], [238]. 
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Figure 7. 1 Illustration of RFID tag basic functionality 

 

There are two main types of tags: passive tags and active tags. Passive tags do not have an 

internal power source, so rely on the electromagnetic waves that come from the RFID 

reader. Passive tags are the cheapest in the RFID system. These tags are used for access 

verification, contactless payment, goods itemising and labelling for identification, and 

object tracking [239]. Active tags are self powered by an internal battery. They are more 

efficient in object tracking as they can identify the object’s status and locations. Being self 

powered they generate signals with a higher range than passive tags, and are more 

expensive than passive tags. For cost efficiency, the passive tags are more desirable for 

small verifications and tracking applications [239]. For applications for RFID tags in real-

time object tracing and location identification, especially in radio noisy environments, see 

[240]. 

 

This thesis uses an eHealth example as security and medical data protection are very 

critical in health. The eHealth scenario is used to demonstrate step by step system 

implementation. The  NFSDE device with secure protocol can be implemented in other 

situations where internet connection is not reliable.  

 

Stakeholders in eHealth implementation include patients needing medical care, and 

providers of medical care including, for example, paramedics, nurses, medical 

practitioners, medical records keepers and administrative staff. The patient may make a 

regular visit or have an urgent situation that requires a medical practitioner.  
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7.2.1 Lightweight cryptosystem  

As this thesis cryptosystem is lightweight, lightweight cryptosystems are reviewed. Using 

lightweight encryption as a security approach, where there are processes like exclusive OR 

(XOR), which are appropriate for use in smaller devices, is one way to provide fair 

protection to counterfeit attack resistance as shown in study [241] which presented a 

lightweight verification protocol for hardware deployment and clarified how their method 

can enhance protection in RFID. 

 

 Research in [18] explain the use of a lightweight encryption framework for RFID 

applications, as well as for the IoT generally and include an outline of lightweight 

encryption solutions. They also address the protection offered by every system and 

illustrate the use of software and hardware. They also demonstrate how lightweight 

encryption cryptosystems have benefits over using the traditional advanced encryption 

standard (AES). In recent decades lightweight encryption has become more popular as it 

provides substantial security and can be used in computation-restricted devices and low 

memory. Products benefitting from lightweight encryption include paypass cards [242].  

 

While some cryptosystems like AES have better arithmetic capabilities, lightweight 

encryption makes encryption faster and enables more information transfer in a shorter 

period. Lightweight encryption enables improved inter-device connectivity. The related 

research then concentrated on lightweight stream ciphers. The eSTREAM project [19], 

[65] assessed the proposals of ciphers for their suitability for software and small device 

hardware. In the final step of the eSTREAM initiative three candidates, Trivium, Grain 

and MICKEY 2.0 ciphers, were chosen for hardware deployment, however they are 

compatible with software implementation. Study [242] provides an extended description 

of lightweight cryptographic algorithms, their implementations and the classification of 

such systems in terms of their properties and specifications, such as lightweight systems 

and ultra-lightweight cryptosystem [242].  

 

Lightweight stream ciphers have been used for recognition and verification purposes. The 

goal of the chapter is to build a secure protocol with a encryption tool with a high level of 

simultaneous identity authorisation, concentrating on immunity from denial of service 

(DoS) attacks and compatibility with RFID tags [243].  
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Lightweight cipher blocks, including LBlock [244], were used for the security of the device 

with a small number of gate equivalents like 1320 GEs. Nevertheless, another study [245] 

showed a 23-round LBlock is vulnerable to attack.  

 

Mimicking the Data Encryption Standard (DES), DESL [246] lightweight block cipher 

was developed to be a similar lightweight encryption cryptosystem to have consistency 

with the RFID tags, and it was designed to be an alternative competitor to the lightweight 

stream cipher in the eSTREAM project, which is 25% smaller than DES (45% less than 

AES) [247].  

 

In situations where the key is reusable and saved for encryption, the data has to be 

protected. In this sense, the use of electrically erasable read-only programmable memory 

(EEPROM) is one of the methods suggested. This method has been contrasted with other 

storage techniques which were introduced in [248].  

 

For low-power computation hardware, many realistic real-life implementations such as 

RFID tags, need effective encryption. The first to use MICKEY 2.0 as an encryption 

method was Babbage and Dodd [215]. Depending on the cost effectiveness of RFID tags, 

they must be tracked, checked and modified to maintain their protection [249], which made 

this technology effective in securing information with affordable cost. This thesis research 

uses the identification device, NFSDE and MICKEY 2.0. With the aid of a microcontroller, 

such as Raspberry Pi, that is paired with a RFID reader and a fingerprint reader, RFID tags 

can now be verified without the need for internet access.  

 

7.2.2 Physically Unclonable Functions  

Physically Unclonable Functions (PUFs) [249] designed for resource-controlled protection 

became an important research and industrial improvement area. However, PUFs are not 

suitable for this current use, as PUF products available for the market are still 

environmentally responsive and are not cost-efficient. PUFs may not have compatible 

security under severe conditions. Due to the focus on the eHealth scenario which needs to 

be suitable for unfavourable circumstances, PUFs are not included in this architecture. 

Recent work demonstrates potential to mitigate this problem [250], [251]. Appendix 7.3 

provides more detail on PUF usability with NFSDE and explains improved future PUFs.  
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7.3 eHealth as case study and illustrative scenario 

An example of an eHealth RFID based system includes tracking the performance of 

students in universities by integrating RFID towards their state of health. These provide 

patient history, health reports and relevant clinical details such as blood pressure and 

medication scripts [252]. eHealth applications require strong protection. However, if 

internet communications are untrustworthy, potential risks by attackers will be aggressive 

[253] because the current protocols have to be adapted in order to resolve connectivity 

problems and to include cryptographical methods suited to this case. Nevertheless, they 

offer approaches on open and untrustworthy networks in their study [253] whereas the 

system developed here gives protection whenever the network is weak or absent.  

 

Researchers emphasise the value of laws and guidelines to maintain secure contact in order 

to examine emerging eHealth applications in the IoT [254] and to check further in-depth 

analysis. See [255-257] for more detail on IoT protection issues and technological 

upgrades. 

 

7.3.1 eHealth scenario description 

In some situations there is no internet connectivity such as remote places or disaster areas, 

or when internet coverage malfunctions for any reason. The security and privacy of patient 

data is still critical, as unauthorised people can delete or manipulate patient health data 

status, and sensitive information such as medical condition and medicine dosage, which 

could be life threatening. The eHealth scenario is chosen as an example for demonstration 

purposes for NFSDE devices and the security protocol.  

 

One application of implementing the RFID technology in eHealth monitoring is linking 

students’ RFID tags for their progress performance at university with their health record, 

which can include their medical history, current health status, current medications if any 

and also the relevant useful health data. Some students may have heart conditions, asthma, 

diabetes or blood pressure, and they may have prescribed medications for these medical 

conditions [252]. Where there is no internet connectivity, the proposed protocol is 

important, as the data needs to be protected considering the attacks can be more brutal, 

which can alter or modify or even delete critical health data [253]. The current protocols 

must address the communication challenges by modifying and fixing the used 
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cryptographic methods that are customised for such situations [253]. In a research study, 

[255] proposed a security solution that targets untrusted or anonymous networks. On the 

other hand, this protocol provides security in cases where the internet connection is either 

weak or not available. More insight about eHealth applications and current IoT real time 

healthcare technologies is in [254], which also emphasises the importance of establishing 

strong policies, guidance and protocols that regulate the communications to ensure 

security. [255-257] review the current security challenges in IoT applications. 

 

7.3.2 eHealth scenario process 

This section describes how to implement the proposed cryptosystem. Table 7.1 describes 

the notation used in this chapter. 

 

Table 7. 1 Notation description 

Notation Name Explanation/Notes Notation Name Explanation/Notes 

R  Medical Record 

Keeper 

This is a role and 

indicates a person 

who has privileged 

access to all data 

and cryptographic 

secrets. The person 

acts as a gatekeeper 

to sensitive data and 

authorisation.  

This role is likely to 

be fulfilled by 

multiple individuals 

depending on the 

administrative 

organisation of the 

issuing authority. 

K1e Data key 

stored in the 

SD before 

decryption 

When the provider 

enters the passcode 

for the SD(USB), K1e 

is decrypted to K1. 

P Patient Is a person in an 

emergency or a 

remote situation, 

where a reliable 

internet connection 

is not available. 

Emergency or 

rescue workers 

represent an 

appropriate use 

case. 

IV0  IV “seed” for 

the record 

keeper after 

decryption, 

which is 

considered a 

“Secret” 

IV0 is used as a 

starting point for 

generating the 

initialisation vector 

for encryption of 

authentication. It is 

XORd with a unique 

tag ID to create the 

final authorisation 

IV. For the provider, 

it is XORd with the 

provider’s unique tag 

ID to create IVrd. For 

the patient, it is 

XORd with the 

patient’s unique tag 

ID to create IVrp. 

These hashes are 

used because they 
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consume low 

power/CPU.  

D Medical 

Provider, (eg 

EMT, 

paramedic, 

nurse) 

The provider has a 

device to read the 

RFID tag of the 

patient. 

IV0e Encrypted IV0 

(in the SD) for 

the record 

keeper 

When the provider 

enters the passcode 

for the SD, IV0e is 

decrypted to IV0. 

SD Secure Flash 

Drive (USB) 

It has a “keypad,” 

which is used to 

independently 

encrypt/decrypt data 

stored therein. 

IVrp IV for 

authenticating 

patient 

signature 

Created by XORing 

IV0 with the patient’s 

unique tag ID. These 

hashes are used 

because they 

consume low 

power/CPU.  

K0 Key to 

Encrypt/Decrypt 

Patient Data 

K0 is read from the 

SD. Together with 

IVP, this is used to 

encrypt or decrypt 

patient data by using 

MICKEY. 

IVrd IV for 

authenticating 

provider 

signature 

Is created by XORing 

IV0with provider’s 

unique tag ID. These 

hashes are used 

because they 

consume low 

power/CPU. 

K0e Data key stored 

in the SD before 

decryption 

When the provider 

enters the passcode 

for the SD, K0e is 

decrypted to K0. 

IVd IV to encrypt 

authorisation 

for provider 

Is created by hashing 

the checksum of the 

provider’s PIN with 

unique ID through 

concatenation. These 

hashes are used 

because they 

consume low 

power/CPU. 

K1 Key to Encrypt 

Authentication 

(from the record 

keeper) 

Authentication from 

the record keeper is 

encrypted with 

MICKEY using K1, 

IVrp (for patient), 

and IVrd (for 

provider) 

IVP IV to encrypt 

patient data  

Is created by 

concatenating 

checksum hash of 

fingerprint template 

with unique patient 

tag ID. These hashes 

are used because they 

consume low 

power/CPU. 

Source: [221] 

 

In the eHealth scenario, as shown in Figure 7.2, the patient (P) will be given an RFID tag 

which can store around 4 KB of encrypted patient health information by the MICKEY 2.0 

cipher. There are many ways to carry the tag as the patient can use a card, wristband or key 

fob that contains the tag. The patient’s tag needs to be certified for encryption by those in 

charge of storing the medical records. 
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Figure 7. 2 Relationships between the individuals in eHealth scenario 

 

To create the patient tag, first the record keeper (R) will scan the tag to ensure ID 

uniqueness, then as a biometric security and identity measure the patient’s fingerprint will 

be scanned, the card will be read, encrypted and then signed cryptographically with the 

medical data. After that, the medical data will be written and stored on the patient’s tag. 

The patient keeps this tag to ensure that, in a medical emergency, important clinical and 

medical information is readily available for medical treatment providers. A provider (D) 

is any medical professional (doctor, nurse, EMT, paramedic, etc.) who might require fast 

right of entry to a patient’s medical information such as existing conditions and allergies. 

 

The medical provider needs an RFID tag for RFID reader activation to permit decoding of 

the patient’s medical information. The record keeper (R) creates an authorisation tag by 

confirming the provider’s identity and the provider level of authorisation (to access some 

necessary information, not all tag stored data). 

 

The provider will be supplied with a private number (PIN) that is used to encode their card. 

The identity of the medical provider and level of authorisation are encrypted and the record 

keeper will sign the previous information cryptographically. Then all this information will 

be stored with encryption on the provider tag. 

  

To view the medical record, the approved medical provider simply has to check the 

patient’s tag by scanning it, as well as scanning the patient’s fingerprint. Providers will 

have an encrypted USB drive, their RFID ID card, and a PIN to authenticate. 
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The authentication procedure has a similar process as a debit card transaction (retrieval of 

account data by the payment issuer for checking during the check-out process), but requires 

less time. Such authentication procedures only take place once a session. Figure 7.2 shows 

the details received by each of the entities (Record Keeper (R); Provider (D), Patient (P)) 

as well as the position of every person’s task. The record keeper (R) will validate the 

medical provider (D) and the patient’s (P) medical information (data) and biometrics on 

the patient’s RFID tag. The provider (D) must activate the NFSDE using their PIN and 

their RFID tag. If the individual (P) has a biometric identification matched, the medical 

provider (D) should be able to access the patient’s private medical information using the 

NFSDE. 

 

7.3.4 Proposed cryptosystem as solution for eHealth setting 

Several realistic applications need efficient encryption for low-power hardware. Cost is 

mostly the motivating factor; however, another more critical aspect includes circumstances 

where internet quality is inconsistent or non-existent. In such a scenario, sensitive data will 

need to be locally stored, safe “at rest” and open to low-power and small devices users. 

   

Encryption is an essential requirement for personal identifying information and 

confidential records, such as medical or financial information. In study [258] discuss 

implementing personal identifying information for privacy of information, in particular for 

eHealth. Notably, once a reasonably stable lightweight encryption has been created, no 

more significant advances are required for protection and privacy. 

 

An important concept of “privacy by design” is that secrecy is not a zero-sum game [259]. 

Technological constraints cannot be a justification for violating privacy. 

 

The new proposed secure framework has three elements of security: secrecy, integrity and 

availability, also known as the CIA Triad [260]). The third element, “availability”, is very 

critical, because it actually allows vital data to be accessible in cases where the internet 

may not be available as this thesis protocol provides. It is also part of “security in Depth” 

[261]. Compared to the CIA triad, the suggested program incorporates the three As of data 

security: authorisation, authentication and accountability [262]. 
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The eHealth example illustrates that technological restrictions do not always have to be a 

source of protection limitations. Data protection is critical even when connectivity and/or 

electricity is not available, for example in rural areas and in disaster situations, as well as 

during network outages or maintenance. Lightweight encryption for secure data storage 

strategies can be crucial in these circumstances. This thesis, as an indication of the 

implementation of the suggested method, finds a situation in which vital medical details 

have to be available and stored on the tag for the patient. The internet and cellular 

connectivity are unstable in this situation. Situations may include rural regions lacking 

internet connectivity or a crisis scenario where communication equipment has been 

affected. For such cases, the battery life of an activated unit, such as an RFID reader, is 

likely to be crucial, because the capacity to refresh will be restricted. Workers or security 

forces in remote dangerous areas can urgently require medical care. Gaining immediate 

access to vital medical details can help save lives. This proposed method and prototype 

was developed for circumstances (such as urgent and serious medical emergencies) where 

delaying access to critical health data would be extremely undesirable. As a consequence, 

a considerable amount of time is expended on the “up front” procedures for processing the 

data and executing verification and authorisation. However, when it is essential to access 

the data, the processes are designed in such a way as to be fast and reliable. Authentication 

and permission only take a few seconds, partly because the keystream generation algorithm 

(MICKEY 2.0) is fairly fast and partly because the number of steps required to reach the 

reader without losing protection has been reduced. The test method used MICKEY 2.0, but 

the method is expected to be true for other lightweight ciphers, such as Trivium and Grain. 

Any threat will be ineffective because the keys and the IVs are secured by a functionally 

protected tool (USB). 

 

The current protected cryptosystem is very robust. For example, the two key components 

of the MICKEY 2.0 encryption cipher implementation and the NFSDE components with 

different application modules may be adapted and changed to be acceptable for the desired 

applications, allowing users to be connected to a defined protection solution, while 

promoting consumer ease of usage and innovation. 
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7.4 Major processes of eHealth scenario setting and practical low-power 

ciphers applications 

This section explains the main processes in the eHealth scenario, why the eHealth scenario 

was chosen, as well as some other potential scenarios where the proposed cryptosystem 

can meet security needs. 

 

According to cost or performance considerations, the protection capabilities of certain 

RFID based systems are disabled. Several researchers have been able to establish 

cryptographic methods and imitate low cost hardware communication protocols [263], 

[264]. In [265] refuted the mistaken assumption that security is hard to achieve and that 

privacy is too costly which has generated an adverse circumstance that has ultimately 

influenced the whole world. The ideas and realistic recommendations outlined here prove 

that privacy and protection can be simple, cheap and efficient. 

 

The eSTREAM ENCRYPT project [65] was introduced to resolve the problems alluded to 

above. Because protection requires more than just using algorithms, a full framework is 

described to demonstrate security, privacy and authentication at low cost for a low power 

small device. This thesis suggests a novel prototype device named NFSDE, which does 

not need an internet link and enables confidential information to be read and written with 

encryption to the RFID tag in a secure way. The new framework in this thesis meets the 

existing standard practices for secrecy, integrity and availability [266] with the three As 

for data privacy: authorization, authentication and accounting. 

 

The proposed security system is intended for use in circumstances where the internet may 

be stopped for security purposes, or the internet is not accessible, such as in disaster or 

remote areas. The system concept is a prototype device that requires low power, has 

minimal memory requirements, and is lighter than a traditional computation machine. Such 

features are useful in cases of emergencies, where a portable system is needed or where 

the supply of electricity is not sufficient. Adapting such technologies has culminated in 

early adopters neglecting encryption which may harm the online community [266]. 

 

Many experiments on lightweight encryption tend to have concentrated on automatic 

object detection, for example shipping boxes, cars and robots. In research [224] the 

scholars rely on confidential personal data being given and sufficient; this inevitably 

increases uncertainty and criticality due to the presence of external human identification 
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methods, including biometric reference identification and the “eyes-on” authentication of 

the patient’s identity. 

 

The proposed prototype works as tools and processes allow time to be invested “up front” 

to approve and authenticate RFID tags. However, the read time requires just a few seconds 

and vital data can be retrieved easily in unfavourable circumstances, as shown by the 

device simulator. 

 

Since this is a standard-based tool and does not need to be tied (allowing adapting, altering 

and modification of the NFSDE components), hopefully it will encourage users to use it to 

apply protection to their own low-power ventures or to embrace these ideas and to improve 

them beyond eHealth. They may modify and alter these security features provided by the 

proposed secure system to be suitable for many applications. 

 

The eHealth scenario was chosen as it is extremely security vulnerable and demands the 

most robust protections due to privacy issues, data criticality and speed of access. The 

suggested secure framework addresses the “worst-case” situation for secrecy, integrity and 

flexibility without sacrificing the low-power requirements. 

 

7.5 NFSDE device components 

This section presents the NFSDE components used by medical providers to allow them to 

read medical records quickly and in a secure manner. The most optimal components were 

chosen to make the NFSDE perform at full potential. However, these components are an 

example to illustrate the concept of the NFSDE device, and users are free to choose 

different components as long as they are compatible to work together in NFSDE and 

perform the required and defined functionalities. The selection of the NFSDE components 

was based on cost and performance including data access speed and an overall high level 

of protection. In addition, with advanced technology, NFSDE components can be modified 

and improved which prove the prototype is flexible for alteration and adaptation. Figure 

7.3 shows the prototype contents.  
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7.5.1 NFSDE device components 

The components were chosen to be cost efficient, and to be compatible with each other, 

however, they can be replaced with cheaper components as long as they still work as one 

unit, as advances in technology will result in more powerful hardware at lower price, so 

the flexibility of NFSDE is a goal itself. The security protocol and NFSDE work together 

as a secure cryptosystem, and the NFSDE is a flexible prototype to be used as a guide for 

implementation based on users’ specific requirements. 

 

 

Figure 7. 3 Core components of NFSDE 

 

Storage – Secure USB drive 

The most challenging aspect of any security protocol is storage and delivery of the secret 

keys. A regular storage device usually is not secure as it is possible to access the device 

physically or using side channel frequencies analysis which may expose the stored keys. 

On the other hand, using external servers for key storage and exchange is insufficient due 

to no internet connection. However, the key updates and backup can be optional through 

cloud based storage services such as provided by AWS. 

 

The second challenge is tag authorisation and authentication which is a record keeping job. 

Thus, it is essential to have lightweight storage and portable devices. 

 

These challenges were overcome in this thesis proposed NFSDE device by using an 

encrypted USB device that uses passwords for access, and uses AES 256-bit for encryption 

at a low cost of around $10 [267]. It is necessary to have policies that arrange the key 

storage in the USB and not stored in the RFID reader if not attached to the USB, and the 
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USB encryption must be updated based on a regular scheduled time. Regularly updating 

the keys rotation and the USB encryption will mitigate possible attacks and security issues. 

One key recovery will not affect other keys as discussed in the attacks analysis section.  

 

Other storage devices include EEPROM [268]. Assuming EEPROM is internal not 

external, it may be used for the keys storage, however, it is not immune from the side-

channel attack [269]. Other possible tools are Physically Unclonable Functions (PUF) 

[250], [251]. The PUF is not currently cost efficient, however in the future it can be adapted 

within NFSDE.  

      

CPU – Raspberry Pi 

The central processing unit (CPU) is the heart of the NFSDE. Raspberry Pi [270] can act 

as the computer within the NFSDE. Raspberry Pi is low cost and consumes minimum 

power [271]. Thus, it is considered the optimal solution for resource constrained devices, 

and it is also used for cryptographic implementation in blockchain [272]. 

 

Although small components were chosen for the NFSDE device, the potential 

implementation of the secure protocol does not require all the power the Raspberry Pi can 

provide, as it only computes the simple bit shift and XORing with few ANDs operations. 

NFSDE only needs a single Raspberry Pi and a few NFSDEs are needed by medical 

practitioners, which will reduce the overall cost, as most components are the tags which 

are very cheap. Every medical provider and patient needs one RFID tag.  

  

Raspberry Pi can handle decryption, and can process the operations needed for the RFID 

reader and the fingerprint scanner. A low cost option that has enough power to do the 

previous process is Adafruit PiTFT (320×240, 2.8) which can be accompanied by a 

touchscreen for manual input [273], [274].  

     

Fingerprint reader – Hamster Pro 10 

Hamster Pro 10 is a relatively new portable fingerprint reader device that is able to create 

a 500 byte template that is enough for the proposed system, which is a great option for 

patient fingerprint reading [275]. Hamster Pro 10 detects if the fingerprint scan matches 

the stored reference fingerprint template. While a fingerprint is a type of biometric data, 

some adjustment is required.  
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The system setting can be altered for multi-fingerprint scan recognition if the primary 

finger is injured, taking into consideration that each finger needs 500 bytes of reference 

template stored in the RFID card. Different biometrics may be used instead of a fingerprint, 

however, the fingerprint is faster for identification.     

 

RFID reader – MFRC522 

The MFRC522 is a very low-cost RFID reader and a very suitable choice for prototype 

functionality. It is able to process the write and read operation on the standard tags as well 

as MIFARE tags [276]. 

  

Tags 

MIFARE tags with 4K storage capacity [277] were considered sufficient storage for the 

prototype device. The contactless property can be in wristbands or key fobs, which makes 

MIFARE suitable for patients, as well as swap cards like ID cards for medical practitioners. 

Other forms may be used for specific medical providers or patients. The functionality of 

the device can be adapted to support different forms of RFID tags.  

 

In future CRFID tags that use PUF [250] can be used for patients as well as providers, 

however the current cost is not feasible, as every patient and provider needs a minimum of 

one RFID tag which will impact the overall cost. However, in the future with advances in 

technology and cost reduction, CRFID tags could be used in this device, which shows the 

flexibility of the proposed system. 

  

7.6 Tag creation and implementation process 

This section provides details of the tag formation phase to both the provider and the patient, 

also describes the development steps. Figure 7.4 shows the record keeper rules and 

provider tag creation. 

 

7.6.1 Creation of the medical provider tag 

This section provides a step by step demonstration of the creation of medical provider 

processes, illustrating the data flow and process flow, and explaining the authentication, 

authorisation and encryption/decryption process. 
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Use of MICKEY 2.0  

The MICKEY 2.0 algorithm is used for two separate purposes inside the provider tag. The 

first application of MICKEY encoding on the provider tag is to encrypt the “provider 

identification” and “authorisation” sectors. The common assumption is that a practitioner 

needs only a fraction of the patient’s data to be processed. Once the authorised field is 

decrypted by the NFSDE reader, the software on the NFSDE machine is designed to show 

only the data that the provider is allowed to access depending on the validity of the 

permission area. IVd, which is the IV for the provider, is unique to the provider as well as 

the RFID tag and can be calculated by generating the PIN chosen by the provider and the 

specific tag ID. In addition, the K0 hidden key is still used. K0 is a variable over time. 

MICKEY 2.0, IVd and K0 are used to encrypt the permission and identification data before 

being placed on the tag.  

 

 

Figure 7. 4 Processes for provider tag creation 

 

Once data is authenticated, a 32-bit cyclic redundancy check (CRC) [278] is computed for 

use in the next step. While 32 bits are not powerful enough to construct a cryptographically 

efficient hash, it can be used to avoid a collision attack [279]. This restriction is solved by 

encrypting the (hash) by MICKEY 2.0. 

 

The decryption method with MICKEY 2.0, K0, and IVd first completes the activation of 

the RFID reader. The second main work of the MICKEY 2.0 algorithm is to authenticate 

it, as integrity is one of the foundations of information protection. This is necessary to 

recognise that the details are derived from the intended source and have not been tampered 
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with. As the world is resource-restricted, lightweight signatures must be used without 

losing credibility. In order to ensure that the data has not been tampered with, the 32-bit 

CRC of the authenticated authorisation information is used. To ensure the validity of the 

name, the second 32-bit CRC string “common salt” + IV0 + specific provider ID + KTI 

(key time index) is used. 

 

An authorisation is validated using special attributes of all bodies to ensure that the 

“relevant object” has been approved by “this record keeper”. The IVrd is IV which is 

generated by hashing the hidden IV0 and the generic RFID unique ID. This fourth key is 

special to the tag and the record holder. In fact, the K1 hidden key is used. IV0 and K1 differ 

over time, as measured by the KTI. The 32-bit CRC of the cryptographic authorisation is 

concatenated to a signature composed of a 4-byte (32-bit) CRC of “common salt” + IV0 + 

special ID + KTI. This authentication string is protected from intrusion by encrypting a 

concatenated string with MICKEY 2.0, IVrd and K1 that has two implications on it. The 

first concept is data consistency, where the first CRC ensures the validity of the identity 

and authorisation areas, while the second CRC ensures the legitimacy of THIS code and 

this record keeper. The record keeper can authenticate the validity of the authorisation 

through using two lightweight functions. This signature sequence is placed in a specific 

data field on the patient data document, and the two values of the CRC guarantee the 

consistency of other essential fields stored on the provider tag, offering low power [222], 

[280] yet efficient security against interference. Once the tag is interpreted by the NFSDE 

system, the signature is decrypted with IVrd and K1 and then checked for matching with 

the predicted value of the CRC (“shared salt” + IV0 + specific ID+KTI). In fact, the CRC 

of the authenticated authorisation is determined. The tag is assumed to be true if the 

decrypted area fits all CRC calculations. 

 

Creation steps and scenario 

Usually, the development of an RFID card to enable the NFSDE system will be part of the 

on-board phase when a care practitioner (paramedic, nurse, EMT, physician, etc.) enters 

the medical organisation. The “record manager (or keeper)” may be a worker in the HR 

section. Figure 7.4 demonstrates the method of developing a healthcare provider tag. 

 

The method of authentication is as follows: 
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1. Engagement between both the provider (D) and the record keeper (R), involving 

confirmation of the identification and authority of the provider to access relevant patient 

records as shown in Figure 7.4(a). 

2. The provider shall insert the PIN as seen in Figure 7.4(b) of the situation. (See stage 4 

for usage of the PIN). 

3. The special tag ID token is read and accepted by the RFID reader as seen in Figure 

7.4(c).  

4. The PIN and the special ID on the card are hashed to construct the specific IVd (IVd= 

h(PIN, ID)). 

5. Verification and authentication are encrypted using the MICKEY 2.0 algorithm, and 

using K0 and IVd. 

6. The latest KTI is stored on the RFID tag by an RFID reader, as seen in Figure 7.4(d).  

7. The encrypted authenticated Identification and Authorisation fields are listed on the 

RFID tag as seen in Figure 7.4(e). 

8. The CRC hash of the encrypted sector is determined to identify if the information has 

been manipulated. 

9. The encryption field is authenticated using the two CRC values mentioned above to 

ensure both reliability and manipulate resistance. 

10. The authentication area is stored on the RFID tag. 

 

7.6.2 Creation of the patient tag 

This section describes the patient tag creation process. 

 

Use of MICKEY 2.0  

The patient tag includes vital patient health care records that may be helpful while the 

patient is in a place where internet communications are not possible, such as a rural 

environment or even an emergency scenario. The use of MICKEY 2.0 includes four 

different uses under the patient unique tag. The first goal is to ensure that the tag has been 

approved by the record keeper by using specific security features of the record keeper and 

patient. The IVrp is generated by a secret IV0 and a specific RFID tag ID. Each IVrp is 

exclusive to the record keeper and the patient tag. In fact, the hidden key K1 is used. K1 

differs every time used. K1 is stored on the USB and indexed by the KTI, which is stored 

on the patient tag in the field. 
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The second task of MICKEY 2.0 is to encrypt the fingerprint reference info. The General 

Data Protection Regulation (GDPR) allows biometric data to be called privacy identifying 

information for protection purposes. When the tag is formed, the reference fingerprint is 

scanned and summarised in the 500-byte ISO IEC 19794-fingerprint template [281]. This 

prototype is authenticated with MICKEY 2.0, IVrp and K1 and is placed on the RFID tag. 

 

The third rule of MICKEY 2.0 is to encrypt and decrypt medical info. The IVP needs to be 

special to the individual (patient) and its unique tag. IVP is computed from an unencrypted 

500-byte reference fingerprint prototype and a specific tag. In addition, a hidden key K0 is 

used, which differs over time and is indexed to the KTI. MICKEY 2.0, IVP, and K0 are 

used to encrypt patient details until the data is placed on the tag. After the medical data is 

authenticated, a 32-bit CRC hash is computed for the next phase. 

 

Authentication is the fourth objective of MICKEY 2.0. Two CRC values are calculated: 

one for the authenticated medical details and the other for the authentication string (“shared 

salt” + IV0 + specific ID + KTI). The two fields are concatenated and authenticated with 

MICKEY 2.0, IVrp, and K1 respectively. 

 

After validation of the tag as genuine, IVrp and K1 are used to decode the comparison 

fingerprint file. Then IVP hash is determined from the reference fingerprint example and 

the special tag UID. The fingerprint scanner matches the reference fingerprint to the freshly 

scanned fingerprint. If the fingerprints meet the ISO standard, the medical details will be 

decrypted and shown to the provider. 

 

Creation steps and scenario 

The steps to build a patient tag explain the operation. It will normally arise when a patient 

or clinic visitor signs “out”. The measures available to create and authenticate a patient tag 

are shown in Figure 7.5. Appendix 7.1 provides the details for these steps. 
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Figure 7. 5 Processes for patient tag creation 

 

1. The patient is introduced to the registrar (or medical record keeper) to review the patient 

Identification (i.e. hospital sign-out), as seen in Figure 7.5(a). 

2. After verifying the personal ID, data is retrieved as seen in Figure 7.5(b).  

3. As shown in the chart, the patient’s fingerprint is checked as in Figure 7.5(c). 

4. The logger scans the biometric identification.  

5. When the biometrics are the same as the individual, the signature is summed up in the 

signature prototype ISO/IEC 19794-2. It is the fingerprint “template”, as in Figure 7.5(d). 

If this biometric does not follow the criteria of the patient registry, it will take necessary 

action. See Appendix 7.1 for a comprehensive scheme.   

6. The RFID reader checks the single tag ID, and produces IVP (IVP= h(TagID, b) where 

b=biometric(fingerprint) (IVP). See Figure 7.5(e).  

7. MICKEY 2.0, K0 and IVP are used to encrypt the medical information. 

8. For the authenticated medical information, a CRC hash is determined. 

9. For GDPR: Practitioner (GDPRP) [282], enforcement test and written on the RFID tag 

(IVrp= Hash (Tag ID, IV0)), the code is encrypted with IVrp and K1. 

10. For the “Common Salt” string + IV0 + Special ID+KTI a CRC is determined. This is 

encrypted and written on the name, as shown in Figure 7.5(f), to the previous CRC. 

11. The actual KTI will be saved on the tag. 
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7.7 Key generation, storage and distribution 

The NFSDE tool contains two of the IVs and also two keys, with one of them IV0 used to 

produce one of these IVs, and the values should be modified on a periodic basis. The pace 

of such transition depends on the institutional strategy. Every series of keys and IVs (IV0, 

K0, K1) has to be created randomly at a regular time and allocated to the KTI. The 

preservation of those three parameters is essential to the security of the system. Once a 

new collection of the keys and the IVs is created, then modified values must be saved to 

the USB as seen in Table 7.2 as an illustrative example. The “then” KTI is stored on the 

tag, also the KTI is for checking for the correct keys and the IV0 at the point of verification 

and decryption. 

 

Table 7. 2 Key generation, storage and time index update 

Key Time Index (KTI) K0 K1 IV0 

Feb 1 OzQjPQQckv mz9YlgUgvB mfE6c2lJrt 

Feb 2 fD3Er9NyF7 ZozT7OGzPv fZpM9ZP4tm 

 

The contact between the medical provider and the record holder consists of two parts: 1) 

the initial development of the provider’s ID tag, and 2) the frequently scheduled updating 

of the USB comprising the latest KTI, the main keys group and IV0. The timing of the keys 

update is a policy issue, although for logistics reasons, all USB changes will not take effect 

until the latest key sets are required to encrypt patient records.  

 

Interaction between the patient and the record keeper takes place immediately and if the 

tag has to be changed. It will be easier and more practical, for logistics considerations, to 

give a fresh tag to the individual once the documents are changed. The older tag must be 

totally erased in a cryptographically safe manner.  

 

The record keeper needs to perform the following tasks: 

1. Create the K0, K1 and IV0. 

2. View patient records in plain text format.  

3. Confirm the provider’s degree of authorisation.  

4. Create and upgrade the stable USB hard drive.  

5. Confirm the patient’s ID.  

6. Identify assurance of the provider.  
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7. Provide identification of tags (both medical practioner and the patient).  

 

Clinical record holders will allow physical access to the following: 

1. Secure USB  

2. Tags  

3. Tag reader / writer  

4. Fingerprint scanner (providing patient tags)  

5. PIN pad (providing medical provider tags).  

 

Authorisation to view the patient information log and provider information system will be 

given to the medical record keeper.  

 

Key rotation  

The simple and main features of NFSDE protection rely on the use of a safe physical USB. 

For security purposes, keys will be changed on a daily basis according to a defined 

timetable. Key file storage could be based on an authenticated external cloud server (i.e., 

AWS Secrets Management System) and the user can access out-of-band. The certified 

medical provider could retrieve a key file from the cloud and then save it on a protected 

USB drive. 

 

7.8 Device processes 

This section provides an overview of the NFSDE device activation, and the process for the 

patient data extraction.  

 

7.8.1 Device activation (unlock) 

The NFSDE device must be enabled (unlocked) by an accredited healthcare professional 

to display the patient details. Figure 7.6 demonstrates the method of opening the NFSDE 

device. The provider has its own special RFID tag, which has been cryptographically 

authenticated by the record holder. The provider also brings a secure USB drive with time-

indexed keys and IV0. 

 

The provider will also have its own PIN to access the machine. Figure 7.6 demonstrates 

the activation phase. The NFSDE enabling (unlocking) phases will be as follows. 
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1. Provider (D) inserts a password on the protected Flash drive that is attached to the 

Raspberry Pi on the NFSDE machine. This input is only needed once for every session. 

Please see Figure 7.6(a). 

2. Figure 7.6(b) shows that after the provider scans the RFID tag, the device validates 

whether the tag belongs to the provider and if it has a correct KTI. 

3. The NFSDE machine confirms the authorisation by interpreting K1 and IV0 of the USB. 

Provides IVrd (IVrd = h(IV0, provider UID)) and, by using MICKEY, K1 and IVrd, decodes 

that signature and verifies the verification code and the CRC. 

4. In case the tag is verified, the provider must insert their own PIN as seen in Figure 7.6(c). 

The NFSDE evaluates the degree of authorisation by decrypting the identification and 

authorisation fields by using MICKEY, IVd (IVd= h(unique ID, PIN)) and K0. 

5. The NFSDE is now able to show the data that the provider is allowed to access. (The 

real activation process is similar to withdrawing cash from an ATM.) 

 

 

Figure 7. 6 NFSDE activation and unlocking processes 
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7.8.2 Procedure for reading the patient medical record 

Figure 7.7 demonstrates the framework for the procedure of how to use the NFSDE device. 

1. As in Figure 7.7(a), the patient RFID tag is checked.  

2. Reference fingerprints (IVrp, K1, MICKEY 2.0) are decrypted and issued to the 

fingerprint scanner as shown in Figure 7.7(b). 

3. After testing the patient’s fingerprint, if the patient's fingerprint matches the reference 

fingerprint, the medical information will be decrypted, as seen in Figures 7.7(c) and 7.7(d) 

respectively. 

4. IVP is calculated as IVP = h (reference fingerprint template, specifice tag ID). It is then 

possible to use IVP, K0 and MICKEY 2.0 to decrypt medical information. 

5. The NFSDE displays the medical information corresponding to the degree of 

authorisation specified during NFSDE activation as seen in Figures 7.7(f) and 7.7(e) 

respectively. 

 

 

 

Figure 7. 7 Display the patient data process 
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7.9 The emulation processes for NFSDE and testing 

7.9.1 The emulation processes for NFSDE 

To create a software emulation, a C-language emulator of the NFSDE system was 

developed to illustrate the main processes and components, as seen in Figure 7.8. The key 

parts are a single card processor, a USB, a fingerprint sensor, a RFID reader and a RFID 

writer. Main procedures involve the development (and encryption) of both the provider 

and the patient tags, the validation of these identifiers, the activation of the NFSDE by the 

provider, the decryption of medical information and showing the medical data by the 

provider. Device-level approval is registered (for authentication purposes) in a file called 

device-log.txt. If the simulator generates both patient and provider tag recreations, the 

process will not be logged as, in reality, that would be performed on different systems, 

which are likely to have their own logging procedures. 

 

 

Figure 7. 8 NFSDE device software emulation 

 

The ISO/IEC fingerprint representation is 500 bytes long. Three files of 500 hex bytes each 

were used to mimic the fingerprint scanner. Every file represents the ISO/IEC fingerprint 

representation of the user. These values were arbitrary. The number of bytes is an essential 

feature of the emulator; thus, the size of the RFID data frame must be accurate and the 

calculation of the encryption speed should be precise. Standard file actions (fread, fwrite) 

were used to simulate the reader and writer of the RFID tag. Data structures were built to 

comply with the 4 K MIFARE requirement. Such data structures have been developed in 

order to be interpreted from an ordinary file. Command line software was developed that 

contains the following options: (1) build patient tag, (2) build provider tag, (3) trigger 

reader, (4) interpret patient tag, (5) unlock accessible drive, and (6) modify key number 

(time stamp emulator). Every choice requests input throughout the simulation of the 
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element. The rationale of every procedure followed those steps mentioned above. All of 

the functions mentioned above are executed or modelled. 

 

7.9.2 Testing and running the emulator 

The simulator is a command line interface that shows a numerical screen. Every menu 

element reflects a step in the cycle of construction or validation. Appendix 7.2 presents 

step-by-step guidance for how to operate the simulator. Appendix 7.3 has specifications of 

the menu. Appendix 7.2 presents step-by-step guidance for how to operate the simulator. 

 

Testing the NFSDE performance is important, as medical providers attending patients need 

to be as fast as possible. By using a program to simulate the device speed, the two main 

processes are how long it takes to unlock the device, and how much time is needed to read 

the patient data. 

 

Time for NFSDE unlock 

A software emulator was used to test the whole process for the NFSDE devices. It starts 

with NFSDE unlock time, which will occur only one time per session (for example when 

the medical provider starts their shift), which is done by scanning the provider ID. Second, 

the time needed for NFSDE for key 4-digit manual entry varies from provider to provider, 

so it is run multiple times with different people and then the average calculated with a total 

time of about 5 seconds as shown in Table 7.3.  

 

Table 7. 3 Time for NFSDE unlock 

Event Time 

Scan the ID Card (D) 1 second, see [283] 

Insert and Unlock the SD 2 seconds 

Enter the PIN 2 seconds 

Total time to Unlock 5 seconds 

 

Time to read the patient data 

To calculate the patient data reading by the NFSDE: 

1. Scan the patient ID card, then 2) scan the patient fingerprint; 3) calculate the time 

for the decryption for the 4K data on the patient tag. Table 7.4 shows the decryption 
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using MICKEY 2.0 is a very short time in microseconds. The total time is 2.07 

seconds to show the encrypted data. 

 

Table 7. 4 Time to read encrypted patient data 

Event Time 

Scan the ID card (P) 1 second, see [283] 

Scan the fingerprint 1 second, see [284] 

Decode 4K data 66,291 microseconds 

Total time to read the patient data 2 seconds 

 

Other than decryption time which is easily measured, the time spent by people varies, so 

by taking the average for multiple entries a relatively good estimation can be made. 

However, as seen in Table 7.3 and Table 7.4, the whole process only takes a few seconds 

– around 5 seconds or less for NFSDE unlocking, and 2 seconds or less for reading patient 

data. 

 

7.10 Attacks analysis 

This section explains how the system is resistant against possible attacks to test protocol 

security. 

In this eHealth scenario, MICKEY 2.0 was used as an example of a possible lightweight 

encryption method. MICKEY 2.0 is replaceable, by any lightweight ciphers, as well as the 

thesis proposed cipher MICKEY 2.0.85, to encrypt the values (parameters) on the provider 

and patient tags.  

 

The parameters can be encrypted as following: 

a) Patients’ medical data 

b) Patients’ IDs 

c) Patients’ fingerprints 

d) The record keeper authentication located on the patients’ tags 

e) The providers’ authorisation level and identity 

f) The record keeper authentication is located on the providers’ tags. 
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These parameters need to be addressed for any kind of cryptanalysis and attack resistance. 

To encrypt these parameters IV0, K0 and K1 need to be secreted to ensure the system 

security. IV0  value is provided by the record keeper, and the other non-secret IVS (IVP for 

patient and IVd for provider) with varying keys. Revealing one of the secret IVS or different 

keys will not result in recovering the other values.   

 

IVS calculations: 

IVrd used to encrypt and decrypt the provider authentication and 

            IVrd = h(IV0, provider’ tag UID), h=hash function 

IVrp used to encrypt and decrypt the patient authentication and 

             IVrp = h(IV0, patient tag UID), as the fingerprint data in the patient tag 

IVd used to encrypt and decrypt the provider level of authorisation and 

             IVd = h(PIN, provider tag UID)  

IVp used to encrypt and decrypt the patient medical data and 

            IVp = h(patient fingerprint reference, Patient Tag UID) 

 

Keys calculation: 

K0 used with IVd for encryption and decryption of provider authorisation level and identity, 

also K0 used with IVp for encryption and decryption of patient medical information. 

 

K1 used with IVrd for encryption and decryption of provider authentication, and also K1 

used with IVrp for encryption and decryption of a patient’s fingerprint and authentication. 

 

7.10.1 Known plaintext attacks 

When an attacker gets information about the plaintext (P) (or portion of it) and the 

corresponding ciphertext (C) for a given message, this is called a known plaintext attack 

[12], [16]. Then the attacker will attempt to reveal the key based on the calculation of the 

mapping F between the P and C:  

                                                                       F:P→C. 

 

In the security protocol and the NFSDE device design it is not feasible for any attacker to 

perform this kind of attack, as for example, a patient’s tag containing the biometric 

associated with the keystream is unique for every patient, so revealing one patient’s data 

will not result in revealing another patient or provider’s keystream. Nevertheless a patient 
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may compute their own IVp. However, using MICKEY 2.0 as the encryption method will 

prevent the secret key recovery from known IV/plaintext [168], [248], and that is valid for 

all different combinations. In addition, plaintext used for field authentications will not be 

known as all parameters are encrypted by MICKEY 2.0 using hash functions, and not the 

original values. Furthermore, if the fingerprint data (which uses the ISO standard) for any 

two scans is not identical, the fingerprint will not be revealed as it is not possible to recover 

keys and IVs by using the known plaintext. 

 

7.10.2 Brute force attack 

A brute force attack which is conducted by running extremely large computations in order 

to reveal the secret key can be considered feasible if it can be achieved in a reasonable 

amount of time [12]. In the NFSDE device and the developed security protocol, this kind 

of attack requires implementing a trial and error technique, in order for an attacker to guess 

the keys and IVs. For the secret parameters IV0, K0 and K1 already stored in the encrypted 

USB, performing this attack needs to mount the USB by computer to simulate the stored 

encrypted data. This also assumes having an authorised tag and legitimate scan of the 

fingerprint. Having said that, the attacker will be required to produce the 80-bit of (IV0, K0 

and K1) parameters correctly, thus is 2240 bits. Assuming this was done successfully (which 

is not feasible), it will only reveal a single KTI value. Thus, this kind of attack is not 

reasonable from a computational perspective. 

 

7.10.3 Chosen IV attack 

The attacker tries to find some flaws in the IV, to gain some information about the secret 

key. The complexity of this attack is about how many bits are needed to extract the key 

[285]. For the stream cipher the IV is initialised with a secret key in the cipher which works 

as a function to generate a pseudo-random keystream. It is not practical to reuse the same 

IV with key as it is unsafe practice, and the lightweight stream ciphers may be vulnerable 

to such an attack. To avoid this vulnerability, choice of the IV is not allowed. There are 

four separate IVs, and all the IVs were computed using the hash functions. IVd and IVp are 

the unique values of the ID assigned at the time of the production process by the RFID 

manufacturer. On the other hand, the values of IVrp and IVrd as well as the IV0 (secret 

value) are all part of the hashing process. Thus it is not possible to select an IV value that 

will result in an attack due to using the hash signature as a data integrity tool. 
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7.10.4 Two-time pad/reused key 

A two time attack can also be defined as a reused key attack [286]. The attack occurs when 

the attacker can get two different ciphertexts which were encrypted using the same key. 

Assume C1 and C2 the ciphertexts for m1 and m2(messages), and P1& P2 the plaintexts, then 

the attacker calculates C1 XOR m1 = P1 and C2 XOR m2 = P2, and K is the same key used 

for both m1 and m2, then K can be obtained by applying analysis of frequency.  

 

The proposed system has four different (keys, IVs) pairs for five different steps. In 

addition, by implementing the keys rotation using timed KTI, the two IVs for the patient’s 

tag and the two IVs for the provider’s tag, each IV is obtained by two (at least) 

authentication factors as following: 

1. RFID tag + PIN for the provider 

2. RFID tag + Biometric (fingerprint) for the patient. 

 

Additionally, three out of five encrypted parameters cannot be calculated by the frequency 

analysis as they were encrypted with hash functions. To be more specific the encrypted 

fingerprint on the patient’s tag cannot be subject to frequency analysis, as the reused key 

cannot be used for encrypted parameters with a hash function.   

 

7.10.5 Denial-of-service attack 

In a denial of service attack the attacker tries to prevent or interrupt the system from doing 

the usual task [243], such as by sending a large number of requests to overwhelm the 

system and make it freeze or crash. The attacker can make the system slow in response for 

authorised users. For this system, the attacker needs to be physically close to the system as 

it assumes the internet connection is not present. The attacker could use nearby physical 

sources to overwhelm the service by electromagnetic interference, or use any method to 

corrupt or damage the device. In denial of service attacks, the system security information 

was located on, for example a USB, so it is assumed policies are implemented on use of 

the device components. 
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7.10.6 Insider attack 

In an insider attack, the attacker is an authorised person who has an access privilege to the 

system, and can use the system in unauthorised or malicious activities [287]. Insiders in 

the system include the provider and the record keeper. To secure all activities such as login 

and authorisation, the login is a timed process and is not reproducible. By applying the 

three As of data security, the insiders cannot deny their activities. Tag creation and key 

management and distribution tasks rely on the record keeper who has the same non-

reproducible login activities. Furthermore, the key rotation and the key storage update the 

USB, and it also uses a cloud external service such as AWS for the key update and storage 

to update the USB. 

 

7.10.7 Impersonation attack 

An impersonation attack occurs when the attacker successfully guesses the authorised user 

authentication which allows the attacker to gain access to confidential information [288]. 

The proposed system contains an authorisation process for the three entities: record keeper, 

provider and patient. Key and tag creation and management is the responsibility of the 

record keeper, and there should be a role and policies in place to ensure the security 

guidelines provided by the organisation are followed. Thus, multi-factor authentication 

procedures assure resistance against this kind of attack, as the provider tag UID and PIN, 

and the patient fingerprint with tag UID are authentication elements, and the record keeper 

should follow the organisation’s security guidelines.  

 

7.10.8 Man in the middle attack 

A man in the middle attack occurs when the attacker can interrupt the message between 

the sender and the receiver, and gain some secret information about the encryption keys 

[289]. In the system the encrypted USB is a physical object to store the keys. When the 

record keeper shares the USB with the provider, the record keeper must follow the 

organisation’s administrative procedures, and physical delivery methods such as locks or 

robust boxes should be used. The USB storage update provided by a cloud service, with 

key delivery in a secure manner, can use AWS secret manager. Furthermore, a man in the 

middle attack on the USB is not feasible as it is not connected to other NFSDE physical 

components. 
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7.10.9 Side channel attacks 

In general, side channel attacks work by capitalising on the flaws in the system hardware 

or software features, not on the system encryption method, in order to extract some secret 

information [290]. There are two major types of side channel attacks: differential power 

analysis and challenge/response attack. 

 

A.  A differential power analysis is a popular kind of side channel attack which targets 

the embedded system like the NFSDE [291]. The aim is to recover the secret keys 

by applying the statistical analysis of the device power. If the keys are stored in the 

device, this will make it more vulnerable to DPA attack, therefore, it is possible to 

find the key by gaining access to the device memory (or portion of it) which 

contains the keys. The NFSDE device needs to be physically close to the resources 

of the DPA for a long period of time, and also requires a large sample of data in 

order for a DPA attack to be sufficient. This is avoided in NFSDE by using the 

external encrypted USB as a secret keys storage tool, as well as updating and 

rotating the keys on a regular basis to avoid reusing the same set of keys. 

 

B. Challenge/response side channel attack can be more applicable to RFID-based 

systems explained in detail in [292]. It is also a kind of statistical analysis that 

measures the correlation of the power analysis in the RFID domain to categories in 

the challenge/response protocol in the RFID system. The challenge/response 

protocol is not used in the NFSDE device and the security protocol. As the keys 

are not shared via RFID tags, rather by a physical device which is attached to the 

system, and the hash functions are used in the authentication instead of the 

challenge/response method, this kind of attack is not applicable in the proposed 

system. 
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7.11 Overall analysis and discussion 

Earlier IoT and RFID enthusiasts have discovered that low-power devices have insufficient 

security [222]. This chapter suggests a low-cost, standard-based security solution that 

remains practical in the worst case situations without internet connectivity to low-power 

secure devices. 

 

The approach involves key management and key-update solutions for a protected RFID 

reader which is neither based on the internet nor on wireless connectivity, as described 

below. Specifically, an example of a real-life framework for patients in locations lacking 

secure connectivity (including Wi-Fi, 4G or 5G networks), in emergency circumstances 

and in rural regions is suggested and emulated. The service can include access to patient 

health information under challenging conditions. The suggested cryptosystem offers a low-

cost, efficient and security protection alternative to the CIA triad usually offered by the 

public key infrastructure. By taking a completely new strategy and using applications and 

off-the-shelf equipment, a more complex custom-hardware asymmetric solution is avoided 

as in [231], [232]. 

 

7.11.1 Providing multi-factor authentication without connectivity 

The proposed security solution is a mix of “what you do” (i.e., a PIN and an USB 

passcode), “what you have” (i.e. an RFID tag and an USB) and “what you are” (i.e., 

biometrics such as fingerprint). For conventional key control, the whole key is placed on 

“anything you have” (i.e. a mutual key storage drive) or is “anything you remember” 

(password or PIN). Once the keys are reset, the keys must be redirected and kept, or the 

password or the PIN must be entered. The key and the PIN must be protected against 

interruption. Using NFSDEs without using public-key encryption, this weakness is 

minimised by using USB. 

 

The USB will not include the full collection of necessary keys, but rather includes the 

parameters which use it to determine the keys. Such criteria are protected by a passcode 

that can be exclusive to every USB. It is wise to request healthcare providers to take proper 

diligence to secure the USB or to change it on a calendar basis. The modification of the 

USB security parameters is a question of routine practices rather than a technological 

problem. 
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The USB may be modified by transferring it to a protected location or using a protected 

method such as the AWS Secrets Manager. A debit-card similar delivery scheme may be 

used where the USB is physically distributed in one box by a courier and the passcode can 

be provided remotely through a program such as “One Time Secret passcode” [293]. 

 

In any scenario, the administration is no more complicated than any other main delivery 

method. When accessing private records, a minimum of six variables must be jointly 

authenticated. These three forms of variables are used at least once: anything you have – 

the patient’s RFID card, the provider’s RFID card and the USB, anything you know – the 

provider's PIN and the USB card password, and anything you are – the patient’s 

fingerprint. Decryption keys are not usable until all variables are identified and collectively 

validated. Even if the USB is corrupted or exposed, exposure to private data is not feasible 

without four external security parameters. Thus, using the USB to store the security 

parameters is more reliable than the standard key transfer and no more difficult than using 

a debit card with a new PIN. 

 

7.11.2 Providing privacy by design 

The fourth theory of “privacy by design” [265] is that secrecy ought to be “fundamental to 

the framework, without reducing functionality”. Rapid access to essential data is a practical 

necessity in emergency circumstances. Thus, a framework was built and mimicked in 

which verification, access and accounting would be no more difficult than the withdrawal 

of cash from an ATM. This thesis has been able to minimise or eradicate documented 

cryptographic attacks by implementing the concepts of defence in depth [261]. Through 

using a lightweight cryptosystem and a low-cost, efficient key delivery method, the 

framework proved able to deliver the CIA triad in the worst-case scenario of life and death. 

 

7.11.3 Providing key distribution without connectivity 

Public key encryption is a growing method for key distribution. Generally, public key 

encryption is being used for security, secrecy and integrity; this includes PKI (usually 

communication needed for access to the Certifying Authority) and substantial CPU power. 

They are still not needed in this situation. Therefore authentication, anonymity and 

integrity are achieved without public key infrastructure by using the MICKEY 2.0 stream 
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encryption, hardware-based protection, and a security protocol with specific procedures. 

The innovative solution proposed for this is to measure each of four IVs and keys pairs 

using a mix of hardware-secure values, mutual values, and embedded RFID tags. 

 

In standard symmetric cryptography, the sender must build a key and pass it to the 

recipient. The number of keys needed is considered to be n(n − 1)/2, where n is the number 

of parties that need to be communicated. The possibility of a key being captured by a third 

party and the need to establish a specific key for each sender/receiver pair is recognised as 

the “key delivery issue” [294]. 

 

Take the following scenario. If Alice, Bob, Charlie and Dave decide to share protected 

texts, six keys will have to be produced. Every key should be transferred from the sender 

to the recipient such that the adversary, say Eve, will not have the ability to replicate or 

capture the key. The key-distribution question to be solved is fairly straightforward:  

1) How would Alice establish exclusive keys for Bob, Charlie, and Dave?  

2) How would she send the keys to Bob, Charlie, and Dave without having adversary Eve 

intercept them? 

 

A solution is proposed for the key distribution issue, where separately encrypted off-the-

shelf hardware systems are used to store the security parameters that are used to determine 

the mutual symmetric security for each sender/receiver pair [261]. The threat review by 

analysing the possible attacks found that the same approach had mitigated specific RFID-

based attacks. As the system is explicitly configured not to be wired or connected to the 

internet, it may also be used for out-of-band authentication (and probably authorisation). 

 

The aim of the lightweight cryptosystem including the NFSDE prototype with security 

protocol is to encourage innovations in eHealth technology. Therefore, the minimal-power, 

strong-quality protection suggested is specifically relevant to RFID protection as well as 

security in general. 
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7.11.4 Other applications  

This subsection explores several potential possibilities for RFID security applications with 

a brief summary of each. 

 

Two-person rule 

In high-security contexts, for example, when approving major organisational spending, it 

is always important for two workers to approve action [295]. This proposed security system 

would facilitate the multi-factor “offline” to implement the two-person law. 

 

Human courier scenario 

Because the proposed prototype does not need connection to the internet, it is an optimal 

solution to protect data from hackers. This is especially important where several 

individuals need to approve access to the asset. Parties needing very safe contact usually 

use human couriers rather than, for example, efficient cloud-based sharing of information. 

If the parties involved do not want to share confidential data through the internet, the cloud 

can also be a secure key exchange tool [294]. NFSDE, with a secure protocol, can be 

implemented as out-of-band authentication. 

 

Other possible applications involve multi-factor authentication, such as smart wallets, cold 

storage of blockchain keys, master encryption keys, and safe data transfer by military 

organisations, where control of physical access to systems and equipment is required. 

 

Other common applications 

The most important use of RFID tags is to monitor items in transit and to compile 

inventory. Encrypted data can be placed on the monitoring sticker. The proposed secure 

system is immune to breaching and side channel breach. No unencrypted data has to be 

revealed. RFID tags are common for animal monitoring [296]. The approach can be used 

by scientists to easily store the data on tags that are attached to animal bodies for tracking 

and monitoring. 
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7.12 Conclusion 

The chapter presented a practical application for lightweight encryption with a prototype 

device to secure sensitive data when internet connection is absent or not reliable. Previous 

chapters identified the importance of practical and efficient lightweight synchronous 

stream cipher implementations, that were achieved by introducing tools for security 

evaluation, cipher optimisation and practical application in mobile cloud computing and 

RFID technology. 

 

Considering advances and expansion of RFID technology, as well as new applications, 

security remains a challenging task that needs to be addressed and improved. The proposed 

security system including NFSDE device and the security protocol fills the gap in this 

important area. 

 

The approach bypasses the current solutions which focus on hardware solutions. However, 

the solution can be worked as a framework and software solution, which is flexible in 

regard to hardware, software and lightweight encryption, as they can be modified and 

tailored according to the user’s needs without compromising the security. The NFSDE 

device components can be replaced, and the MICKEY 2.0 cipher can be replaced with 

other lightweight ciphers. Using eHealth as a practical example of efficient application, 

the lightweight security system solved and tested the tags’ and parties’ identification, 

authorisation and confidentiality. The following chapter provides an overall discussion of 

the thesis achievements with implications for advancing the field of lightweight 

synchronous stream ciphers. 
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Chapter 8: Discussion and Conclusion 

 

8.0 Chapter overview  

This chapter presents the discussion and overall analysis of the thesis findings and 

contributions, as well as possible future research directions emerging from this work. This 

chapter has the following structure. Section introduces the chapter, Section 8.2 reviews the 

thesis rationale and summarises outcomes; Section 8.3 discusses the unique window size 

and d-monomial tests; Section 8.4 discusses the proposed neural network models; Section 

8.5 discusses the proposed MICKEY 2.0.85 cipher; Section 8.6 discusses the proposed 

FEATHER lightweight security protocol; Section 8.7 discusses the proposed lightweight 

cryptosystem with NFSDE prototype device; Section 8.8 shows how the thesis findings 

contribute to the current literature; and Section 8.9 summarises the thesis contributions. 

Finally, Section 8.10 presents possible future research directions resulting from this work 

to further improve security. 

 

8.1 Introduction 

The thesis focuses on lightweight synchronous stream cipher analysis and applications. 

Data analysis, including statistical and mathematical analysis, is essential to work as a 

cryptanalysis method for lightweight synchronous stream ciphers, using pseudo-

randomness statistical tests such as ANF-based tests, which translate the binary sequence 

that comes from the cipher and work as a keystream to translate their algebraic normal 

form, and then apply d-monomial based tests. Statistical pseudo-randomness tests, such as 

the suite of NIST tests, combine mathematical concepts with statistical analysis to assess 

the strength of a cipher. These tests help to optimise existing ciphers and develop new 

techniques and security implementations in essential applications. Pseudo-random number 

generators are essential for generating a pseudo-random number binary sequence as a 

keystream to ensure that a sequence has a pseudo-random appearance and does not cause 

any biases that may leave them vulnerable to attacks.  

 

It is important, therefore, to test randomness using multiple different randomness tests, 

including ANF-based tests (e.g. d-monomial test), UWS tests, and prediction models such 

as multilinear regression predicting model, as well as superior prediction models, such as 
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neural network models. The standard NIST randomness tests provide a standard evaluation 

for the sequences generated by pseudo-random number generators. In addition, 

cryptanalysis methods apply different known attacks to test the resistance of ciphers to 

such attacks. Using different cryptanalysis and pseudo-randomness tests and adapting them 

for each particular cipher is not straightforward. The optimisation of lightweight 

encryption methods is currently achieved using lightweight synchronous stream ciphers, 

by proposing lighter, faster and power-efficient ciphers, which are feasible for lighter 

security cryptosystems, including smaller devices. Implementing lightweight encryption 

in real-world applications, such as mobile cloud computing, will improve IoT security in 

general, and will also be useful in RFID technology. These technologies both have 

important applications in areas that require a high level of security, such as eHealth care.  

 

8.2 Discussion of thesis rationale and overview of outcomes 

This thesis adapts randomness analysis for chosen lightweight stream ciphers in order to 

introduce new cryptanalysis methods, including an optimised version of MICKEY 2.0 

called MICKEY 2.0.85 and a secure lightweight protocol for mobile cloud computing 

called FEATHER. The thesis also provides a lightweight cryptosystem based on RFID 

systems suitable for authentication and security without needing an internet connection. 

Research findings were published in [221], [123], [297], [23]. 

 

The thesis tests and proves the following hypotheses: 

1. Adapting pseudo-randomness tests is possible, regardless of the implementation 

effort of adaptation, and the tests can be tailored to specific ciphers. 

2. Prediction modelling, especially neural network models, is effective for testing and 

measuring the pseudo-randomness of a binary sequence, which is the most 

important element of cipher security. 

3. Optimising a successful, secure, and popular lightweight stream cipher is possible, 

and it is possible to have a secure lighter version. 

4. Mobile cloud computing can benefit from lightweight stream ciphers. Lightweight 

encryption can provide security, faster performance, and longer battery life. 

5. It is possible to provide a lightweight cryptosystem based on RFID technology, 

with no internet connection. 
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8.3 Using unique window size and d-monomial tests as randomness tests 

The unique window size test (UWS) is based on the maximum order complexity test, as 

discussed in Chapter 3. The goal of this test is to determine if the keystream is random 

enough for it to be very hard to find a function that can generate a similar keystream binary 

sequence. The SG and SSG lightweight synchronous stream ciphers were tested using this 

test to determine if they were the proper result of pseudo-random numbers generators. In 

this test, the bigger the UWS the better and more secure the cipher. If a cipher has a small 

UWS, it means for SG the two LFSRs combinations may need to be modified to have a 

larger UWS, and for SSG it implies the LFSR primitive polynomial needs to be changed. 

The results of this test provide users with a better choice of the LFSRs to ensure that the 

ciphers have sufficient pseudo-randomness properties.  

 

The d-monomial tests are used to detect monomials of a certain degree d. If these 

monomials follow a normal distribution, it implies that there are no biases in the keystream. 

Another similar test is the maximal monomial test, which finds the highest d in the 

keystream. These tests are pseudo-randomness tests. The d-monomial tests on both the SG 

and SSG ciphers found that SG was weaker than SSG. A multilinear regression model was 

established for SG with degree 20 for UWS prediction. These results will help users to 

choose the SG LFSRs combination that results in less predictability. 

 

8.4 Developing proposed novel neural network-based prediction models 

The neural network prediction model in Chapter 4 was designed to predict UWS for both 

SG and SSG. UWS as a pseudo-randomness tool is an important valid indicator of a 

cipher’s security. 

 

For the SG cipher, four neural network prediction UWS models were established for degree 

20, 21, 23 and 24, with a learning rate of 0.0001 for degrees 20, 22 and 24, and a learning 

rate of 0.001 for degree 21. The learning rate needed to be adjusted for different degrees 

of the model to optimise learning for more accurate predictions; accuracy was 

approximately 95% and mean squared errors (MSE) of MSE < 0.008 and MSE = 0.0019. 

UWS24 has the largest dataset, and hence, the model is better able to learn.  
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For SSG, there were five neural network predictions, with one for each UWS model of 

degrees 21, 22, 23, 24 and 25, with a learning rate of 0.0001. The models have four hidden 

layers, with 100, 50, 20 and 10 nodes, respectively, with an accuracy of 96.66%, 89.61%, 

90.14%, 97.01%, and 97.14%, respectively, and an MSE of 0.0014, 0.016, 0.0046, 0.0098 

and 0.0052, respectively. These are low error rates and indicate high model accuracy. In 

addition, to show how the model is able to learn with multiple UWS in the same model, 

one model was established for degrees 4 to 20 as one dataset, with a learning rate of 0.0001, 

and four hidden layers, with 100, 50, 20 and 10 nodes, respectively. For this model, the 

MSE = 0.0012, which is very low, and the accuracy was 96.05%. 

 

Although the d-monomial and UWS tests established that the SG is weaker than SSG, the 

neural network prediction models showed high predictability for both ciphers, which 

introduced a new measurement tool for randomness and nonlinear complexity 

measurement. It was also observed that the models were able to learn better with larger 

datasets. 

 

8.5 Developing and testing the proposed MICKEY 2.0.85 cipher 

MICKEY 2.0.85 was achieved by reduction and testing for pseudo-randomness after 

multiple experiments. Thus, the standard pseudo-randomness tests are necessary to ensure 

the viability of the new version. The suite of NIST tests is a standard measurement for 

randomness and uses a large number of binary sequences generated by MICKEY 2.0.85 

for both the keystream and ciphertext. This cipher was compared to MICKEY 2.0 and 

MICKEY 1.0 to establish whether it has better pseudo-randomness. As expected, 

MICKEY 1.0, the older version, failed 14 of the 15 tests and only passed the linear 

complexity test. The stronger version, MICKEY 2.0, appeared to have a good passing rate 

on the NIST tests. The lighter version MICKEY 2.0.85 has a slightly better NIST test 

passing rate than MICKEY 2.0, as shown in Chapter 5. 

 

MICKEY 2.0.85 was achieved by reduction and testing for pseudo-randomness after 

multiple experiments. Thus, the standard pseudo-randomness tests are necessary to ensure 

the viability of the new version. The NIST tests suite, as a standard measurement for 

randomness, uses a large number of binary sequences, which are generated by MICKEY 

2.0.85 for both the keystream and the ciphertext. This cipher was compared to MICKEY 

2.0 and MICKEY 1.0 to establish whether it has better pseudo randomness. It has 
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previously been established that this is a weak cipher and the NIST test confirmed this 

conclusion. The stronger version, MICKEY 2.0, appeared to have a good pass rate on the 

NIST tests, but the lighter version, MICKEY 2.0.85, has a slightly higher NIST test passing 

rate, as shown in Chapter 5. 

 

The reduction methods for the MICKEY 2.0 cipher were carried out to maintain the 

randomness as much as possible by reducing the internal state bits number to achieve fewer 

gate equivalents. MICKEY 2.0.85 had 12.45% fewer gate equivalents than MICKEY 2.0. 

The reduction of gate equivalents will improve overall speed performance and reduce 

power consumption.  

 

The power consumption estimator XPE, used for MICKEY 2.0.85, MICKEY 2.0, Trivium 

and Micro-Trivium, showed that MICKEY 2.0.85 had the lowest power consumption, with 

a reduction of 16.202% compared to MICKEY 2.0. The relationship between the number 

of gate equivalents and power consumption was described in two equations in Chapter 5.  

 

The MICKEY 2.0.85 encryption speed is about 23% faster than MICKEY 2.0, which is 

important for computation in small devices, as more texts can be encrypted in less time 

and it consumes less power, which reduces overall costs in applications. The cryptanalysis 

in Chapter 5 showed that MICKEY 2.0.85 is slightly more attack resistant than MICKEY 

2.0. 

 

8.6 Developing new lightweight encryption method: FEATHER 

lightweight security protocol 

The FEATHER protocol was designed to be a lightweight encryption method for mobile 

cloud computing security. It secures communications between mobile devices, and 

between mobiles and a cloud server. It has many security parameters: 

1. MICKEY 2.0 cipher – as a lightweight encryption/decryption method 

2. Hash function – for securing security parameters 

3. Timestamps – for time authentications 

4. One time pad password – for mobile users to start the communication and be sent 

out of band 

5. Secret keys and IVs pairs changed for every time used 

6. Token with expiry time – for the server to verify the mobile 
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7. File ID – is unique for every file and used for file verifications 

8. Mobile phone unique ID 

9. Encrypted keystream – for keystream encryption in the cloud server 

10. Username – unique to every user. 

 

FEATHER is particularly secure for mobile users because of its series of steps. The process 

for communication by mobile users to request the keystream from the external server 

involves highly secure steps: 

1. Register: The person registers an account on the external server by sending a 

message containing UID, phone ID and timestamp. 

2. Update: The external server confirms the validity of the message by recomputing 

the signature, and then decrypts and stores the hashed password in the account. The 

response is either OK or ERROR. 

3. Validate: The external server decodes the hashed password, recomputes the 

signature, and responds with OK or ERROR. 

4. Generate: The external server generates a random MICKEY 2.0 key (20 bytes of 

Key+IV). 

5. Upload: The external server stores the file and responds with OK or else ERROR 

if something goes wrong. 

6. Request: The external server uses the token (or file-ID) to look up the requested 

data and sends it back to the mobile device. 

 

Using five mobile devices to check the efficiency of the protocol, the cumulative time for 

keystream downloading, decoding and typing to memory was calculated. The FEATHER 

downloading is often time-consuming. However, compared to the CLOAK protocol [214], 

FEATHER is much faster. For example, for a file size of 8 MB, the total download time is 

110 seconds using CLOAK and around 9.8 seconds using FEATHER. If more than two 

mobile devices need to interact at the same time, the external server generating the 

keystream using the FEATHER protocol is far faster than when using CLOAK. FEATHER 

would reduce the overall time because the decoding period is only running XOR operation 

on the keystream, which is fairly easy. Smartphone battery life is higher with FEATHER. 

This lightweight authentication mechanism can help to maintain anonymity, authorisation 

and protection for consumers. It also aims to reduce the power usage of smartphone devices 

to boost overall efficiency. The suggested lightweight protocol FEATHER was tested 

against possible established attacks and found to be secure and effective for 
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implementation. As MICKEY 2.0 was used as a pseudo-random number generator, the 

protocol is adaptable for use in other IV-based lightweight synchronous stream ciphers. 

Combined with the new MICKEY 2.0.85, presented in Chapter 5, it would be 23% faster 

to produce the secure keystream. This work is a contribution to advance mobile cloud 

computer security, technologies, IoT development, and security in general. 

 

8.7 Developing proposed lightweight cryptosystem with NFSDE 

prototype device 

NFSDE and the secure protocol is a lightweight cryptosystem that proposes a prototype of 

a device called near-field secure data extractor, which allows secure RFID 

communications using a lightweight communication protocol without requiring stable 

internet connectivity. It offers extremely secure data exchange in the absence of the 

internet, which makes it useful in places with poor or no internet connectivity, such as 

remote and disaster-struck areas. The device demonstrates fast processing as well as 

robustness against several forms of attacks. An application of the proposed device and 

information exchange system is explained in the context of an eHealth scenario. 

 

The proposed cryptosystem is a significant contribution to the literature because, unlike 

conventional solutions, the proposed solution is inexpensive and can be easily customised 

to various application scenarios because it uses standard commercially available 

components. This is a contribution to improving RFID-based security because it proposes 

a simple yet highly efficient solution for the storage and exchange of protected data in a 

secure manner without depending on internet connectivity. The proposed device has 

applications in multiple scenarios, such as: 

 

• Two-person rule: In strong-security situations, for instance, when authorising 

major organisational spending, it is often necessary for two employees to authorise 

action. 

This new protection framework would make it simpler for the multi-factor “offline” to 

enforce the two-person rule. 

• Human courier scenario: As the current system will not need to be wired to the 

internet, it is an ideal way to secure data from hackers. If the parties involved do 

not wish to transmit sensitive data over the internet, the cloud may also be a 

protected key exchange tool. 
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Parties needing safe communication typically use human couriers rather than, for example, 

effective cloud-based exchange of knowledge. 

• Other potential uses include multi-factor authentication, such as smart wallets, cold 

storage of blockchain keys, master encryption keys, and protected data sharing by 

military agencies where regulation of physical access to systems and facilities is 

needed. 

• This solution may be used by scientists to conveniently store data on tags connected 

to animal bodies for tracking and control. 

• An important application of RFID tags is to track products in transit and compile 

inventory. 

 

Thus, the proposed cryptosystem implementing NFSDE devices can improve security in 

low-power or small-scale projects, where security is often compromised due to technical 

limitations or costs. 

 

8.8 Thesis findings and contribution to the literature  

The thesis made key findings in four main areas, addressing issues in the existing literature. 

It identified flaws in shrinking generator and self-shrinking generator by proposing neural 

network-based prediction models for pseudo-randomness, proposed MICKEY 2.0.85 as a 

secure and lighter version of MICKEY 2.0, proposed a secure lightweight FEATHER 

protocol for mobile cloud computing security and proposed Near Field Secure Data 

Extractor (NFSDE) with lightweight secure encryption protocol for RFID security in the 

absence of internet connectivity. 

 

Contribution 1: Identified flaws in shrinking generator and self-shrinking generator by 

proposing neural network-based prediction models for pseudo-randomness 

 

In a study of randomness tests for binary sequences [298], researchers confirmed that, by 

calculating the longest period, the probability of obtaining zeros or ones is equal, but 

generalising this to different periods requires more research. This thesis addressed this 

issue by presenting a more holistic approach by using prediction models, specifically 

neural network models, to predict unique window size, which can be applied to any binary 

sequence [123], [297]. 
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A study [299] on new statistical tests beyond NIST tests proposed using randomised tests 

for binary sequences based on limited patterns and is not comprehensive. The tests in this 

thesis provide an effective way to measure randomness to predict unique window size 

using neural network models, which is more comprehensive than the methods proposed in 

[299]. 

 

Previous studies [300] and [301] have focused on tests of whether the Boolean function 

was balanced and used a classification of weights with a specific and arranged framework, 

which is limited to weights classification. Maximum order complexity is preferred as a 

randomness test to an expansion test. These tests have been applied to the Thue–Morse 

and Rudin–Shapiro series, and the results confirm that maximum order complexity is a 

better test [302]. These results confirm the approach advanced in this thesis where unique 

window size is used as a form of maximum order complexity for randomness tests and 

neural networks are used for randomness prediction. 

 

In conclusion, the approach advanced in this thesis, of using unique window size and neural 

network prediction models, provides accurate measurements with a very tiny error margin, 

and the approach can be generalised to any cipher that generates a binary sequence as a 

keystream. 

 

Contribution 2: Proposed MICKEY 2.0.85 as a secure and lighter version of MICKEY 

2.0 

 

The most efficient and most used cipher is AES; however, it is a heavy encryption method, 

as AES requires relatively high power capability and considerable chip size. The thesis 

developed  the proposed MICKEY 2.0.85 cipher [23] to overcome this problem. In general, 

non-lightweight ciphers are slower in performance, speed, and lower in throughput [303], 

[304]. 

 

RFID technology uses small devices as its components, especially RFID tags and RFID 

readers, and applications like sensor networks and IoT technology have small computation 

processor units, such as Raspberry Pi and Arduino. It is thus essential to provide security 

for these small components [305-307]. 
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Lightweight ciphers such as Trivium were targeted to design multiple reduced versions, 

such as Micro-Trivium [189]; however, the proposed cipher, MICKEY 2.0.85, is more 

power efficient and needs fewer gate equivalents to work. More related optimised versions 

of different ciphers were introduced in Chapter 5 and also in [23]. 

 

Study [205] investigated using AES in mobile cloud computing and showed that the tiny 

RAM, low power supply, and small processors with small speed in mobile cloud 

computing meant AES was not feasible. Thus, lightweight encryption was introduced to 

handle the heavy tasks, such as file offload/download, with encryption methods based on 

pseudo-random permutation based on chaos systems. 

 

Contribution 3: Developed secure lightweight FEATHER protocol for mobile cloud 

computing 

 

A short study [308] based on cloud computing and mobile computing debated the 

importance of leaving the offloading tasks to be carried out in external applications using 

an external server. The authors proposed a mobile cloud computing enterprise that consists 

of four elements: mobile devices, wireless core, Wi-Fi access point, and regional 

information centres.  

 

Another study [204] showed that mobile devices could save energy by offloading some 

tasks to the cloud server, such as battery life and wireless energy, which is used to transfer 

the data in some applications; however, some applications are not energy saver efficient 

[298]. In addition to the limited computational power in mobile devices, battery 

consumption due to heavy computation adds another challenge, which makes mobile cloud 

computing a good solution. As mobile devices have limited computation power, it is hard 

to address all security cryptosystem requirements. 

 

CLOAK is a lightweight protocol based on the AES cipher, which enables two mobile 

devices to communicate with each other while leaving the keystream generation on an 

external server (AWS in their implementation) [214]. It can be compromised by fetching 

the keystream from an external server and from communication media as well. On the 

other hand, it can get the keystream from either trusted or untrusted external servers. 

However, the FEATHER protocol is a lightweight security cryptosystem and, as shown in 

Chapter 6, is faster and more power efficient. 
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Contribution 4: Developed Near Field Secure Data Extractor (NFSDE) with lightweight 

secure encryption protocol for RFID security in the absence of internet connectivity 

 

The low cost of RFID tags means it is desirable for authentication and verification [249]. 

However, it requires internet connectivity, while the NFSDE cryptosystem published as 

part of this thesis does not require a connection to the internet [221]. 

 

The possibility of the key being intercepted by a third party and the requirement to establish 

a specific key for each sender–receiver pair is regarded as the “key delivery problem” 

[294]. In standard symmetric encryption, it is important for the sender to establish and 

transfer the key to the recipient. The number of keys needed is considered to be n(n − 1)/2, 

where n is the number of entities who have to be informed. Another study [231] favored a 

hardware approach to this issue and suggested specialised equipment named Recryptor. 

While asymmetric architectures can solve this issue they need more processing power than 

is ordinarily available in low-power devices. Another study [232] used a design processor 

named Fulmine for IoT near-sensor applications. This thesis proposed a cryptosystem 

implementation that includes NFSDE with MICKEY 2.0 to solve key distribution 

problems [221]. 

 

In situations with poor internet access, attacks by hackers can be much more aggressive 

[253] because the current framework has to be updated to resolve communication issues 

and to include authentication approaches that are suited to such scenarios. However, Study 

[253] offered solutions for open and untrusted networks, while the NFSDE based 

cryptosystem in this thesis offers protection where internet access is poor or non-existent 

[221]. 
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8.9 Conclusion 

In summary, the thesis analysis, randomness testing, neural network modelling, optimised 

cipher MICKEY 2.0.85, the FEATHER lightweight protocol for securing mobile cloud 

computing, and the NFSDE based lightweight cryptosystem all contribute to improved 

cryptographic and security analysis and applications. This work can inspire further security 

research and related technological developments to provide low-cost security solutions for 

small devices and small-scale projects. The main contributions of this thesis can be 

summarised as follows: 

 

1. The thesis research identified flaws in the shrinking generator and self-shrinking 

generator ciphers. This is useful because it can be adapted for any other ciphers. 

2. The thesis research designed a prediction neural network based model for 

randomness evaluation. This can be used for pseudo-randomness testing of any 

kind of ciphers and hash functions for example. 

3. The thesis research proposed a lighter and more secure version of the MICKEY 2.0 

cipher, called MICKEY 2.0.85. This is slightly better than the original in various 

security aspects and overall performance, and can be used for low scale security 

projects. 

4. The thesis research tested MICKEY 2.0.85 for efficiency and found that it was 23% 

faster in encryption and consumes less power than MICKEY 2.0. This new version 

is useful for low-cost encryption methods such as mobile cloud computing and 

RFID low scale project. In addition, the testing methods work as a framework for 

designing new encryption methods for evaluation and testing. 

5. The thesis research proposed the FEATHER security protocol for mobile cloud 

computing.  This new lightweight cipher can be used for new small devices which 

are essential components of mobile cloud computing. 

6. The thesis research introduced the non-internet connectivity dependent Near Field 

Secure Data Extractor (NFSDE) prototype device with security encryption method 

for RFID technology at the absence of internet connectivity. An example of 

implementation of this system was provided in an eHealth security context. 

However, it can be used in a wide range of applications such as facilitating the 

multi-factor “offline” to implement the two-person law, human courier scenario 

security and to monitor items in transit and to compile inventory. 
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8.10 Possible future research directions  

Based on the thesis findings, there are several future research directions to further improve 

cryptosecurity for real-world applications: 

1. Rather than applying the UWS test with neural network models to predict the 

keystream, it can be applied in internal cipher components, such as LFSR and 

NLFSR binary output, which can evaluate the strength of the cipher’s internal 

components. 

2. Adapting neural network prediction models in different ciphers and hash functions 

can test their pseudo-randomness and whether the keystreams are complex enough 

to resist possible attacks. 

3. Neural network models for image and face recognition can be implemented by 

converting the raw data into binary data and then applying the models in Chapter 

4, with some modifications. This is an interesting direction, to see how predicted 

data can result in accurate recognition. 

4. The MICKEY 2.0 internal state size can be further reduced to less than 170-bit, but 

larger than 160-bit (the key size is 80-bit, so the internal state as security rule should 

be at least 2*80-bit), and then the new version and its parameters can be tested, as 

in Chapter 5. 

5. Another reduction approach in the internal state size of MICKEY 2.0 is to make 

the S (nonlinear register) size more than R (linear register) size, while keeping the 

internal state size between 160-bit and 170-bit, and using the evaluation methods 

from Chapter 5. 

6. For FEATHER, new ciphers other than MICKEY 2.0 can be implemented, then the 

overall process time and the power consumption can be calculated. 

7. The cryptosystem (NFSDE + security protocol) can be adopted in other healthcare 

settings such as home visiting for patients with special needs, where it is difficult 

for them to visit hospitals and emergency cases, and other settings. 

8. A casing can be designed to contain NFSDE components to make it more practical 

to use in a wide range of different environments (as practical application). 

9. A holistic unit can be designed that does the NFSDE work while keeping the 

functionalities of all internal components. 

10. Ciphers other than MICKEY 2.0 can be used in NFSDE for encryption. 
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Appendices  

The appendices provide additional results to those included in the thesis chapters. The 

following table of appetencies contents: 

 

Appendices for 

chapter 3 

Appendix 3.1: Additional d-monomial test results 

 
Appendix 3.2: Linear complexity results for SSG 

 
Appendix 3.3: Some statistical analysis for UWS4 to UWS24 

 
Appendix 3.4: Unique Window Size degree vs polynomial weight 

 
Appendix 3.5: Goodness of fit, plots and figures for different 

statistical distributions 
 

Appendix 3.6: Importance of variables based on univariate simple 

linear regression model R square 

Appendices for 

chapter 5 

Appendix 5.1: Counting GEs method 

 
Appendix 5.2: GE number comparison in MICKEY family 

algorithms 

Appendix for 

chapter 3 

Appendix 6: Example of data that represents the communication 

operation between mobile device and the cloud server 

Appendices for 

chapter 7 

Appendix 7.1: Detailed flow of the patient tag creation process 

 
Appendix 7.2: NFSDE device emulation 

 
Appendix 7.3: PUF and possibility of use within NFSDE 

 

 

 

 

 

 

 

 

 

 

 



200 
 

Appendices for Chapter 3 

Appendix 3.1: Additional d-monomial test results  

 

First: For SSG 

  

We performed d-monomial tests and applied chi-square tests with a degree of freedom of 

non primitive polynomials of degree 5 to 7. 

  

The following summary table shows the results of the d-monomial test and chi-square test 

on primitive polynomials from degree 5 to 7. This thesis applied the d-monomial test and 

the chi-square test, with a degree of freedom n and confidence level α=1%, 5% and 10%. 

(From the null hypothesis, all monomials have normal binomial distribution). 

 

Table 3.1.1 Polynomial for LFSR with degrees from 5 to 7 and their strength 

POLY #TTF #TFF #FFF TOTAL 

x5+x2+1 0 1 0 1 

x5+x3+1 1 0 0 1 

x5+x3+x2+x+1 1 0 0 1 

x6+x+1 0 1 0 1 

x6+x5+1 0 2 0 2 

x6+x5+x2+x+1 0 0 1 1 

x6+x5+x3+x2+1 0 2 0 2 

x7+x+1 0 1 1 2 

x7+x3+1 2 0 1 3 

x7+x3+x2+x+1 0 0 1 1 

x7+x5+x2+x+1 0 0 1 1 

x7+x5+x3+x1+1 0 0 1 1 

x7+x5+x4+x3+1 1 0 0 1 

x7+x6+x4+x2+1 1 0 0 1 

x7+x6+x5+x2+1 0 0 1 1 

x7+x6+x5+x3+x2+x+1 0 0 1 1 

x7+x6+x5+x4+1 1 0 1 2 

x7+x6+x5+x4+x2+x+1 1 0 1 2 

 

T=true, F=false, so TFF (For example) shows the number of initial states for which the d-

monomial tests passes at a significant level of 10% and fails at levels of 5% and 1%. 

From the above table, we can see that x7+x3+1 is a bad polynomial to use with the LFSR 

for SSG. 
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Here another example for degree 12. The study tested 144 primitive polynomials of degree 

12.  The following table shows, in decreasing order, the worst polynomials for LFSR.  

Table 3.1.2: Polynomial for LFSR with degree 12 and their strength 

Order Poly #FFF #TFF #TTF Total 

1 x12+x10+x2+x+1 6 5 6 17 

2 x12+x6+x5+x3+1 4 1 11 16 

3 x12+x8+x2+x+1 3 4 8 15 

4 x12+x7+x4+x3+1 2 1 10 13 

5 x12+x11+x10+x8+x2+x+1 3 2 6 11 

6 x12+x9+x7+x6+1 3 1 7 11 

7 x12+x7+x6+x4+1 2 2 7 11 

8 x12+x11+x10+x2+1 3 1 6 10 

9 x12+x8+x7+x2+1 2 1 7 10 

 

Second: For SG results 

 By investigating the sg output and applied the d-monomial and chi-square test on the 

primitive polynomials, with degrees of freedom of n and n+1. 

  

As our primary result, we investigated primitive polynomials for LFSR1 and LFSR2 of 

degree 4 to 7. In this investigation, we used three cases: 

  

1. Fixing LFSR1 and LFSR2.  

2. Fixing the LFSR1 and varying the LFSR2. 

3. Fixing LFSR2 and varying LFSR1. 

  

From the results of our investigation, sg does not pass our d-monomial tests and chi-square 

test. 

Our primary observation suggests that LFSR2 (the controlling function) insures the 

nonlinearity of outputs. We also found that the greatest possible LFSR2 length is most 

useful in order to gain the nonlinear property of SG outputs. 
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Appendix 3.2: Linear complexity results for SSG 

An investigation of the association between degree and LC (Linear Complexity) 

 

3.2.1 Introduction 

This report investigates the association between degree and LC, and if such an association 

exists, we attempt to find a formula relating degree and LC. 

 

3.2.2 Methodology 

Firstly the LC data was grouped using the following coding, for both the chucks and profile 

data: 

Table 3.2.1: Coding of LC values 

LC value Code 

[0,10] 1 

(10,20] 2 

(20,30] 3 

>30 4 

 

This is required in order to carry out a Chi-square test for association. A Chi-square test 

for association is then carried out for both the chunks and profile data, individually. If an 

association is found, we will attempt to quantify the relationship between degree and 

association using a simple linear regression. 

 

3.2.3 Results 

Results for the chunks data  

 

Firstly,  examine a contingency table. 

Table 3.2.2: Contingency table of degree versus grouped LC value 
  

LC grouped 
 

 
[0,10] (10,20] (20,30] >30 

Degree 

4 32 0 0 0 

5 288 0 0 0 

6 685 83 0 0 

7 4165 1149 366 80 

8 7032 2441 669 2146 



203 
 

The Chi-square test for association is highly significant, =1460.034, p<0.001.  

therefore conclude there is an association between degree and LC. From Table 3.1.1, it is 

clear that most polynomials have a high degree and low LC (e.g. degree 8 and LC between 

0 and 10 inclusive), and very few have low degree and high LC (e.g. degree 4 and LC 

above 30).  

To determine the nature of the relationship between the variables, we examine the scatter 

plot and fit a simple linear regression. 

Please note that in general there is a lower known bound on LC, of the form: 𝐿𝐶 ≥ 𝑐. 𝑒(𝜃𝑛), 

(c and 𝜃 are positive constants ∈ (0,1)), but this bound is not achieved for all polynomials, 

which led us to consider this question. Our goal is to see what bound holds “an average” 

for all polynomials.   

 

Figure 3.2.1: Scatter Plot of LC versus degree 

 

 

 

 

 

 

 

 

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%7B%5Cchi%7D%5E2(12)#0
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Figure 3.2.2: Scatter Plot of logarithm of LC+1 versus degree 

 

Table 3.2.3: Simple linear regression of degree versus LC+1 value 

 
Estimate Std. Error t p-value 

(Intercept) -0.32985 0.072745 -4.534 5.82E-06 

degree 0.328899 0.009577 34.342 2.00E-16 

 

Thus the relationship between degree and LC is estimated to be 

 𝑙𝑛(𝐿𝐶 + 1) = −0.33 + 0.33 × 𝑑𝑒𝑔𝑟𝑒𝑒 

This can be rewritten as 

𝐿𝐶 = 0.72𝑒0.33×𝑑𝑒𝑔𝑟𝑒𝑒 − 1 
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Results for the profile data 

Firstly, we examine a contingency table. 

Table 3.2.4: Contingency table of degree versus grouped LC value 
  

LC grouped 
 

 
[0,10] (10,20] (20,30] >30 

degree 

4 16 0 0 0 

5 96 0 0 0 

6 113 79 0 0 

7 357 355 360 80 

8 311 330 322 1085 

 

The Chi-square test for association is highly significant, =1460.034, p<0.001. 

Therefore that conclude there is an association between degree and LC. From Table 3.2.1, 

it is clear that most polynomials have a high degree and high LC (e.g. degree 8 and LC 

greater than 30), and very few have low degree and low LC (e.g. degree 4 and LC between 

0 and 10 inclusive).  

To determine the nature of the relationship between the variables, we examine the scatter 

plot and fit a simple linear regression. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%7B%5Cchi%7D%5E2(12)#0
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Figure 3.2.4: Scatter Plot of LC versus degree 

 

 

Figure 3.2.5: Scatter Plot of logarithm of LC+1 versus degree 
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Table 3.2.2: Simple linear regression of degree versus LC+1 value 

 
Estimate Std. Error t p-value 

(Intercept) -1.371 0.13074 -10.49 <2e-16 

Degree 0.5785 0.01743 33.19 <2e-16 

 

Thus the relationship between degree and LC is estimated to be 

 

 𝑙𝑛(𝐿𝐶 + 1) = −1.37 + 0.58 × 𝑑𝑒𝑔𝑟𝑒𝑒 

This can be rewritten as 

 𝐿𝐶 = 0.25𝑒0.25×𝑑𝑒𝑔𝑟𝑒𝑒 − 1 

 

The relationship appears to be exponential in nature, so the logarithm of LC+1 is taken 

prior to fitting a regression. Note that one needs to be added to LC to avoid taking the 

logarithm of zero, which is undefined. 

In the following figure it represents linear complexity using chunk bits of self-shrinking 

generator output for all primitive polynomials of degrees 4 to 8. To calculate linear 

complexity , we took the first 4 chunk bits starting from bit 1, 2, 3…etc. bits of each ssg 

output and applied the Berlekamp-Massey algorithm. Then taking 8, chunk bits 16… etc. 
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Appendix 3.3: Some statistical analysis for UWS4 to UWS24 

 

Table 3.3.1: An overall statistical analysis of the UWS for shrinking generator with degrees 

from 4 to 24 

Degree Weight 

mean 

UWS 

mean 

Weight 

variance 

UWS 

variance 

Weight 

standard 

deviation 

UWS 

standard 

deviation 

UWS 

Weight 

Correlation 

4 3 4 0 0 0 0 NA 

5 4.3333 7.5 1.06666 4.3 1.032795 2.073644 0.747087 

6 4.3333 7.6666 1.0666 1.06666 1.032795 1.032795 -0.25 

7 5 11.055 1.88235 6.17320 1.37198 2.484593 -0.03451 

8 5.5 13.437 0.8 4.12916 0.894427 2.032035 -0.27510 

9 6.25 14.9166 1.63829 4.03546 1.27996 2.00884 -0.17377 

10 6.533 17.766 2.35480 4.18192 1.53453 2.04497 0.169954 

11 7.0227 18.931 2.33090 3.22961 1.52673 1.79711 -0.06191 

12 7.3611 21.402 1.82672 4.07439 1.35156 2.01851 -0.0383 

13 8.0476 23.325 2.7544 4.1626 1.6596 2.0402 0.0259 

14 8.6031 25.284 2.88338 3.43027 1.69805 1.85209 -0.0171 

15 8.9422 27.345 3.5986 3.8594 1.8970 1.9645 -0.0009 

16 9.5117 29.354 3.5601 3.4237 1.8868 1.8503 0.0046 

17 9.9644 31.284 4.0477 3.3906 2.0119 1.8413 -0.013 

18 10.525 33.360 4.23499 3.65402 2.05790 1.91155 -0.0064 

19 11.011 35.322 4.46157 3.53126 2.11224 1.87916 -0.0100 

20 11.502 37.330 4.78885 3.51279 2.18834 1.87424 -0.0008 

21 11.992 39.331 4.95370 3.5344 2.22569 1.88002 -0.0040 

22 12.505 41.332 5.22508 3.55562 2.28584 1.88563 -0.0018 

23 13.002 43.3346 5.51737 3.5444 2.34890 1.88268 0.00074 

24 13.503 45.3346 5.7573 3.5067 2.3994 1.8726 0.0018 
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Appendix 3.4: Unique Window Size degree vs polynomial weight 

 

The following table shows all primitive polynomials of degree 9 and 10 with their weight 

and unique window size: 

 

Table 3.4.1 weight of poly (degree 9) and Unique Window Size with (frequencies)  

Weight Unique Window Size with (frequencies) 

3 16(1) 17(1) 

5 12(1) 13(4) 14(4) 15(1) 16(2) 18(3) 20(1) 

7 12(1) 13(6) 14(10) 15(3) 16(2) 17(3) 18(1) 19(2) 

9 13(1) 15(1) 

 

Table 3.4.2 weight of poly (degree 10) and Unique Window Size with (frequencies) 

Weight  Unique Window Size with (frequencies) 

3 15(1) 16(1) 

5 15(2) 16(2) 17(9) 18(3) 19(2) 20(1) 23(1) 

7 17(8) 18(4) 19(5) 20(2) 22(2) 24(1) 

9 15(2) 16(1) 17(1) 18(3) 19(1) 20(1) 23(1) 

 

 

The following histogram shows the calculations for primitive polynomials of degree 14, 

for weight versus unique window.  
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UWS21, weight =5 

 

 

 

 

UWS21 and all weights 
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Appendix 3.5: Goodness of fit, plots and figures for different statistical distributions 

This report includes the goodness of fit, as well as plots and figures for different statistical 

distributions comparison for SG with UWS2. 

 

Table 3.5.1 Goodness of fit for possible probability distribution for SG with UWS20 

Distribution  Log-likelihood AIC BIC Ranking 

Poisson  -207633.1 415268.3 415277.4 5 

Negative 

Binomial 

-207633.1  415270.3 415288.6 6 

Geometric  -332299.8 664601.7 664610.8 7 

Normal -194858.1  389720.1 389738.4 3 

Weibull -207206.1 414416.3  414434.3 4 

Gamma -192544.2 385092.4  385110.7 2 

Log normal -191560.4 383124.7 383143 1 

*highest log likelihood, lowest AIC and BIC 

 

Table 3.5.2 Test for randomness 

Test Statistic P value Decision 

Bartels rank test -83.926 <0.001 Non-Random 

Cox sturt test 8957 <0.001 Non-Random 

Mann Kendal rank test -139.68 <0.001 Non-Random 
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Based on UWS20 variable for SG 

Observed and empirical distributions: 

 

First: Continuous distributions: 

 

Normal plots: 

 

 

Weibull plots: 
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Gamma plots: 

 

Log normal plots: 
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Second: Discrete distributions: 

Poisson: 

 

Negative Binomial: 

 

 

 

Geometric: 
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Third: Comparisons between continuous distributions 

 

 

Weibull and gamma lines are on top of each other, hence only one red line visible. 

 

Fourth: Comparison between discrete distributions 

Poisson and negative binomial lines are on top of each other, hence only one red line is 

visible. 
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Fifth: Comparison between all (candidate) distributions 
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Appendix 3.6: Importance of variables based on univariate simple linear regression 

model R square 

 

Variable R Square 

Input polynomial term of order 17  0.18 

Input degree           0.127 

Control degree 0.127 

Control weight 0.10 

Input weight 0.09 

Input polynomial term of order  13 0.09 

Input polynomial term of order  12  0.08 

Input polynomial of order  14  0.08 

Input polynomial term of order  15 0.08 

Input polynomial term of order  16  0.08 

Control polynomial term of order  9  0.078 

Control polynomial term of order  11  0.068 

Control polynomial term of order  8 0.057 

Control polynomial term of order  13  0.054 

Control polynomial term of order  10  0.041 

Input polynomial term of order  10  0.04 

Control polynomial term of order  4  0.038 

Control polynomial term of order  5  0.036 

Control polynomial term of order  6  0.036 

Control polynomial term of order  3  0.032 

Input polynomial term of order  11 0.018 

Control polynomial term of order 12  0.018 

Control polynomial term of order 7  0.015 

Input polynomial term of order 8  0.014 

Input polynomial term of order 7 0.008 

Input polynomial term of order  9 0.002 

Control polynomial term of order  17 0.001 

Control polynomial term of order  14 0.0006 

Input polynomial term of order  4 0.0005 

Control polynomial term of order 16 0.0005 

Control polynomial term of order  15 0.0004 

Input polynomial term of order  2 0.00009 

Control polynomial term of order  1 0.00009 

Input polynomial term of order  1 0.00006 

Input polynomial term of order  3 0.00006 

Input polynomial term of order  6 0.00006 
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Appendices for Chapter 5 

These appendices include explanations for the counting method of GEs as in Chapter 5, 

and comparison of GEs number in the MICKEY family algorithms. 

 

Appendix 5.1: Counting GEs method 

The way to count the Gate Equivalents (GEs), which is the measurement unit to measure 

the electronic circuit complexity, is based on the operation used for computation as 

following: 

 

Table 5.1. Number of GEs for a given logical gate; see [310]. 

Gate  Number of Gate Equivalents 

NOT 1 

AND 2 

OR 2 

XOR 3 

NAND 1 

NOR 1 

XNOR 3 

MUX 3 

 

One of the objectives of this algorithm was to reduce the number of GEs. The following 

points summarise how the reduction was accomplished with a focus on those algorithm 

features used for reduction and indicates the kind of gate it represents. This enabled us to 

count the number of GEs. 

 

The following part were published as a part of this thesis in [23] 

CLOCK_R: 1: Initialization of the Internal Register (Single XOR) 

CLOCK_R 2: Loop (Conditional) Feedback Bit Logically Assigns Linear Register Bit 

(Within Loop) 

MICKEY 2.0: for i = 0 to 99 

MICKEY 2.0.85: for i = 0 to 84 

CLOCK_R 3: Linear (R_MASK) Logic to Invert Bit (Single XOR) (Within Loop) 

MICKEY 2.0: for i = 0 to 99 

MICKEY 2.0.85: for i = 0 to 84 
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CLOCK_R 4: Multiple Related Operation (Single MUX)—Conditionally executed based 

on control bit. 

CLOCK_R 5: Multiple Related Operation (Single MUX)—Conditionally executed based 

on feedback bit. 

CLOCK_S: 1 Initialization of Internal (Nonlinear) Register (Single XOR) 

MICKEY 2.0: For i = 0 to 99: 

MICKEY 2.0.85: For i = 0 to 84 

CLOCK_S: 2, CLOCK_S: 3: Bitwise operations on internal structures 3 XORs and One 

AND (gates) 

CLOCK_S: 4: Conditional Logic on Feedback and Control Bit (Single MUX) 

MICKEY 2.0: For i = 0 to 99: 

MICKEY 2.0.85: For i = 0 to 84 

CLOCK_S: 5: Change Nonlinear Register (Single XOR) 

CLOCK_KG: 1–5: Simple Initializations: (4 XOR, 1 AND) 

The IV and key were used along with the internal masks to initialize the registers in the 

function ECRYPT_keysetup, ECRYPT_ivsetup. The idea is that, by arbitrarily mixing the 

bits of the key and the IV, the initial state of both the linear and nonlinear registers will be 

unpredictable. 

MICKEY 2.0: IV_i 1: For i = 0 to 79: Initialize on IV (Single MUX) 

MICKEY 2.0: IV 2: For i = 0 to 80: Initialize on Key (Single MUX) 

Therefore, the MICKEY Algorithm works as follows: 

MICKEY 2.0: Process (Single MUX to represent Logic): 

1. Initialize the internal state using: IV, key, and CLOCK_KG (which uses 

CLOCK_R and CLOCK_S) to mix in the IV and KEY bits based on the internal driver 

structures 

(R_MASK and COMP0, COMP1, FB0, FB1) 

2. For each bit in the message invoke CLOCK_KG 

     a. CLOCK_KG invokes CLOCK_R, which advances the linear bit and masks it with 

R_MASK to determine its final value. 

b. CLOCK_KG also invokes CLOCK_S, which may or may not advance the 

nonlinear bit depending on the linear position and the values of (COMP0, COMP1, FB0, 

and FB1) 

c. CLOCK_KG determines the keystream bit by XORing the current linear and 

nonlinear registers and ANDs them with 1. 
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d. Ciphertext Generation: The current plaintext message bit is XORed with the current 

Keystream bit, which becomes the ciphertext output. 
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Appendix 5.2: GE number comparison in MICKEY family algorithms 

The following part was published as a part of this thesis in [23] 

The following table counts the number of GEs for both MICKEY 2.0 and MICKEY 2.0.85, 

considering the logical gates XOR, AND and MUX count. And that for internal state parts 

CLOCK_R, CLOCK_S,CLOCK_KG,ECRYPT_IVs setup and Encrypt_process 

functions.  

 

Table 5.2. GE Comparison between MICKEY Family Algorithms. 

Function Operation 
GE 

Multiplier 

MICKEY 2.0 

Count 

MICKEY 2.0.85 

Count 

Number GE Number GE 

CLOCK_R XOR 3 401 1203 341 1023 

 MUX 3 2 6 2 6 

CLOCK_S XOR 3 400 1200 340 1020 

 AND 2 100 200 85 170 

 MUX 3 2 6 2 6 

CLOCK_KG XOR 3 4 12 4 12 

ECRYPT_IVs 

setup 
MUX 3 160 480 160 480 

Encrypt_process MUX 3 8 24 8 24 

Total GE     3131 2741 
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Appendix for Chapter 6 

Appendix 6: Example of data that represents the communication operation between 

mobile device and the cloud server  

 

Register 

action=register&uid=431a53a9b877c8e7a1d00e485c4fbfa4&phone=%2B14165551212

&timestamp=1581955729&x=sig 

s=OK&d=6178ebbcd400a83336c827e45c2d0ae3b8e96f1fc6daf2b5fe3b0b03cac9762b42

61e8166190499758717cb49e86985670077636e168ebdfa4f6e26ebf589a01&t=15819557

29 

 

onetimepad = 

6178ebbcd400a83336c827e45c2d0ae3b8e96f1fc6daf2b5fe3b0b03cac9762b4261e81661

90499758717cb49e86985670077636e168ebdfa4f6e26ebf589a01 

Update 

action=update&uid=431a53a9b877c8e7a1d00e485c4fbfa4&data=06c219e5bc8378f3a8a

3f83b4b7e4649&timestamp=1581955729&x=sig 

s=OK&d=d8fafca7c6611a58e4e63894e99acdc606d43480639c8cfcc25bb3f8729b8b5996

7565f014af18d03600c497b6f9d0b1cca4f057086d40fac195c2700a450a88&t=158195572

9&x=f2053690b839f7f0bdfb6208f682fae0 

 

sharedkeystream = 

b982171b1261b26bd22e1f70b5b7c725be3d5b9fa5467e493c60b8fbb852fd72d4148de67

53f51476e71b823287f48e7bca38661e905ab256563201eb51d9089 

Validate 

action=validate&uid=431a53a9b877c8e7a1d00e485c4fbfa4&data=06c219e5bc8378f3a8

a3f83b4b7e4649&timestamp=1581955729&x=sig 

s=OK&t=1581955729 

 

Generate 

action=generate&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=63158a3230a6ff1383c

8ef9f4790ca56&number=262144&expire=1581955759&timestamp=1581955729&x=sig 

s=OK&t=1581955730 

Request 
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(download keystream) 

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=63158a3230a6ff1383c8

ef9f4790ca56&timestamp=1581955730&x=sig 

 

s=OK&d=c2b51d7e6ada70cb58b84de530350ca28a839ebb83ee5092f034c7e2e07ca5a1b

276b53868c42fefffa085357b76d5607bc02d8ce2df63f24b2bd098c354ca551210acd29f58

c375d880 

……………………………. 

keystream_encrypted = 

c2b51d7e6ada70cb58b84de530350ca28a839ebb83ee5092f034c7e2e07ca5a1b276b53868

c42fefffa085357b76d5607bc02d8ce2df63f24b2bd098c354ca551210acd29…………... 

keystream           = 

7b370a6578bbc2a08a9652958582cb8734bec52426a82edbcc547f19582e58d3666238de1

dfb7ea891d13d1653099d87c763abed0bdac8d72e48f08676495adcab92bbc98d….. 

 

Upload 

(upload encrypted file) 

action=upload&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=cfb57d776aed4b34e3d0

f35440a925a4&data=4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a6

9a263c21a0fab…. 

 

s=OK&t=1581955734 

 

file_contents     = Shhh! Don't tell anyone. This is the secret message I am trying to send 

to my friend. 

 

file_inflated     = 

536868682120446f6e27742074656c6c20616e796f6e652e2054686973206973207468652

0736563726574206d657373616765204920616d20747279696e6720746f2073656e64207

46f206d7920667269656e642e 

 

file_encrypted    = 

f3b6e95c7074ec4f3abd2e5bd4bbed587135c6593bf43f55808ae95d2274c15374ee321e80

ade4572331dc0039ff2908c1b9e4141874c94d74ee2802c9b0e614253b885331f43e5bd4b1

a1592874ce523dff341f8e 



224 
 

 

file_encrypted_sk = 

4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a0fabff8f59

2b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f4823958c30069f

be299dc3097783c26f802b 

 

Upload 

(upload magic file) 

action=upload&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=d4e3707271&data=b98

2171c1261b26fd22e1f8fc380ad49c6b1a2c094b8926dc97e5a7a62c5605bf6d3c09e24d9a

1a89c56b550&expire=1581955764&timestamp=1581955734&x=sig 

s=OK&t=1581955734 

 

magic_filename           = magic 

 

magic_filename_inflated  = 6d61676963 

 

magic_filename_encrypted = d4e370727 

 

Request 

(download magic file) 

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=d4e3707271&timestam

p=1581955734&x=sig 

s=OK&d=b982171c1261b26fd22e1f8fc380ad49c6b1a2c094b8926dc97e5a7a62c5605bf6

d3c09e24d9a1a89c56b550&t=1581955734&x=04b4e10845b57dc9b4fbf5bb02d19bd4 

R0 = 7 

R1 = 4 

RN = 255 

 

filename_hashed = 76376a6c788cf95f31feec24f51ee281 

 

token_hashed    = da979d2922c74d7851e6f0eff2270d73  
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Request 

(download encrypted file) 

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=cfb57d776aed4b34e3d

0f35440a925a4&timestamp=1581955734&x=sig 

s=OK&d=4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a

0fabff8f592b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f48239

58c30069fbe299dc3097783c26f802b&t=1581955734&x=59a2859ad8dc9e68c4493fd94

1c7180f 

 

file_encrypted_sk = 

4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a0fabff8f59

2b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f4823958c30069f

be299dc3097783c26f802b 

 

file_encrypted    = 

f3b6e95c7074ec4f3abd2e5bd4bbed587135c6593bf43f55808ae95d2274c15374ee321e80

ade4572331dc0039ff2908c1b9e4141874c94d74ee2802c9b0e614253b885331f43e5bd4b1

a1592874ce523dff341f8e 

 

file_inflated     = 

536868682120446f6e27742074656c6c20616e796f6e652e2054686973206973207468652

0736563726574206d657373616765204920616d20747279696e6720746f2073656e64207

46f206d7920667269656e642e 

 

file_contents     = Shhh! Don't tell anyone. This is the secret message I am trying to send 

to my friend. 
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Appendices for Chapter 7 

These appendices include the chart for patient tage creation with full details, NFSDE 

device emulation and PUF and possibility of use within NFSDE. 

 

Appendix 7.1: Detailed flow of the patient tag creation process 
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Appendix 7.2: NFSDE device emulation 

The emulator functions as a command line program that displays a menu with the following 

options. 

These are the main options suggested for display on the user interface and can be modelled 

according to user preferences. 

MAIN MENU: 

1. Create Patient Tag 

2. Create Provider Tag 

3. Activate Reader 

4. Read Patient Tag 

5. Unlock the USB 

6. Change Key Number (Time stamp emulator) 

7. Exit 

 

B. TEST RUN USING THE EMULATOR 

1. To unlock the USB drive by using option 5, which makes the key available, the 

password is hard coded and displayed for convenience within the simulator. If the USB 

device is not unlocked, K1, K0, and IV0 are not available to the simulator, and error 

messages are displayed. If the SD card is not “unlocked,” no creation, read, or activation 

can be performed. 

2. Option 6 allows the simulation of a KTI rotation. For demonstration purposes, only 

two key sets were provided. This proves it is possible to encrypt the provider with one set 

of keys and the patient with another. 

3. Creating a provider tag by using option 2 prompts the following process. 

a. The provider’s identification, PIN, and authorization are entered. 

b. A 7-byte unique ID is generated randomly. 

c. Encryption is performed, and authentication code (as described above) is 

generated. 

d. A file of the form “[uniqueid].enc” is used to simulate the tag (in this case, the 

provider tag.) This includes an unencrypted value of “2” in the tag type field to ensure that 

subsequent scans “know” this is a provider tag rather than a patient tag. 

e. A plaintext file of the form “[uniqueid].txt” is also created for checking the 

accuracy of the decryption process. 

4. Option 1 for creating a patient tag has two major features: 
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a. Emulation of the reference fingerprint scan, which is performed by simply 

specifying one of the three hex files provided to serve as the reference fingerprint (we used 

three to enable us to emulate incorrect or failed scans). 

b. Emulation of reading and encrypting the identity and “medical data.” We used a 

random name generator and a random string generator to emulate the patient identity and 

medical data. 

c. A file of the form “[uniqueid].enc” is used to simulate the tag (in this case, the 

patient tag). This includes the unencrypted value of “1” in the tag type field to enable 

subsequent scans to “know” this is a patient tag rather than a provider tag. 

d. A plaintext file of the form “[uniqueid].txt” is also created to verify the accuracy 

of the decryption process. 

5. Option 3 (reader activation) begins by prompting the provider tag to be scanned. 

This scan is emulated by entering the filename of a provider tag that has already been 

created (“[uniqueid].enc”). If the file contains 2 (provider) in the tag type field, the 

authentication signature is decrypted and checked (including CRC). If the signature 

matches all acceptance criteria and it is assured that the data have not been tampered with, 

the device is “activated” and the authorization level of the provider is stored in the device 

memory. 

6. Option 4 reads the patient tag. If the device has not been activated (Option 3), 

Option 4 fails immediately, prompting for activation. The RFID card is “scanned” by 

entering the filename of a previously created patient tag (“[uniqueid].enc”). If the file 

contains the patient value of 1 in the tag type field, the authentication signature is decrypted 

and checked (including CRC). Further, if the signature matches all acceptance criteria and 

it is assured that the data have not been tampered with, fingerprint scanning is performed 

in the next step. Fingerprint scanning is emulated by entering one of the fingerprint file 

numbers. A “good scan” is emulated by entering the same number as in the reference 

fingerprint template, whereas a “bad scan” is emulated by entering one of the other 

numbers. If the fingerprint matches, the medical data will be decrypted and displayed 

(based on the authorization level at activation.) 
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Appendix 7.3: PUF and possibility of use within NFSDE 

Physically Unclonable Functions (PUFs) have two major functional benefits: key 

generation and lightweight authentication [250], [251]. We do not need PUFs for key 

generation but could use them for lightweight authentication. 

 

When an environmentally stable PUF becomes readily available for emergency use, the 

protocol we have developed should dove-tail into this technology. The emulator functions 

can be modified to use the protocol. 

 

In a scenario that requires less frequent key rotation and in which potential problems 

caused by the environment are not life-threatening, off-the-shelf components could be 

replaced by commercially available special order CRFID tags. These tags, for providers 

only, could serve the same function as the SD. IV0, K1 and K0 could be encrypted and 

stored on the providers' CRFID cards and decrypted when his or her PIN is authenticated. 

 

To pursue this line of inquiry, the software-based components of the emulator could be 

adopted to experiment on the best way to implement the protocol to guide the designer for 

specific hardware implementations without limiting designer creativity [309]. Adding a 

fuzzy extractor [251] to the emulator would definitely give us some better insights on 

implementation details necessary for PUFs. 

 

For example, the RFID tag simulator component might be replaced by a CRFID with a 

PUF simulator component. The USB component may, for example, be used for storing 

expected responses to registered challenges or may be replaced or removed entirely. 
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