
Lightweight Synchronous Stream Ciphers:
From Mathematical and Statistical Analysis
to Proposed Secure Protocols for Mobile
Cloud Computing and RFID Applications

 Ahmed Mohammed Alamer

B. Math, GradDip. Math, M. Math

A thesis submitted in total fulfilment

 of the requirements for the degree of

 Doctor of Philosophy

 School of Engineering and Mathematical Sciences

College of Science, Health and Engineering

 La Trobe University

 Victoria, Australia

 May 2020

II

Dedicated to

my mother and memory of my father

III

Table of Contents

Table of Contents ... III

List of Figures ... IX

List of Tables .. XI

Abbreviations ... XIII

Abstract ... XV

Statement of Authorship ... XVI

Acknowledgments ... XVII

List of Publications ... XIX

Chapter 1: Introduction .. 1

1.0 Chapter overview .. 1

1.1 Introduction .. 1

1.2 Background ... 2

1.2.1 Cryptographic methods ... 3

1.3 Cryptosystems targeted in this research .. 4

1.4 Challenges and motivation ... 4

1.5 Research objective and aims ... 5

1.5.1 Thesis approach and research questions ... 6

1.5.2 Components of the thesis .. 8

1.5.2 Significance of the research and implications ... 9

1.5.3 Methodology .. 10

1.6 Thesis contributions .. 11

1.6.1 Statistical tests on SG and SSG ... 11

1.6.2 MICKEY 2.0 reduced variant (MICKEY 2.0.85) .. 11

1.6.3 Mobile cloud computing and FEATHER protocol ... 11

1.6.4 eHealth proposed cryptosystem .. 12

1.7 Thesis structure ... 12

1.7.1 Link between Chapters 3 and 4 .. 15

1.7.2 Links between Chapters 3, 4, 5 and 6 .. 15

1.7.3 Links between Chapters 5, 6 and 7 .. 16

1.8 Summary ... 16

Chapter 2: Literature review and background .. 18

2.0 Chapter overview .. 18

2.1 Introduction .. 18

2.2 Encryption types ... 19

IV

2.3 Mathematical foundation for encryption methods .. 20

2.3.1 Boolean function .. 20

2.3.2 Pseudo-random number generators ... 21

2.4 Cryptanalysis methods and some common attacks ... 24

2.4.1 Internal state and initialisation vector (IV) .. 26

2.4.2 Statistical tests on stream ciphers ... 27

2.4.3 Statistical-based attacks on stream ciphers ... 27

2.4.3 Black-box attacks ... 29

2.5 Lightweight cryptography ... 30

2.6 Neural network predicting models ... 32

2.7 Cloud computing ... 32

2.8 Mobile cloud computing: applications, security and current challenges 34

2.9 RFID technology .. 36

2.10 Summary ... 36

Chapter 3: Randomness tests on synchronous lightweight stream ciphers 39

3.0 Chapter overview .. 39

3.1 Introduction .. 39

3.2 Mathematical basis ... 40

3.2.1 Finite field .. 40

3.2.2 Algebraic normal form ... 40

3.2.3 Truth table .. 41

3.2.4 Möbius Transform .. 41

3.2.5 Hypothesis testing .. 41

3.2.6 Chi-square test ... 42

3.2.7 Balance theory ... 43

3.2.8 Solomon Golomb for MLS .. 43

3.2.9 Linear complexity and nonlinear complexity ... 44

3.2.10 Maximum order complexity ... 44

3.3 Synchronous stream ciphers ... 44

3.4 Self-synchronous stream ciphers .. 46

3.5 IV-less stream ciphers ... 47

3.6 Linear Feedback Shift Register (LFSR) ... 48

3.6.1 Primitive polynomials and LFSR ... 48

3.6.2 General attack on LFSR based stream ciphers ... 50

3.7 Unique Window Size (UWS) .. 50

3.8 The d-monomial test ... 52

3.8.1 Running d-monomial tests ... 53

V

3.9 The shrinking generator .. 54

3.9.1 Shrinking generator period .. 55

3.9.2 Linear complexity ... 55

3.9.3 Attacks on shrinking generator .. 55

3.9.4 UWS on shrinking generator .. 56

3.9.6 d-monomial test results for SG .. 58

3.10 The self-shrinking generator ... 58

3.10.1 The period .. 59

3.10.2 Self-shrinking generator linear complexity .. 59

3.10.3 Attacks .. 60

3.10.4 Statistical tests on SSG ... 61

3.10.5 UWS test on SSG .. 61

3.10.6 The d-monomial test on SSG .. 66

3.11 Comparison between Shrinking Generator and Self-Shrinking Generator results 67

3.12 Other d-monomial based tests and results ... 68

3.13 Data distribution ... 69

3.13.1 Statistical modelling: Predicting UWS .. 70

3.13.2 Sensitivity analysis ... 75

3.14 Conclusion ... 76

Chapter 4: Proposed neural network-based prediction models .. 77

4.0 Chapter overview .. 77

4.1 Introduction .. 77

4.2 Background ... 79

4.3 Related work on neural network and security .. 80

4.4 The importance of the neural networks for the UWS .. 82

4.5 Implementation .. 83

4.5.1 Model specifications .. 83

4.5.2 Terminology ... 83

4.5.3 Variables ... 84

4.6 Mathematical background .. 84

4.6.1 Mean square error (MSE) ... 85

4.6.2 Rectified linear unit (ReLU) activation function ... 85

4.6.3 Mathematical representation for the neural network models 86

4.7 Python for model building .. 88

4.8 Results analysis ... 91

4.8.1 Shrinking generator (SG) results .. 91

4.8.2 Self-shrinking generator (SSG) results ... 92

VI

4.8.3 Comparison of the shrinking generator (SG) and self-shrinking generator (SSG) results

... 93

4.8.4 Influences of model features ... 93

4.8.5 Comparison of the neural network models and linear regression results in Chapter 3

... 94

4.9 Conclusion ... 95

Chapter 5: Proposed lighter and faster MICKEY 2.0 reduced variant for low cost

implementations ... 97

5.0 Chapter overview .. 97

5.1 Introduction .. 97

5.2 The proposed cipher and the design optimisation methodology....................................... 99

5.3 NIST randomness test ... 100

5.4 Power consumption .. 101

5.5 MICKEY 2.0 internal design ... 101

5.6 Reduction process ... 106

5.6.1 MICKEY 2.0 and MICKEY 2.0.85 algorithms .. 106

5.7 Results of NIST tests .. 111

5.7.1 NIST test results for the keystream .. 111

5.7.2 NIST test results for the ciphertext .. 114

5.8 MICKEY 2.0.85 performance tests .. 116

5.9 Power consumption testing .. 117

5.10 Cryptanalysis ... 118

5.10.1 Many Time Pad Attack ... 118

5.10.2 Cosine similarity attack (cryptanalysis) .. 119

5.11 Discussion of results and analysis ... 121

5.12 Conclusion ... 122

Chapter 6: Mobile cloud computing and FEATHER, a proposed lightweight security protocol . 123

6.0 Chapter overview .. 123

6.1 Introduction .. 123

6.1.1 Cloud computing .. 125

6.2 Background for mobile cloud computing.. 125

6.2.1 The advantage of using stream ciphers in small devices ... 126

6.2.3 Using lightweight stream ciphers in cloud computing and mobile cloud computing 127

6.2.5 AES and CLOAK protocol .. 128

6.2.6 Motivation and challenges ... 128

6.3 The lightweight protocol FEATHER ... 129

6.3.1 FEATHER protocol design principles .. 130

6.4 Protocol implementation .. 134

VII

6.5 Results and analysis .. 140

6.5.1 FEATHER speed performance .. 140

6.5.2 Power consumption ... 142

6.5.3 FEATHER vs CLOAK ... 142

6.6 Attack analysis ... 143

6.7 Discussion .. 144

6.8 Conclusion ... 145

Chapter 7: Proposed security cryptosystem with proposed device for security application in

eHealth without internet connectivity: Near Field Secure Data Extractor 146

7.0 Chapter overview .. 146

7.1 Introduction .. 146

7.2 Background ... 149

7.2.1 Lightweight cryptosystem .. 151

7.2.2 Physically Unclonable Functions .. 152

7.3 eHealth as case study and illustrative scenario .. 153

7.3.1 eHealth scenario description ... 153

7.3.2 eHealth scenario process ... 154

7.3.4 Proposed cryptosystem as solution for eHealth setting .. 157

7.4 Major processes of eHealth scenario setting and practical low-power ciphers applications

 .. 159

7.5 NFSDE device components ... 160

7.5.1 NFSDE device components .. 161

7.6 Tag creation and implementation process ... 163

7.6.1 Creation of the medical provider tag ... 163

7.6.2 Creation of the patient tag ... 166

7.7 Key generation, storage and distribution ... 169

7.8 Device processes ... 170

7.8.1 Device activation (unlock) .. 170

7.8.2 Procedure for reading the patient medical record .. 172

7.9 The emulation processes for NFSDE and testing .. 173

7.9.1 The emulation processes for NFSDE .. 173

7.9.2 Testing and running the emulator ... 174

7.10 Attacks analysis ... 175

7.10.1 Known plaintext attacks ... 176

7.10.2 Brute force attack .. 177

7.10.3 Chosen IV attack... 177

7.10.4 Two-time pad/reused key .. 178

7.10.5 Denial-of-service attack ... 178

VIII

7.10.6 Insider attack .. 179

7.10.7 Impersonation attack ... 179

7.10.8 Man in the middle attack ... 179

7.10.9 Side channel attacks ... 180

7.11 Overall analysis and discussion ... 181

7.11.1 Providing multi-factor authentication without connectivity 181

7.11.2 Providing privacy by design .. 182

7.11.3 Providing key distribution without connectivity .. 182

7.11.4 Other applications .. 184

7.12 Conclusion ... 185

Chapter 8: Discussion and Conclusion .. 186

8.0 Chapter overview .. 186

8.1 Introduction .. 186

8.2 Discussion of thesis rationale and overview of outcomes .. 187

8.3 Using unique window size and d-monomial tests as randomness tests 188

8.4 Developing proposed novel neural network-based prediction models 188

8.5 Developing and testing the proposed MICKEY 2.0.85 cipher ... 189

8.6 Developing new lightweight encryption method: FEATHER lightweight security protocol

 .. 190

8.7 Developing proposed lightweight cryptosystem with NFSDE prototype device 192

8.8 Thesis findings and contribution to the literature .. 193

8.9 Conclusion ... 197

8.10 Possible future research directions .. 198

Appendices .. 199

Appendices for Chapter 3 ... 200

Appendices for Chapter 5 ... 218

Appendix for Chapter 6 ... 222

Appendices for Chapter 7 ... 226

References .. 230

IX

List of Figures

Figure 1. 1 Research stages ... 6
Figure 1. 2 Thesis main blocks and overall focus ... 8
Figure 1. 3 Relationship between thesis themes and chapters .. 15

Figure 2. 1 Black-box principle .. 29
Figure 2. 2 Cloud computing structure and layers .. 33

Figure 3. 1 Synchronous stream ciphers general design ... 45
Figure 3. 2 Self-synchronous stream ciphers general design .. 46
Figure 3. 3 IV-less stream ciphers .. 47
Figure 3. 4 Shrinking generator design ... 55
Figure 3. 5 Unique window size 19 distribution for Shrinking Generator 57
Figure 3. 6 Unique window size 20 distribution for Shrinking Generator 57
Figure 3. 7 Self-shrinking generator design .. 59
Figure 3. 8 Unique window size 23 distribution for Self-Shrinking Generator 64
Figure 3. 9 Self-Shrinking Generator degrees from 4 to 24 vs Unique Window Size 64
Figure 3. 10 Unique Window Size 19 for Self-Shrinking Generator with weight 5 and all

weights .. 65
Figure 3. 11 Unique Window Size 19 for Self-Shrinking Generator with weight 5 and all

weights, with smooth line ... 65
Figure 3. 12 Unique Window Size 20 different kinds of distributions for Shrinking Generator .. 70
Figure 3. 13 Comparison of cumulative density functions of observed and theoretical

distributions, Unique Window Size .. 71
Figure 3. 14 Unique Window Size 20 lognormal distribution for Shrinking Generator 71

Figure 4. 1 The output of the neuron .. 85
Figure 4. 2 ReLU activation function graph ... 86
Figure 4. 3 Python code using Keras for the neural network model for SG (for SSG, the input

in Section 2 is changed to two inputs) .. 90

Figure 5. 1 MICKEY cipher family general internal design ... 102
Figure 5. 2 The core logical process for the MICKEY cipher family ... 103
Figure 5. 3 Process flow for the linear register (R) ... 104
Figure 5. 4 Process flow for the nonlinear register (S) ... 105
Figure 5. 5 Comparison histogram of NIST test passing rates for MICKEY 2.0, MICKEY

2.0.85 and MICKEY 1.0 ... 112
Figure 5. 6 Levenshtein similarity test for MICKEY 2.0 and MICKEY 2.0.85 interrupted

messages ... 119
Figure 5. 7 Cosine similarity between two vectors V1 and V2 .. 120

Figure 6. 1 Communications between mobiles and external server – FEATHER protocol 129

Figure 7. 1 Illustration of RFID tag basic functionality .. 150
Figure 7. 2 Relationships between the individuals in eHealth scenario 156
Figure 7. 3 Core components of NFSDE .. 161
Figure 7. 4 Processes for provider tag creation ... 164

X

Figure 7. 5 Processes for patient tag creation ... 168
Figure 7. 6 NFSDE activation and unlocking processes ... 171
Figure 7. 7 Display the patient data process ... 172
Figure 7. 8 NFSDE device software emulation .. 173

XI

List of Tables

Table 3. 1 Number of primitive polynomials per degree (degree 4 to 35) 49
Table 3. 2 d-monomial test implemented on Shrinking Generator with degrees 16–19 58
Table 3. 3 Unique Window Size 21 for Self-Shrinking Generator counts and probability, with

all weights ... 63
Table 3. 4 Unique Window Size 21 for Self-Shrinking Generator counts and probability, with

weight = 5 ... 63
Table 3. 5 Total count of each Unique Window Size occurrence for degrees 4 to 24 for Self-

Shrinking Generator .. 66
Table 3. 6 Finding weak polynomials with degrees 6 and 7 with different initial seed (key) 67
Table 3. 7 Finding weak polynomials with degree 6, 7, 12 and 14 with all initial seed (key) 67
Table 3. 8 d-monomial with degrees 7 to 15 with full keystream string for Shrinking Generator

and Self-Shrinking Generator results for comparison ... 68
Table 3. 9 Shrinking Generator exhaustive testing results for maximal monomial test for

combined LFSR lengths 7 to 9 .. 69
Table 3. 10 Three randomness tests for Shrinking Generator with Unique Window Size 20 72

Table 4. 1 Shrinking Generator unique window size 24 model summary 91
Table 4. 2 Shrinking generator model results for the new neural network models, including

results for degrees 20, 21, 23 and 24 ... 91
Table 4. 3 Unique window size 24 chosen 10 input samples for the shrinking generator 92
Table 4. 4 Neural network model for a self-shrinking generator, with different unique window

size degrees ... 92
Table 4. 5 Unique window size 25 for the chosen self-shrinking generator (SSG) input sample 93
Table 4. 6 The importance of independent variables for the neural network model using unique

window size 24 for the self-shrinking generator ... 93

Table 5. 1 MICKEY 2.0 R_mask .. 109
Table 5. 2 MICKEY 2.0.85 R_mask ... 109
Table 5. 3 MICKEY 2.0 COMP0 ... 109
Table 5. 4 MICKEY 2.0.85 COMP0 .. 109
Table 5. 5 MICKEY 2.0 COMP1 ... 110
Table 5. 6 MICKEY 2.0.85 COMP1 .. 110
Table 5. 7 MICKEY 2.0 FBO ... 110
Table 5. 8 MICKEY 2.0.85 FB0 ... 110
Table 5. 9 MICKEY 2.0 FB1 .. 111
Table 5. 10 MICKEY 2.0.85 FB1 ... 111
Table 5. 11 MICKEY 2.0.85: 410 sequences, each sequence with a length of 106 bits.............. 113
Table 5. 12 MICKEY 2.0: 410 sequences, each sequence with a length of 106 bits................... 113
Table 5. 13 MICKEY 2.0.85: 1,350 sequences, each sequence with a length of 106 bits........... 114
Table 5. 14 MICKEY 2.0 NIST test results for ciphertext with 13 MB bits length 115
Table 5. 15 MICKEY 2.0.85 NIST test results for ciphertext with 13 MB bits length 115
Table 5. 16 Improvement in the encryption speed for MICKEY 2.0.85 compared to MICKEY

2.0 ... 116
Table 5. 17 Power consumption for MICKEY 2.0.85 and other ciphers 117
Table 5. 18 MICKEY 2.0.85 and MICKEY 2.0 results by applying cosine similarity............... 121

Table 6. 1 Specifications of five mobile devices used to test FEATHER 140
Table 6. 2 Running 8 MB file 60 times and taking the average time (in seconds) for five

different devices .. 141

XII

Table 6. 3 Running 1 KB to 16 KB files and calculating time (in seconds) 141
Table 6. 4 Running 3 KB to 512 KB files and calculating time (in seconds) 141
Table 6. 5 Running 1 MB to 16 MB files and calculating time (in seconds) 142
Table 6. 6 CLOAK and FEATHER protocols: total speed time for different files sizes 142

Table 7. 1 Notation description ... 154
Table 7. 2 Key generation, storage and time index update ... 169
Table 7. 3 Time for NFSDE unlock .. 174
Table 7. 4 Time to read encrypted patient data ... 175

XIII

Abbreviations

AES Advanced Encryption Standard

ANF Algebraic Normal Form

AWS Amazon Web Services

CC Cloud Computing

CPU Central Processing Unit

DES Data Encryption Standard

GAE Google App Engine

GEs Gates Equivalents

IoT Internet of Things

IPsec Internet protocol security

IV Initialisation Vector

LFSR linear-Feedback Shift Register

LWC Lightweight Cryptography

LWE Lightweight Encryption

MCC Mobile Cloud Computing

MSE Mean Square Error

NFSDE Near Field Secure Data Extractor

NIST National Institute of Standards and Technology

NLFSR Nonlinear-Feedback Shift Register

NN Neural Network

OTP One-Time-Pad

PII Personal Identifying Information

PISO Parallel-In, Serial-Out

PKI Public Key Infrastructure

PRNG Pseudo-Random Number Generators

ReLU Rectified linear unit

RFID Radio-Frequency Identification

SG Shrinking Generator

SIPO Serial-In, Parallel-Out

SSG Self-Shrinking Generator

STS Station-To-Station

TLS Transport Layer Security

TMTO Time–Memory Trade-Off

XIV

TRNG Truly Random Number Generator

UID Unique Identifier

UUID Universally Unique Identifier

UWS Unique Window Size

XPE Xilinx Power Estimator

XV

Abstract

Ensuring the security of sensitive information stored on small devices has become

increasingly challenging due not only to technological advances but also growth in the

number of IoT devices. Currently, there is a lack of efficient encryption and cryptanalysis

methods for small devices, and lightweight encryption techniques including ciphers must

therefore be improved to meet security standards. The growth of radio-frequency

identification (RFID) applications on small devices has also provided communication

solutions which require appropriate security to ensure their integrity through authentication

and authorisation. To address this security gap, this thesis develops a measurement

framework by establishing the maximum order complexity method of unique window size

as a vital binary sequence strength measurement. A novel neural network model is

implemented to predict the unique window size to evaluate targeted ciphers’ pseudo-

randomness. A secure and lightweight cipher based on the well-known MICKEY 2.0,

called MICKEY 2.0.85, is proposed. This cipher reduces the length of both registers from

the original 100 bits each to 80 bits for both. Pseudo-randomness tests from the US

National Institute of Standards and Technology were used to ensure that all usual security

requirements are met. Broad cryptanalysis was also performed by testing MICKEY 2.0.85

against common attacks. The findings show that MICKEY 2.0.85 has slightly more

resistance, consumes less power, occupies less space and is 23% faster in encryption speed

than MICKEY 2.0. This thesis also proposes a lightweight cloud computing security

protocol, FEATHER, for communications between mobile devices over insecure channels,

as well as the Near Field Security Data Extractor (NFSDE) system that has an encryption

protocol to provide security for RFID technologies when internet connectivity is

unavailable or unreliable. These proposed security solutions are developed in an eHealth

context but could be adapted for other applications using IoT, RFID and mobile cloud

computing and in uses with insecure channels or unstable internet.

XVI

Statement of Authorship

Except where reference is made in the text of the thesis, this thesis contains no material

published elsewhere or extracted in whole or in part from a thesis submitted for the award

of any other degree or diploma. No other person’s work has been used without due

acknowledgement in the main text of the thesis. This thesis has not been submitted for the

award of any degree or diploma in any other tertiary institution.

Ahmed Alamer

12 May 2020

.

XVII

Acknowledgments

First and foremost, I want to thank the Almighty God (Allah) for his generosity and great

gratitude. May he continue to guide me in this long and interesting journey. I wish to

express my deepest gratitude to the University of Tabuk, Kingdom of Saudi Arabia, for

awarding me a scholarship and for providing financial and moral support throughout my

studies.

I sincerely thank my expert primary supervisor, Associate Professor Ben Soh, for his

ethical and high-quality support and for his ongoing encouragement including when I faced

difficulties. His support and direction laid a strong foundation for my achievement. His

understanding, constant support and guidance improved my research effectiveness and my

publications. His experience, including teaching, supervision, research and publishing,

extends to all his students from many nationalities.

I also thank Dr Ahmed Al-Ahmadi, a former student of Associate Professor Ben Soh, for

suggesting that I contact him as my main supervisor, given his experience in my research

field and in eHealth consulting. I also thank industry practitioner Mr David Brumbaugh

for providing advice in the field of programming and for ensuring the validity of the results

and application in eHealth and technological fields. I also thank Dr Lito Cruz for his advice

on neural network modelling, Dr Mulla Huq for statistical modelling and Dr David Jones

for advice on mobile cloud computing.

I thank my assistant supervisor, Associate Professor Andriy Olenko, for his

encouragement, support and follow-up with my supervisor. I also thank Dr Rhonda Daniels

for her invaluable editing advice.

I wish to extend special thanks to La Trobe University for enabling me to complete my

PhD. I thank the School of Engineering and Mathematical Sciences and its wonderful staff,

for providing me with the best study environment and for helping me to overcome

difficulties and solve them quickly.

I would also like to thank my dear mother, who has been supporting, encouraging and

guiding me since the beginning of my childhood studies. She has always encouraged me

to be the best version of myself. It also gives me great pleasure to thank my dear wife,

XVIII

Fawziah, the companion of my path, my life, my partner in happiness and sorrows, and my

closest friend. She has been a constant aid. She has been extremely patient during my

constant preoccupation with research, writing and academia. During my long and arduous

journey, she has provided crucial support, and also become a mother to our daughter,

Warde, and our son, Bassil. Our children are a most joyful addition to my life. I also want

to thank my brothers, Ibrahim and Ali, for handling my affairs in Saudi Arabia while I

studied abroad. They provided financial and moral support, which enabled me to take a

sabbatical for my studies.

XIX

List of Publications

Published papers

1. Alamer A, Soh B, Alahmadi AH, Brumbaugh DE. Prototype device with lightweight

protocol for secure RFID communication without reliable connectivity. IEEE Access.

2019 Nov 19;7:168337-56.

This paper forms the basis of Chapter 7 and has been updated and rewritten with new content and

structured to form a thesis chapter.

2. Alamer A, Soh B, Brumbaugh DE. MICKEY 2.0. 85: A Secure and Lighter MICKEY 2.0

Cipher Variant with Improved Power Consumption for Smaller Devices in the IoT. Symmetry.

2020 Jan;12(1):32.

This paper forms the basis of Chapter 5, and has been updated and rewritten with a thesis structure

and organisation, and with additional results and explanations.

3. Alamer A, Soh B. Design and implementation of a statistical testing framework for a

lightweight stream cipher. Engineering, Technology & Applied Science Research. 2020 Feb

3;10(1):5132-41.

This paper forms the basis for Chapter 3, and part of Chapter 4. It has been rewritten with more

results and basic contents that helps to provide clear and detailed foundations for the chapter 3.

4. Alamer A, Soh B. A new neural-network-based model for measuring the strength of a

pseudorandom binary sequence. International Journal of Advanced and Applied Sciences. 2020

7(4): 29-38.

The paper forms the basis for Chapter 4, and has been rewritten with more results and basic contents

Submitted paper

Alamer A, Soh B. FEATHER: a proposed lightweight protocol for mobile cloud computing

security. Engineering, Technology & Applied Science Research (under review, May 2020).

1

Chapter 1: Introduction

1.0 Chapter overview

This chapter is an introduction for the thesis, offering an overview of thesis content and

providing the chapters association and organisation. Section 1.1 presents a general

introduction to security, while section 1.2 offers security background on applications

requiring security to protect sensitive data. Section 1.3 provides an overview on

cryptosystems, and section 1.4 discusses security challenges. In addition, section 1.5

details research objectives, aims, research questions and methodologies, while section 1.6

presents an overview of the thesis contributions to current literature in lightweight security

methods and applications. Finally, section 1.7 provides the thesis structure, and section 1.8

concludes the chapter.

1.1 Introduction

This thesis aims to harmonise theory and practice to make an important contribution to,

and advance the field of, cryptography. Given that data transfer and sharing are essential

in daily life, cryptography plays a vital role in security, privacy, authentication, and

integrity.

Security and privacy are an integral part of people’s lives. Sensitive personal data,

including finance-related information, health records and job-related data and information,

must be secured to avoid misuse and ensure it is only accessible by the data owner and

authorised people. Developing strong security methods such as encryption of data is

essential to the field of cryptology. Cryptanalysis is the science of analysing encryption

methods that need to be updated to meet the threat of information misuse. Analysis can use

either statistical methods or other mathematical methods. In this era of advanced

development of communication devices and network improvements in data storage, cloud

computing can facilitate the transfer of data. A specific branch of cloud computing is

mobile cloud computing which makes use of mobile devices. Cloud computing, including

mobile cloud computing, involves the transfer of large amounts of data, which can be

sensitive. However, transfer methods are unsafe, and the data must be encrypted for

2

transfer and storage. There has been significant growth in the use of the internet of things

(IoT), which in turn has led to growth in the use of radio-frequency identification (RFID)

technology for object tracking and monitoring. As a result, a secure and valid secure

cryptosystem is needed.

This thesis investigates and tests various lightweight stream ciphers as a type of

cryptosystem for small devices, using different analysis methods. It introduces a new

method of analysis to propose MICKEY 2.0 cipher reduced variants that aim to be suitable

for small devices such as those used in IoT, mobile cloud computing and RFID tags. This

thesis provides new security applications and protocols for mobile cloud computing and

RFID technology that have practical use in eHealth care as a real-world example, as

security of patient data is critical to avoid potentially life-threatening changes to

information.

1.2 Background

Both individuals and organisations need data security. Individuals want data security to

protect sensitive personal data such as bank account and credit card information, while

organisations want security protection for employee and business data including

employment records and payments. There are two main branches of security protection:

data security, which focuses on information protection; and system protection, which

targets information protection within devices that contain this information, as well as

protecting data transfer through networks [1].

The internet of things (IoT) [2] was established to provide solutions for data computing by

devices, and transfer data over networks without the need for human interaction. The IoT

connects devices with the internet for data transfer and exchange. Some of the data is

sensitive and needs to be protected from unauthorised people. Cryptology uses algorithms

that encrypt data with secret keys or public keys that need to be protected and shared

securely. With advances in technology there is a need to improve cryptography methods

to meet new demands, as devices become more widespread and networks grow and expand

their coverage. Growth leads to vulnerabilities and more attacks by people who can use

this sensitive data.

3

Cloud computing is part of the IoT facilitating an external server to store and transfer data

[3]. Mobile cloud computing adds mobile devices for communication and information

exchange [4], [5]. Another technology, radio frequency-identification (RFID), implements

tags for information protection and tracking [6].

Encryption is an effective tool for transferring information that requires security and

protection. Therefore, strong encryption systems, called cryptosystems which are sets of

cryptographic algorithms applied for implementing a security service [7], must be chosen

by the users and their strength must be tested. Some cryptosystems act as pseudo-random

number generators (PRNG), see for example [8], and their strength can be assessed by

testing the randomness of the pseudo-randomness binary sequences produced by these

cryptographic systems. This thesis tests the security of cryptosystems by implementing

neural network models to measure the strength of specific stream ciphers, as well as other

randomness test tools. The thesis also provides security optimised methods for secure

applications and tests them by improved cryptanalysis to ensure efficiency and resistance

against attacks by attackers who want to reveal the information.

It is important to examine the effectiveness of the application of ciphers in current uses

including mobile cloud computing [9] and IoT, especially in the field of RFID tag

implementation as tags are used to secure and authenticate the users [9-11]. It is important

to ensure the confidentiality and protection of information.

1.2.1 Cryptographic methods

Cryptology can be defined as the science of secret and hidden information, while

cryptography is specifically the science of hidden text. Cryptographic methods include

encryption/decryption, one way functions like hash and digest, authentication, digital

signatures, entropy and randomness, and protocols [12], [13]. This thesis provides the

background for most of these primitives. A stream cipher is a binary additive cipher (as

the plaintext binary sequence XORed with keystream (mod 2) for encryption). The first

step in the process to identify its internal state is to use an initialisation vector (IV) and key

to produce a keystream for an IV-based system, while other ciphers only use a key. The

next step is to XOR the keystream – symbol by symbol – with plaintext to obtain the

ciphertext.

4

The standard model for attacking synchronous stream ciphers, where the encryption is

done one step at a time, assumes that there is a known keystream. This assumption is

reasonable because the known plaintext and XOR can be used with the ciphertext to obtain

the known keystream. According to good practice, the design of the cipher should be made

public to enable analysis and avoid ‘security by obscurity’. Researchers can analyse their

own copy of the cipher—typically in software—in any mode.

Cryptographers design the stream cipher’s internal state to produce a random keystream

by using IV bits and key bits. A higher security level requires that the internal state of the

encryption cipher is twice the size of the key within it. In some stream ciphers, the

designer’s goal is to increase the size of the internal state in order to avoid some types of

attacks like time–memory trade-off (TMTO) attacks. However, cryptanalysis has found

that if the key is larger than the IV, this process will not guarantee more resistance to a

TMTO. Consequently, IV bits should be greater than key bits, and the internal state should

be equal to (or greater than) IV + key. This result can be found in [14], [15].

1.3 Cryptosystems targeted in this research

Cryptosystems include traditional cryptography and lightweight cryptography. The focus

of this thesis is lightweight cryptography as this thesis is devoted to lightweight and low-

cost applications, including lightweight synchronous ciphers and lightweight

asynchronous ciphers. This thesis focuses on lightweight synchronous ciphers, specifically

lightweight synchronous stream ciphers [14 -17]. Lightweight cryptography that does not

require extensive computation resources has been attracting interest in research and

application over the past 20 years. A large number of cryptographic systems are suitable

for applications that have limited capacity in terms of complex processes and small

memory. These systems include Present, Clefia, LED, Trivium, Grain and MICKEY 2.0

[17-19] which are a good fit for mobile cloud computing and IoT which have small devices

included in their structures.

1.4 Challenges and motivation

Communication technology and information circulation is widespread, and there is an

urgent need to ensure confidence and confidentiality of information dissemination through

different communication channels, which are not necessarily protected. The rapid

5

development of mobile devices makes this an important area of study in terms of

information analysis and encryption systems to ensure the best applications to help

overcome cloud computing and IoT challenges.

Lightweight encryption methods are cryptosystems for small devices, and there are many

of them including lightweight synchronous stream ciphers. It is important to improve these

systems to be more suitable for new and emerging ultra small devices. It is also important

to improve current cryptanalysis methods, which requires testing and validation of the

ciphers’ visibility in terms of implementation and ensuring the level of their security.

Existing research still has many shortcomings and gaps requiring extensive and deeper

research.

1.5 Research objective and aims

The research objective is to analyse flaws in lightweight synchronous stream ciphers such

as Shrinking Generator (SG) and Self-Shrinking Generator (SSG) synchronous ciphers. It

adapts the MICKEY 2.0 cipher in mobile cloud computing and IoT in a secure manner. It

shows how lightweight stream ciphers can be more practical compared to heavy

cryptosystems such as Advanced Encryption Standard (AES) by implementing this method

in mobile cloud computing and IoT applications while still maintaining security. Statistical

and theoretical analysis tools such as randomness tests and neural networks are needed.

This thesis research aims to evaluate the security of targeted lightweight synchronous

stream ciphers. It explores analysis methods that can be used for targeted ciphers, which

can be applicable for similar ciphers. Understanding pseudo-random binary sequence

behaviour will help the applications that use it to identify the flaws in those applications.

This thesis adds new data analysis approaches for evaluating the security of ciphers and

binary sequences, such as neural networks, which is an active research area. The results of

this thesis can be applied in fields such as mobile cloud computing and IoT, with a focus

on applications related to RFID tags. This thesis aims to show the importance of using an

IV-based cryptosystem compared to cryptosystems that do not use an IV.

This thesis has four main goals. First, it aims to achieve a better understanding of some

current lightweight synchronous stream ciphers. Second, it aims to investigate the usability

of these synchronous stream ciphers in real-world applications. Third, it links the first and

6

second goals with mobile cloud computing to improve optimal implementation. Fourth, it

links the first and second goals with RFID technology application and study of its

performance to determine the most beneficial applications.

1.5.1 Thesis approach and research questions

Building on the three blocks of security, data analysis and applications in Figure 1.1, Figure

1.2 shows the four stages of the thesis research to address these targeted gaps as illustrated

in the research stages in this section.

 Figure 1. 1 Research stages

Stage 1 Analysing the implementation of lightweight ciphers

Lightweight synchronous stream ciphers provide security for devices and software with

limited abilities such as computation power, energy consumption and memory limited size.

Despite the evaluation of implementation of lightweight encryption methods, the research

on cryptanalysis, optimising existing ciphers and proper implementation still requires more

attention. The research questions are:

1. How can lightweight synchronous stream ciphers be implemented effectively to secure

the transfer of data?

1.1 Based on the current gaps in proper implementation, what are the benefits of using

lightweight stream ciphers?

7

1.2 Why is it not always efficient to use other cryptosystems such as Advanced Encryption

Standard (AES)?

Stage 2 Analysing lightweight stream ciphers

Identifying the weaknesses and flaws in existing lightweight synchronous stream ciphers

will help optimise or replace them with more lightweight encryption methods. Although

this is a very active research area, implementing new cryptanalysis methods needs further

effort. The research questions are:

2. How can existing lightweight stream ciphers be analysed properly, and avoid problems

in poor analysis to find weaknesses to help users decide which cryptographic algorithm

should be used?

2.1 How can neural networks be applied as a prediction method for the nonlinear

complexity of a binary pseudo-random sequence?

2.2. How can randomness tests be applied effectively to find weaknesses in a given stream

cipher?

Stage 3 Providing solutions for real-world applications by optimising lightweight

encryption

Improving current lightweight encryption has not received sufficient focus, and

optimisation and analysis methods, and the cost of current encryption methods, are still not

optimal. There is a need to secure sensitive data, especially in small devices, at reasonable

cost. The research questions are:

3. How can this study contribute to real-world applications by providing solutions to

current issues in security, efficiency, cost and performance?

3.1 How can lightweight encryption ciphers be optimised, and how can lighter versions be

proposed to avoid shortcomings in implementation in small devices?

3.2 How can cryptanalysis be tested to provide sufficient confidence for the proposed novel

lightweight encryption cipher to ensure validity for usage?

Stage 4 Implementing MICKEY 2.0 and proposing secure applications

The binary sequences generated by pseudo-random number generators need to be as

pseudo-random as possible. MICKEY 2.0 is a popular lightweight encryption cipher, yet

needs to be optimised for applications such as RFID and mobile cloud computing. Further

8

research to enhance such ciphers has benefits in security and related costs associated with

implementation. As there are problems with current applications, the study provides

solutions for these applications by addressing the following question:

4. How can RFID, mobile cloud computing, pseudo-random binary sequence analysis and

MICKEY 2.0 be connected to ensure consistency and identify contributions to multiple

disciplines and different applications, and fix current implementation issues?

4.1 How can MICKEY 2.0 be implemented efficiently to secure communication between

mobile devices in mobile cloud computing?

4.2 How can MICKEY 2.0 be implemented efficiently to secure communication in RFID

technology devices in IoT, especially in RFID tags?

1.5.2 Components of the thesis

The thesis investigates lightweight synchronous stream ciphers as the main focus of

general lightweight encryption methods [16] through three main blocks of security, data

analysis (for cryptanalysis) and applications. The thesis assesses encryption methods and

some lightweight ciphers, and optimises the best candidate and then implements them with

novel security applications, as shown in Figure 1.2.

 Figure 1. 2 Thesis main blocks and overall focus

The first block is security. The protection of information has become necessary with the

proliferation of means of communication such as portable devices and other channels of

9

communication such as Wi-Fi, 3G, 4G and, in the near future, 5G [20], as well as the

development of systems and IoT technology such as RFID, cloud computing and mobile

cloud computing [21].

The second block of data analysis is important in the study and evaluation of cryptographic

systems for development. This thesis uses randomness statistical tests and neural networks,

a connectionist approach for computation based on the use of interconnected artificial

neurons, among other methods.

The third block is application. Applications can be designed so they are highly protected

in mobile cloud computing and can protect information using RFID technology in sensitive

areas such as eHealth as an example.

1.5.2 Significance of the research and implications

This thesis provides a better understanding of some current lightweight synchronous

stream ciphers, and investigates the usability of some synchronous stream ciphers and

optimises them to be suitable in real-world applications. This research helps evaluate the

security of the targeted ciphers. It also explores the most effective methods that can be

used for evaluation of ciphers, which can be applicable for similar ciphers. In addition,

understanding pseudo-random binary sequence behaviour can help the applications that

use it to identify the flaws in those applications. This research adds new data analysis

approaches in terms of evaluating the security of ciphers and binary sequences, such as

neural networks, which is an active research area. Lastly, the results of this research can

be applied in fields such as mobile cloud computing and IoT, with a focus on applications

related to RFID tags such as eHealth.

1. Lightweight encryption is important because it provides a considerable level of security

that is suitable for devices with a small capacity.

2. It is important to find the flaws of the ciphers for designers to improve their

cryptosystems, and for users to choose the best cryptosystem for their security needs.

3. Applying different cryptanalysis methods in this thesis helps to improve them and

enables them to be applied in different cryptosystems.

10

4. Suitable applications need to be created using lightweight stream ciphers such as

MICKEY 2.0 for implementation in mobile cloud computing and RFID tags for eHealth

security.

1.5.3 Methodology

This thesis uses the following analysis methods to achieve the research aims and answer

the research questions:

1. The outcomes of recently published research on lightweight stream ciphers are analysed

to obtain a broader understanding of the topic and extend the knowledge of IV-dependent

(MICKEY and Trivium) and IV-less (SSG and SG) stream ciphers.

2. Statistical tests such as d-monomial and chi-square are applied to investigate the

appearance of randomness in synchronous lightweight stream ciphers.

3. Comparison techniques are used for the statistical test results to identify the weaknesses

in stream ciphers. In particular, this thesis compares SG and SSG (IV-less) and MICKEY

2.0 (IV-dependent) stream ciphers.

4. Statistical programming software such as R programming is used as a statistical tool for

the chi-square test. C programming is used to design codes to interpret the algorithms for

the statistical tests. Linux is used to submit the job to EC2 [21], [22] and Python

programming language is used for neural network models.

5. A range of theoretical approaches are applied to cipher design. This enables the

mathematical theories, formulas and propositions to be compared to provide an

understanding of their relevance and applicability to the thesis aims.

6. The NIST randomness test suite is used to measure the randomness of the proposed

MICKEY 2.0 cipher lighter variant, a reduced version of MICKEY 2.0 cipher, which is

designed to be suitable for RFID tag applications [23].

7. The neural networks model is implemented to predict nonlinearity and complexity levels

for given binary sequences.

8. Cryptanalysis and attacks are applied to show how the targeted ciphers are resistant to

attacks.

11

1.6 Thesis contributions

This section provides an overview of the results, including the results from the analysis,

and the proposed security applications, to identify the thesis contributions.

1.6.1 Statistical tests on SG and SSG

This thesis conducts in-depth calculations to test the effectiveness of encryption systems

such as shrinking generator (SG) [24] and self-shrinking generator (SSG) [25] ciphers. It

identified their strengths and weaknesses to provide insights to researchers on the

protection of information that is transmitted through unsafe communication channels (see

Chapter 3).

This thesis presents prediction models using neural networks [26] to measure randomised

binary sequences, which are reflected in the efficiency of the cryptosystems they produce.

Promising and interesting results are obtained (see Chapter 4). Implementing these models

as a measuring tool can contribute to related applications in information protection

systems.

1.6.2 MICKEY 2.0 reduced variant (MICKEY 2.0.85)

To ensure that the encryption system is suitable for use in RFID tags, the number of gates

equivalent (GE) must be as small as possible. This thesis introduces an optimised version

of MICKEY 2.0 that is suitable for use in RFID tags, as well as lightweight devices. Using

standard randomised tests from NIST [27] as well as other cryptanalysis methods shows

the MICKEY 2.0.85 reduced variant does meet the required standards and is resistant to

attacks (see Chapter 5).

1.6.3 Mobile cloud computing and FEATHER protocol

This thesis introduces a protocol called FEATHER to secure information transfer between

two or more mobile devices using an insecure communication channel. FEATHER

depends on the following components:

• Mobile devices for communication between people, networks (e.g., Wi-Fi and 4G)

and cloud servers are used to produce secure keystreams.

12

• The MICKEY 2.0 cipher is used to produce a secure keystream.

• A number of identification and protection parameters, including One-Time-Pad

(OBP), hash function and time stamp, are added to ensure the transfer of

information between mobile devices and between mobile devices and the cloud

server. The MICKEY 2.0 cipher is used because it provides protection and rapid

production of the keystream in the server, which enables fast communication

between the server and mobile devices. This is an important feature and reduces

costs. Chapter 6 presents details of the proposed FEATHER protocol design and

application and the results of the tests.

1.6.4 eHealth proposed cryptosystem

RFID technology is important in healthcare [28], for example, to follow up patients and

their medications and to monitor the development of patients’ health. For example, patients

who have state-of-health calls for permanent follow-up may be able to call an ambulance

at any time. To supervise patients, patients can be given a wristband carrying an RFID tag.

To follow up on their status and to verify their identity, this thesis added another dimension

to protect the confidentiality of the information using the MICKEY 2.0 cipher, which was

developed in this thesis and is suitable for RFID tags. This protocol can be implemented

without the need for internet connectivity. This protocol secures patients’ follow-up and

communication using their medical records. It also ensures identity verification. In

addition, to protect the confidentiality of the information, this thesis considered a reduction

in the costs of use and its resistance to piracy (see Chapter 7). The MICKEY 2.0 included

in the protocol was tested in a real-world application of eHealth. The protocol showed it

could provide identity verification and confidentiality.

1.7 Thesis structure

The thesis has eight chapters addressing the three main components of this thesis of

security, data analysis and applications. Figure 1.3 shows how the eight chapters are

connected as one theme, with lightweight encryption as the main focus for the thesis and

the centre of these approaches.

Chapter 1 outlines the main objectives and goals of the thesis research, and presents a brief

summary of the individual studies that make up the thesis. The chapter discusses the

13

importance of the research and its applications, as well as the motivations and challenges

of the research. The chapter summarises the types of algorithms used for cryptography in

this study and applications in daily life.

Chapter 2 provides the background for the thesis research in terms of the science of

cryptography and its importance. It also examines previous research related to this

research, as well as random tests of binary series. The chapter discusses the main and

general design of the principle of cryptography from the perspective of hardware, software

and theory, as well as challenges relating to the security of information and confidentiality.

Chapter 3 defines and analyses SG and SSG in terms of the principle of their operation and

how to use them. Randomness based tests are used to test SG and SSG keystreams which

are binary sequences, and the results are presented.

Chapter 4 continues to examine the importance of random binary sequences in the field of

cryptography. It discusses the importance of the neural network model in the field of

randomness prediction of this sequence, as a tool to measure and test the effective

cryptographic algorithms developed. Promising and important results are achieved for the

SG and SSG ciphers.

Chapter 5 introduces a secure, lighter and faster version of MICKEY 2.0, named MICKEY

2.0.85, which has 30 bits less in internal state than MICKEY 2.0. The pseudo-randomness,

cryptanalysis and performance of MICKEY 2.0.85 are explained in detail.

Chapter 6 examines cloud computing, its importance and its components, with a focus on

mobile cloud computing. It outlines the importance of ensuring the confidentiality of

information in mobile cloud computing. The proposed FEATHER protocol includes the

implementation of cipher MICKEY 2.0, and other important components are discussed.

Good results are presented that can be applied to devices with limited computational

capacity, memory and bandwidth.

Chapter 7 presents an important application for lightweight stream ciphers in the field of

sensor networks, especially RFID tags, for which the MICKEY 2.0 cipher is applied within

a secure protocol and its proposed variant to be compatible with the technology. The

proposed secure protocol was implemented as a lightweight security method using a

14

prototype device, called Near Field Secure Data Extractor (NFSDE). The chapter presents

results showing the method’s effectiveness, performance and security.

Chapter 8 analyses and links the three main components – confidentiality and protection

of information, analysis, and applications. It discusses the results using multiple

disciplines, which represent an important contribution in the field of cryptography, and it

contributes to research by examining important tools that have different applications in

non-cryptographic areas. The chapter shows the thesis research may contribute to future

studies by linking the science of cryptography with other fields of study and making them

more interactive and productive. Thus, this research contributes to the development of the

science of cryptography and security in general as well as the development of other

sciences that interact with cryptography. The conclusion of the chapter summarises the

results of this thesis in line with the objectives and research questions and the methods

used. It outlines the contributions made by this thesis and identifies future research

directions to help enhance cryptanalysis research.

15

Figure 1. 3 Relationship between thesis themes and chapters

1.7.1 Link between Chapters 3 and 4

Results of the statistical tests on the pseudo-randomness study of SG and SSG showed

their weaknesses through testing using d-monomial tests and their derivatives, as well as a

model of expectation through the multilinear regression model in Chapter 3. Further,

theoretical concepts behind SG and SSG were provided in terms of how they are designed

and how they work. Applying the neural network model resulted in superior predictability

of pseudo-randomness, as shown in Chapter 4.

1.7.2 Links between Chapters 3, 4, 5 and 6

Based on the work conducted in Chapters 3 and 4, this study implements the MICKEY 2.0

cipher as an IV-based lightweight synchronous stream cipher because it is far more secure

16

than SG and SSG, by introducing MICKEY 2.0.85 as a lighter and secure version of

MICKEY 2.0 cipher. It is implemented in a protocol called FEATHER to facilitate

communication between the cloud server and mobile devices. Further, design principles

and implementation details are provided, as well as the security aspect and results of the

implementation.

1.7.3 Links between Chapters 5, 6 and 7

This thesis uses the MICKEY 2.0 cipher and introduces a reduced variant that is suitable

for RFID tag communications and implementation in Chapter 5. The ciphers’ performance

and designs are compared. Chapters 6 and 7 discuss enhanced applications in mobile cloud

computing, IoT and wireless sensor networks.

In summary, analysing the security of lightweight stream ciphers by collecting data (e.g.,

about the keystream) and then analysing nonlinearity and randomness will lead to the best

applications for daily life without compromising confidentiality and security. FEATHER

is internet dependent and NFSDE can be used if the internet is not available.

1.8 Summary

This thesis examines different analysis methods to find the flaws in lightweight

synchronous stream ciphers. The findings contribute to the existing body of knowledge

and enhance the field of security with a focus on lightweight encryption methods, which

are suitable for small devices with limited computational power and memory.

Simulations and computations are run to measure the random appearance of the keystream

of the shrinking generator and the self-shrinking generator ciphers. The thesis proposes a

new approach based on designing neural network models to predict the randomness of the

ciphers. This model can then be simulated for other ciphers. A security protocol called

FEATHER is introduced to secure communication between two or more mobile devices

with the help of a cloud server to create a secure random keystream.

The findings are applied to the eHealth security field by implementing the MICKEY 2.0

cipher and designing a reduced version that is suitable for RFID technology. This thesis

adds a step to enhance secure applications for small devices to maintain their security,

17

performance, speed and power consumption, which are particularly important in eHealth

applications.

18

Chapter 2: Literature review and background

2.0 Chapter overview

This chapter reviews the field of cryptography and identifies research gaps. Section 2.1

introduces the field, Section 2.2 presents an overview of different encryption types, Section

2.3 presents a brief mathematical foundation for cryptographic functionalities, Section 2.4

summarizes different cryptanalysis methods with types of common attacks, Section 2.5

focuses on an important branch of cryptography which is lightweight encryption, Section

2.6 introduces neural networks with proposed prediction models, Section 2.7 introduces

cloud computing, Section 2.8 introduces mobile cloud computing, Section 2.9 introduces

RFID technology with security, and Section 2.10 summarizes the literature review and

identifies the research gaps.

2.1 Introduction

Cryptography can be explained as methods for securing information from unauthorised

parties and also the study and analysis of these methods. Different branches of the field

include encryption, decryption, protocols and key management. Encryption is the

procedure of transforming information from a clear text into a ciphertext state, and is used

for encryption [8]. It is performed by a cipher that encodes messages. Information that has

already been encoded can also be recovered by the cipher via a specified performance

decoding method when required. Cryptographic encoding prevents unauthorised

individuals from obtaining the information encrypted in the message; it therefore has

significant implications for individual, national and international security [16].

The history of cryptography is reviewed in [29] and [30]. Cryptography science has

expanded greatly since Julius Caesar in ancient Rome used cipher text in letters to his

military officers to conceal his plans and actions. Just before World War I, in the twentieth

century, the use of cryptography grew significantly, allowing across-the-board application.

For the history of cryptography since before Julius Caesar till World War I please refer to

[30]. Cryptographers are increasingly considering scientific ideas and concepts from

software engineering and mathematics, especially when designing and using cryptographic

algorithms. The strength of cryptography depends on calculations which are hard to break,

19

particularly due to algorithms which require considerable expense and effort to break [30],

[31]. Regardless of this careful configuration, a few attempts have demonstrated that

cryptographic methods can be broken. However, it is important to note that these methods

have rarely been broken using functional methodologies such as analysis and, since they

are exceptionally hard to break, cryptographic algorithms are considered computationally

secure [17]. Changes in whole-number factorization calculations limit the generalization

of algorithms’ functionality needed for figuring the encryption mechanism. Therefore, this

further upgraded the security offered by cryptographic methods, as quantum computing is

not yet in practice [32].

The implementation of cryptographic algorithms needs to be adapted according to the

targeted system, as cryptography is part of advanced hardware as a security tool, a system

where signs represent discrete simple groups of logical Boolean binary operation. The

cryptographic strategy empowers a hardware electronic gadget to open and close electronic

gates to encode a message using binary representation. Its advanced electronic circuits

have extensive clusters of logical gates, which use a Boolean rationale that works in basic

gadgets. These advanced circuits have movement registers, each consisting of a course of

flip-flops with a comparable clock. Every flip-flop of a movement register is joined with

information and included in an arrangement chain [16]. The subsequent circuit moves by

one position (bit array) where the put away bit cluster moves in the information present at

its yield while the last bit in the exhibit moves out. This procedure happens at every move

(shift) of clock data. The input and yield output of movement registers can be both parallel

and serial and the registers are therefore arranged as SIPO (serial-in, parallel-out) and PISO

(parallel-in, serial-out) [33]. SIPO and PISO therefore produce bidirectional movement

from the way that they move in both bearings.

2.2 Encryption types

There are two important types of cryptographic encryption design: asymmetric and

symmetric cryptography [34]. Asymmetric cryptography is the encryption of a text or

message using a secret key. Asymmetric encryption has two related keys, sometimes

referred to as a pair of keys: a private key, in sole possession of the owner; and a second

key which is public and available to whoever wishes to send private information to the

owner. All messages (binary files, documents and text) are encrypted. The public key may

be decoded using the same encryption technique or the equivalent private key [34], [35].

20

Conversely, any message encrypted using the private decryption needs the matching public

key. There is minimal concern about the exchange of public keys over the internet as long

as the private key is kept secret [34-36]. The main issue for asymmetrical encryption is

that it is slower than symmetric encryption, thus more power is required to decrypt and

encrypt messages [34-37].

In contrast, symmetric encryption uses a secret or private key consisting of a word, a string

of random letters, or a number, which is used to change the content of a text or message in

a specific manner [35]. This change of content may involve shifting each of the letters

across a number of places. It requires the sender and recipient to know the same concealed

key for encryption and decryption of the messages. The greatest threat to this type of

encryption is that if the secret keys are exchanged over a large network such as the internet,

the message can easily be decrypted if an attacker knows or manages to retrieve the secret

key [38].

2.3 Mathematical foundation for encryption methods

For the encryption relay on a Boolean function that can generate a binary sequence which

is essential in cryptography as it works as keystream generated by the cipher, this sequence

should look as random as possible, thus can be considered a pseudo-random number

generator (PRNG). Brief mathematical preliminaries are provided below.

2.3.1 Boolean function

In the binary field = , let be a Boolean function with variables, and mapping

from to and can be written as:

Let us consider the vector if then is accepting and the opposite

when .

Then generates a sequence of binary bits. Chapter 3 explains this sequence in detail.

https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D_2%250
https://www.codecogs.com/eqnedit.php?latex=%5C%7B1%2C0%5C%7D%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%5C%7B1%2C0%5C%7D%5En%250
https://www.codecogs.com/eqnedit.php?latex=%5C%7B1%2C0%5C%7D%250
https://www.codecogs.com/eqnedit.php?latex=f%3A%5C%7B1%2C0%5C%7D%5En%20%5Cto%20%5C%7B1%2C0%5C%7D%250
https://www.codecogs.com/eqnedit.php?latex=v%20%5Cin%20%5C%7B1%2C0%5C%7D%5En%20%250
https://www.codecogs.com/eqnedit.php?latex=f(v)%20%3D%201%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=v%250
https://www.codecogs.com/eqnedit.php?latex=f(v)%20%3D%200%250
https://www.codecogs.com/eqnedit.php?latex=f%250

21

2.3.2 Pseudo-random number generators

An important component of stream ciphers used in cryptography is the generator. It

produces a sequence of numbers that appear random (pseudo-random numbers) and

difficult to discover which helps to encrypt a message securely [39]. This section reviews

some pseudo-random number generators.

One generator relevant to cryptography is the linear feedback shift register ().

 are similar to linear congruential generators, as a linear function from the previous

state is used as the input bit of an . The exclusive-or () is one of the most

common single bit linear functions, where the input is driven by some XOR bits

of the overall shift register value. For instance, can be implemented by feeding

the XOR gates into non-sequential, different registers within. This requires placing the

 inside the shift register. In the initial value is referred to as a ‘seed’, and

the current or previous state can be used to determine the stream of values that the register

produces. Because a finite number of possible states exists in the register, the

repeats its cycle. If an has a well-chosen feedback function, it can produce a

sequence of bits that appear randomly and have an extended cycle [39], [40].

 have a great number of applications including generation of pseudo-random

numbers, fast digital counting, the production of pseudo-noise sequences, cryptographic

use and circuit testing, among other applications. In cryptography, have been used

as pseudo-random number generators (PRNG) in stream ciphers [39-41]. They can be

developed from simple electronic and electromechanical circuits, have long periods, and

have a uniform distribution for output streams (keystream). Because of this simple

structure and its linear feature, are valuable targets for cryptographic attacks [42].

For instance, if the plaintext is provided with a corresponding ciphertext, an attacker can

easily use cryptanalysis to recover the output of the . The retrieved output stream

can be used by the attacker to construct a small sized that is capable of simulating

the intended receiver. This process can be achieved by using the Berlekamp–Massey

algorithm [42], [43]. The recovered output stream can be used to gather and calculate the

remaining extended output stream and thus recover the whole plaintext and break the

encryption.

Three methods can be used to increase the complexity associated with the stream

cipher: using a nonlinear combination of different bits from the state; using a

https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=XOR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=XORs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250

22

nonlinear combination of two or more output bits; and performing irregular

clocking of the as an alternating step generator. The -based stream cipher

incorporates A5/1 and A5/2 cipher technology, which is also used in GSM cell phones.

Bluetooth and shrinking generators (SG) also use the LFSR-based stream cipher. The A5/1

and A5/2 ciphers both have limitations [17]. For instance, there are reports of breaking the

A5/2 and different studies have identified different shortcomings in the cipher [16].

Nonlinear feedback shift generators () are also usually connected in current

stream ciphers, such as smart cards and RFID. They are used in these applications because

they are more impervious to cryptanalytic attacks than the . For instance, the

 can generate n-bit at maximum length of and thus can be extended to a

maximum n-stage length resulting in a De Bruijn sequence [42], [43]. Nonlinearity

can be introduced using new tools such as the evolutionary algorithm. This design reflects

that the evolutionary algorithm is equipped for learning methods applying diverse

operations on strings from the , therefore improving the viability and quality of the

function [16], [17]. Other large can be established by ensuring long periods,

and this is still considered to be an open problem. For example, a list of maximum-period

n-bit can be generated by brute force methods for to include

and . The generation of pseudo-random sequences for stream ciphers can be

achieved using both and . The -based stream cipher is an

attractive target for algebraic attacks, which can be performed by secret key recovery

which then allows an attacker to solve sets of chosen numbers of equations [7]. Algebraic

attacks are made possible when there is misuse of multivariate relations involving key bits

and output bits. This sort of attack is successful in estimating connections in low

polynomial degrees, which usually exist in well-known developments of stream ciphers

that are resistant to all the already-known attacks. The low degree multiples of Boolean

functions in algebraic attacks are the main concern in designing both the stream ciphers

and block ciphers.

There is a close relationship between both the shrinking generator (SG) and the self-

shrinking generator (SSG), where the SSG is a special sub-type of the SG [42-45]. As a

type of pseudo-random number generator used in stream ciphers, the SG is relevant to this

thesis research. The generator’s system uses two , which are referred to as A

(output bit generating sequence), and S (the sequence that controls output). Both the A and

S sequences clock so that when the S bit = 1 it implies the A bit will be in the output, and

https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=NLFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=NLFSRs%250
https://www.codecogs.com/eqnedit.php?latex=2%5En%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=NLFSRs%250
https://www.codecogs.com/eqnedit.php?latex=NLFSRs%250
https://www.codecogs.com/eqnedit.php?latex=n%3C25%250
https://www.codecogs.com/eqnedit.php?latex=n%3D25%250
https://www.codecogs.com/eqnedit.php?latex=n%3D27%250
https://www.codecogs.com/eqnedit.php?latex=NLFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250

23

when S = 0 it means A will not be in the output. The greatest disadvantage of this system

is that the rate of output varies irregularly and can therefore hint at the state of S. However,

this problem is resolved through output buffering via a SSG. The SSG uses aspects of the

SG and is a pseudo-random number generator. It was first introduced by Meier and

Staffelbach [25], whose implementation of the generator is based on cryptography with its

variants built on the . Because of the shrinking rule, the SSG’s equipment

prerequisites are very low and yet it can resist cryptanalysis. The SSG has only one LFSR,

which has a bits length L. The LFSR can generate an m-sequence and its selection criteria

are similar to that of the SG. For instance, the generator uses two sequences: an m-sequence

() and a controlling version of the sequence that is expressed as (). A straightforward

decimal rule is also used to relate both groupings through the basic destruction standard

and to set up a yield arrangement.

SG are nonlinear keystream generators consisting of two . They have three main

characteristics: length, their characteristic polynomial and initial state. The length of the

 is dictated by the number of its memory cells. The characteristic polynomial of

 is simply the feedback function. Lastly, the initial state of is determined

by the seed or key of the cryptosystem. If the primitive polynomial acts as the characteristic

polynomial of the it can generate pseudo-noise sequences that have good pseudo-

randomness properties, which is important for pseudo-random number generators [24].

Chapter 3 provides more discussion and analysis on both the SG and the SSG.

The computation device termed a random number generator generates a sequence of

numbers or symbols without a pattern, giving the appearance of a random sequence. This

randomness has many applications and has allowed the development of multiple

computational methods to generate random data. Random number generators are used in

gambling, statistical sampling, cryptography, randomised design, and computer simulation

amongst other areas. They can be used for simulations, such as the development of Monte

Carlo method simulation [12].

Random number generators can be applied in cryptography if the seed is kept secret. This

allows the sender and receiver to automatically generate an identical set of numbers, in this

case, the key. Random number generators can also generate pseudo-random numbers that

can be applied in computer programming. Cryptography requires a high degree of

randomness even though many of its operations require a low level of unpredictability [46].

https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=a_n%250
https://www.codecogs.com/eqnedit.php?latex=b_n%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250

24

For example, stronger forms of random generation have been used by physical sources like

thunder noise and to generate computer-controlled adversaries associated with computer

games. On the other hand, weaker forms of random generation (randomness) have been

applied in hash algorithms, the creation of amortised searching, and sorting algorithms

[16].

There are two main techniques for generating random numbers. The first technique

measures some physical phenomena based on expected randomness and thus possible

biases can be compensated for in the measuring process [47]. Some of the parameters

associated with applying this technique include atmospheric noise, thermal noise, external

electromagnetism and quantum phenomena. However, this technique is not practical and

not implementation friendly. The second technique uses computation algorithms to

produce lengthy sequences of results with a random appearance that are determined

entirely by shorter initial values (seed or key) [48]. Pseudo-random generators do not rely

on natural occurring entropy. However, there are cases where pseudo-random generators

are periodically and naturally seeded. Due to this, their rates are not limited by external

events.

Mathematical formulae can also be used to differentiate pseudo-random numbers from

quasi-random numbers [49]. The basis of random number generators is deterministic

computation that is not truly random. With known seed values, the output of a random

number generator can be very practical. If the pseudo-random number generator is

designed and implemented carefully, it can be certified for security-critical cryptographic

purposes. Some practical uses of random number generators for operating systems include

FreeBSD, AIX, Mac OSX and NetBSD, among others [50], [51].

2.4 Cryptanalysis methods and some common attacks

Cryptanalysis, or cryptographic attack, is the analytical study of an information system to

identify the hidden aspects of the system [17]. Cryptanalysis is used to breach

cryptographic security systems and thus allows the analyst to access and view encrypted

messages, even where the cryptographic key is not known. Cryptanalysis can also study or

determine side channel attacks [17], [52]. This type of cryptanalysis focuses on the

weaknesses associated with the implementation of hardware in devices and hence does not

target the weaknesses in cryptographic algorithms [53]. In addition to these methods, an

25

important cryptographic attack introduced by Hellman [54], called time–memory–data

trade-off attack (TMTO), is used in cryptanalysis. In this particular attack, the attacker

attempts to create conditions related to space–time trade-off using one or multiple

parameters of data, depending on the quantity of data available to the attacker in real time.

The attacker balances or reduces one or multiple parameters in order to enhance other

parameters of interest. The planned attack is chosen based on design failures of the ciphers

and encryption to resist the established computational conditions, and is hence considered

a special type of cryptanalytic attack [55]. There are two main phases of TMTO: the pre-

computation (offline) phase and the actual or real time (online) phase. The pre-processing

phase (pre-computation) is characterised by structural exploration of cryptosystems before

computation is performed, and the findings are recorded in large tables which take

considerable time to complete. Conversely, the real-time phase is characterised by

cryptanalysis of real data that is obtained from a specific unknown key. The pre-computed

table from the pre-processing phase is used to generate a particular specific unknown key

in the shortest time possible.

The five key parameters of a TMTO attack are search space size (N), needed pre-

computation phase time (P), needed real-time phase time (T), the amount of memory

available to attackers (M), and the amount of real-time data available to attackers (D).

TMTO attacks on block ciphers can be shown or described through the Hellman simulation

[54]. For instance, where the number of potentially-employable keys is (N), the

corresponding number of possible plaintexts and ciphertexts would be N. Additionally, if

the data given to a block of ciphertext corresponds to a specific plaintext, then the key

for the ciphertext y would be represented as a map function of random permutation ()

over point space (N). Where the f function is invertible, the inverse of is

needed. The pre-processing phase of TMTO is characterised by coverage of N and point

space would be expressed by the (rectangular) matrix, which can be constructed

through random iterating of function on starting from points N for time . In this matrix,

the leftmost columns represent the start points whereas the rightmost columns represent

the endpoints. The real-time phase is characterised by the total computation that is required

to determine hence . Since inversion is required, one matrix can be covered

by a single evaluation of of some .

Another form of time–memory–data trade-off attack is referred to as a Babbage-and-Golic

[56], [57] trade-off attack, which can be successfully performed on stream ciphers. Stream

https://www.codecogs.com/eqnedit.php?latex=x%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=f%5E%7B-1%7D%20(y)%20%3D%20x%250
https://www.codecogs.com/eqnedit.php?latex=mxt%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=m%250
https://www.codecogs.com/eqnedit.php?latex=t%250
https://www.codecogs.com/eqnedit.php?latex=f%5E%7B-1%7D%20(y)%250
https://www.codecogs.com/eqnedit.php?latex=T%3Dt%5E2%250
https://www.codecogs.com/eqnedit.php?latex=t%250
https://www.codecogs.com/eqnedit.php?latex=t%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250

26

ciphers are identified by a specific number of internal states of bit generators (N) that are

considered to be different from the numbers of keys, whereas the number of first pseudo-

random bits (D) is produced by the generator. The attackers therefore achieve their goals

by finding one bit in the internal state of the pseudo-random number generator, and then

running the pseudo-random number generator to produce the remaining part of the key.

2.4.1 Internal state and initialisation vector (IV)

The internal state of a stream cipher can be identified using an initialisation vector (IV)

and key to produce a keystream, then XORing the keystream symbol by symbol. The

standard model for attacking synchronous ciphers assumes there is some known

keystream. Cryptographers design the stream cipher’s internal state to produce a random

keystream, using IV and key-bits; for a higher security level, the internal state should be at

least twice the size of the key within it. Cryptographers also perform statistical tests on the

internal state to investigate the correlation between the IV and the key with a fixed

keystream, between the keystream and the IV with a fixed key, and between a keystream

and a key with fixed IV. There are a number of IV distinguisher tests such as the coverage

test, the P-test and the DP-coverage test [58].

The IV in stream ciphers is used in the internal state to obtain the first output of the

keystream. The IV allows the cipher to use several modes of operations with the same key

but with a different IV, to produce a unique keystream. Significantly, this unique keystream

removes the need to use a different key for each process. The IV also helps improve the

encryption processes and provides synchronisation between the sender and receiver by

producing a keystream with a randomised appearance [59].

The security of stream ciphers depends on the IV and the key initialisation, as the pseudo-

random function and the pseudo-random number generator produce a keystream that has

a random appearance. However, in stream ciphers without an IV, the security is provided

with a pseudo-random number generator [60].

27

2.4.2 Statistical tests on stream ciphers

Statistical tests have historically been an important tool in cryptography and are usually

used to analyse the cipher. An attacker can use statistical analysis to investigate letter

frequency in ciphertext written in the English alphabet (or any other alphabet) [39].

Currently, generic statistical tests, like those of the US National Institute of Standards and

Technology (NIST) 800-22 suite [61], [62], are suitable for observing performance errors

without considering the cipher structure and strength. Distinguishing statistical tests are

more useful for analysing the internal state, especially in stream ciphers which are the focus

of the thesis research.

One important statistical testing tool is hypothesis testing which is used to analyse the

behaviour or character of a large population by taking a sample and using the data obtained

from the sample to represent the whole population. Determining whether the sample Mean

is equal to the population Mean is important in the subsequent analysis in general [63].

2.4.3 Statistical-based attacks on stream ciphers

Randomness distinguishing tests are another kind of statistical test. Random sequences are

also highly significant in cryptography as a pseudo-random number generator is needed to

produce a random sequence. The pseudo-random number generator is easier to use for

applications where the algorithm is deterministic, while in comparison the truly random

number generator requires physical objects to generate the sequences, making truly

random number generators hard to apply and inefficient [34]. The benefits of applying

statistical tests to distinguish randomness include ease of implementation and the short

time needed to run the tests.

Turan et al. [58] investigated six cipher randomness features in their study and observed

statistical differences. They applied structural tests to check the relationship between the

cipher key and the IV and the keystream. They identified some failures in Decim and Polar

Bear which are stream ciphers, as well as failures in Frog which is a block cipher. For

Decim, Turan et al. found a positive correlation between the key and keystream and a

positive correlation between the IV and keystream. They also discovered some weaknesses

by using the correlation between output using a fixed key and IV, similar to that already

used in Decim, F-FCRS-8, Frogbit, Mag and Zk-Crypt. They also found weaknesses in

diffusion in F-FCRS-8, Frogbit, Mag and Zk-Crypt. As a result of these findings, they

28

suggested modifying the structure of these ciphers to remove the observed weaknesses. In

the studies [58] and [64] have extensions and further related statistical based analysis and

results.

d-monomial tests as an Algebraic Normal Form-based randomness (ANF), as it

combination of algebraic and statistical analysis for randomness. In addition to the

distinguishing tests and hypothesis testing, the d-monomial test is another statistical tool

for stream cipher analysis. It is an algebraic normal form-based test. Researchers applied

the d-monomial test to some proposed stream ciphers for the eSTREAM competition [65],

looking for specific parts of ciphers’ output bits. These parts have bits that are less likely

to have received a good mixing in the initialisation process, probably in the first or last bits

of IV. By performing the experiment on eSTREAM the researchers found ciphers with

insufficient mixing processes that simply failed to produce random outputs. These could

be easily distinguished. Ciphers with this weakness included Mag, Frogbit and F-FCSR,

all with extreme biases [43]. Englund et al. [34] used a generalised approach for the d-

monomial test by using polynomial description to detect how polynomials accrue and

added two new tests: the monomial distribution test and maximal degree monomial test

[34].

By studying different types of TMTO cryptanalysis, suitable tests can be chosen that can

be run efficiently for stream ciphers. Turan et al. presented a new suite of TMTO-based

tests on selected stream ciphers using some random mapping tests with three

distinguishers: coverage test, P-test and DP-coverage test. The statistical distribution of the

p values varied in the Pomaranch cipher. The most significant difference (p-value of 0.05)

was obtained from the encryption for Pomaranch, and thus Turan et al. repeated the test on

the cipher 450 times to confirm their conclusion [58].

There has been continuous improvement in cryptanalysis methods. Randomness analysis

includes Unique Window Size (UWS) and Algebraic Normal Form (ANF) based tests such

as the d-monomial test, adapted to test IV-less based stream ciphers, as these tests are on

SG and SSG as can be seen in Chapter 3.

29

2.4.3 Black-box attacks

Attacks have different mechanisms based on the amount of information available for an

attacker. The generic distinguishing attack and the key recovery attack can be applied on

stream ciphers using the internal state or taking the cipher as a black-box. In other words,

the cipher as a pseudo-random number generator is treated as a black-box and then

considers the element outside the black-box [58], [66]. Figure 2.1 shows the message

(plaintext), the key, IV and the keystream as elements to investigate. The term “black-box”

describes the cipher without considering the structure of its internal state. It is a

metaphorical term, indicating that researchers are focusing on the input and output of a

cipher without taking into account the internal state. A distinguishing attack aims to

determine whether the sequences generated from the stream cipher appear random or not,

hence identifying any flaws in the cipher. The attacker’s target in a key recovery attack is

to reveal the secret key.

Figure 2. 1 Black-box principle

A generic distinguishing attack takes the keystream generator as a black-box, then applies

a test to the keystream and studies its statistical properties, usually investigating the

“random” properties of the cipher elements. The tests used in these generic applications

include statistical tests and time–memory trade-off tests, amongst others. In contrast, a

specific distinguishing attack studies the inner state of the stream cipher, examining the

properties of the IVs and the keys used to generate the keystream [67].

A key recovery attack aims to recover the encryption key or at least some part of it. While

this is a strong attack, the attacker needs more information about the cipher structure and

30

access to information related to input and output bits [68]. This attacker has some known

plaintexts with their corresponding ciphertexts, then aims to recover the encryption key by

performing some calculations on the relations between the plaintexts and ciphertexts.

In general, when applying these three types of tests which do not rely on knowing the

internal structure of ciphers on a large keystream to study its random characteristics, it is

possible that if the cipher fails the attackers will not recover either the key or the internal

state. However, these attack methods are useful: the generic distinguishing attack can be

used as a distinguisher for the keystream; the specific distinguishing attack is useful for

finding the weaknesses in both the internal state (key and IV) and black-box (keystream);

and the key recovery attack can help to obtain all or part of the key. Generic statistical tests

can be applied on the black-box to observe weaknesses in the cipher’s implementation.

However, since this kind of test does not explain the cipher algorithm strength,

distinguishing tests for a chosen-IV attack are needed in order to evaluate the internal state

setup and allow cryptographers to determine the strength of IV initialisation [61].

2.5 Lightweight cryptography

The concept of lightweight cryptography is based on enhancing the security for devices

that use ciphers which are becoming smaller and smaller with technological advances.

Lightweight cryptography aims to achieve the highest security levels using minimal

computing power [69]. Strategies for lightweight cryptography include one-pass

authenticated encryption, lightweight block ciphers, hash function and stream ciphers [61],

[70]. Each of these types has features that form the basis of recent advances in security.

For instance, each type of previous lightweight encryption method has a special design that

enables listing of attacks and thus allows characteristic implementation of the best

hardware, which makes it easy to establish and describe connections between designs. In

cryptography, the reduction of the size of the device is based on design. The concept was

coined by Saarinen and Engels and was expressed as lightweight primitive [12]. This

expression led to the generation of algorithm measurement being referred to as “weighting

a primitive” [71], which, in turn, has led to the definition of algorithmic weight. The weight

of an algorithm is defined as the quantity, considering both space and time, of resources

required to run it. Two distinct ways can be used to measure the weight of a primitive: the

software context and the hardware context. If both contexts are considered, software

lightweightness and hardware lightweightness imply vastly different things [12]. The only

31

connection that demonstrates any interrelation between these two contexts is power

consumption.

Lightweight cryptography involves the implementation of types of cryptographic

algorithms in constrained environments that include RFID tags, sensors, healthcare devices

and contactless smart cards. The properties of lightweight cryptography as described in

ISO/IEC 29192 are expressed according to their target platforms [70]. The hardware

context of lightweight cryptography is measured and evaluated according to chip size

and/or energy consumption. Conversely, the software context of lightweight cryptography

is expressed according to smaller code and/or size of RAM. Lightweight primitives are

better than the conventional primitives currently being used in internet security protocols

such as IP security (IPsec) and Transport Layer Security (TLS) [70], [72]. Lightweight

encryption (LWE) has been proven to provide an adequate level of security though it does

have security–efficiency trade-offs, considering that lightweight encryption does not need

much device space and, if implemented properly, will be sufficient to provide the desired

security.

The key symmetric cryptographic algorithms include block ciphers, stream ciphers and

hash functions [35]. Many of the block ciphers that have been recently proposed with

lightweight properties are inspired by the Advanced Encryption Standard (AES). Some of

these block ciphers include CLEFIA and PRESENT. In advanced studies, the block ciphers

have been confirmed as having sufficient security and implementation. Stream ciphers

with lightweight properties include ECRYPT II, eSTREAM (which has seven algorithms),

Grain v1, MICKEY 0.2, and Trivium. The hash functions include the NIST (SHA-3). Most

of the hash functions are general purpose and thus do not have lightweight properties and

are considered too underdeveloped to adopt. However, theoretical concepts indicate that

constructing a lightweight hash function is possible because the concepts are based on

lightweight block ciphers.

There is still strong demand to create new lightweight encryption, and optimise current

lightweight encryption methods to fit into new hardware, which is becoming increasingly

smaller over time.

32

2.6 Neural network predicting models

The neural network model is important for science, with rapidly increasing performance

and fields of applications [73-76]. A neural network is a mathematical based tool that

mimics the human brain of information processing, implementing different disciplines of

mathematics such as algebra, linear algebra and calculus, as well as statistics and

probability [76-80], and is thus a powerful predictive and learning tool. As neural networks

are an important predictive tool and a tool which learns from the data entered, they are

important for confidentiality and reliability of information [81], [82].

Neural networks have been used to select cryptographic keys among other fields of

cryptography [83], [84]. However, use is still limited in the current literature, especially in

the field of random prediction, and measuring the strength of a binary series and testing its

pseudo-randomness. This thesis research provides a study on neural networks and

demonstrates their effectiveness as a measurement tool, including nonlinear complexity

strength for these binary sequences which result from the encryption systems to be tested.

In the future, neural networks can be circulated on most encryption systems.

Pseudo-randomness tests and evaluation tools are needed for use in new methods. Thus

this thesis introduces neural network based predicting models to be more effective

randomness measurement tools, with a higher accuracy than the existing statistical

methods.

2.7 Cloud computing

Cloud computing (CC) stores and processes information in the cloud to protect information

from risks to individual computers. It is becoming increasingly popular and is used when

connecting a device such as a computer or smartphone through an internet provider. It also

provides better information sharing. It also provides a significant amount of protection as

it can only be accessed by authorised persons (who are allowed and need to guarantee

access to private information), remotely from any location, hence the security needs to be

in place for system and data protection [85]. Mobile cloud computing, which combines

cloud computing with mobile devices and wireless channels to provide solutions for

mobile devices through web apps, is discussed in the following section.

33

Cloud computing has several components including software, platforms and infrastructure

as a service (SaaS, PaaS and IaaS). SaaS is Software as a Service such as email and a

virtual desktop with software applications the user can access. PaaS is a Platform as a

Service, and the environments required for users such as the operating system needed for

communication, such as a web server. IaaS is Infrastructure as a Service, where the service

provider has infrastructure environments such as data center storage. Cloud clients include

applications used by clients through their devices such as web browsers and mobile apps.

Figure 2.2 shows cloud computing components and layers [86].

Figure 2. 2 Cloud computing structure and layers

Cloud services can be accessed at any time and at any place. There are many cloud

computing providers including EC2 by Amazon [87], Azure provided by Microsoft [88]

and Google App Engine (GAE) [89].

Cloud computing can reduce costs for organisations and individuals by saving money on

infrastructure and maintenance. In addition, cloud computing provides flexibility as clients

use the cloud resources as needed such as storage size, memory and number of central

processing units (CPUs), and can customise resources for new tasks. Thus, clients are not

attached to specific hardware forever. Clients do not need to worry about support as this is

the task of the cloud provider [90]. All these advantages made cloud computing an

34

important and increasingly popular solution for customers, as it is difficult for them to

individually invest the huge amounts of money and effort required to gain the benefits

provided by large cloud computing companies.

Cloud computing requires strong security. To use cloud computing resources in a secure

manner, clients need to understand the cloud security parameters for better

implementation. Cloud providers need to understand and address clients’ needs for high

security. Therefore, cloud computing presents great security challenges including

authorisation and the authentication of the client [91].

Researchers [91] presented a quantitative framework for the current security challenges in

practical cloud computing. They classified security concerns based on cloud architecture,

and individual needs and threats that can damage the cloud components, and provided

methodological solutions to mitigate these issues.

Cloud computing is an important tool for medical data storage and management, and

medical data is considered to require the highest security. Study [92] provide a framework

to secure medical data, by ensuring the authorisation and authentication in IoT devices

used in cloud computing, which supports eHealth applications by ensuring the privacy and

security for such sensitive data. As it is important that access to medical data is only

granted to authorised medical practitioners, another study [93] provides a timing

searchable encryption technique for securing IoT applications.

Current applications that depend heavily on security such as the blockchain can benefit

from the improvement of lightweight encryption, as it needs a secure network that benefits

from IoT technology including cloud computing and mobile cloud computing [94].

2.8 Mobile cloud computing: applications, security and current

challenges

Mobile cloud computing combines cloud computing with mobile devices and wireless

channels to provide solutions for mobile devices through web apps [95]. It is a large and

rapidly growing field of cloud computing, particularly with the recent increase in the use

of mobile devices and forecast growth. The number of devices worldwide is expected to

reach 38 billion by 2020 [96]. Improvements in communication networks such as Wi-Fi,

35

4G and the imminent 5G, as well as the continuous improvement in cloud computing and

in IoT in general, will be reflected in improvements and increasing use of mobile cloud

computing and its applications such as communications. Mobile cloud computing faces

similar challenges as cloud computing such as security, and encryption, authentication and

authorisation methods need to be improved and adapted for mobile cloud computing.

Mobile cloud computing offers solutions for transferring data, information and storage. It

is also important to offload extensive computation to the cloud, to overcome obstacles for

small devices such as battery life, to save energy, and to overcome short bandwidth and

wireless connectivity problems [97].

Mobile cloud computing enables mobile device users to use more applications connected

to the cloud such as social communication apps (Facebook, twitter, etc), and positioning

apps (Google Maps) and makes communications and business easier and faster [95], such

as banking using smartphone apps, sharing media and using devices for e-learning and e-

commerce.

It is vital to address security in both cloud computing and mobile cloud computing.

However, most of the current security protocols require extensive operations that consume

small devices’ limited resources. Hence, there is a strong need to establish a lightweight

security protocol tailored to provide the security required for such small devices [98].

There are many research directions to address mobile cloud computing security, such as

using well known encryption methods such as RSA, MD5 [99] and ECC [5]. However,

there are new approaches to take advantage of improvements in machine learning and

neural networks as in [100] as they provide two layers for authentication using a virtual

machine for intrusion detection. Nevertheless, as they focus on the authentication part,

neural networks can be used in other security applications such as a public key exchange

[101]. Therefore, more extensive research is required on neural networks to introduce more

security tools for mobile cloud computing.

To address the gap in lightweight encryption to secure mobile cloud computing

applications, the thesis introduces the FEATHER protocol. FEATHER has better

encryption speed and consumes less battery power than existing security protocols.

36

2.9 RFID technology

RFID technology uses radio wave frequency to transfer data, and is an essential part of

IoT. RFID technology has revolutionised the way objects such as people, animals and

goods can be tracked and identified through RFID tags [6]. RFID enables data to be

transferred without direct contact, like contactless credit cards [6]. Ongoing improvements

in designing smaller and more efficient RFID tags will help adapt this technology for more

and efficient applications [102]. It is essential that RFID tags have high security [103] as

authentication and authorisation are needed for most applications. From a lightweight

hardware perspective, lightweight encryption is the best way to secure RFID components

[104]. This thesis uses lightweight encryption within a security protocol, which works in a

proposed prototype device that does not need the internet to be present.

Implementing a system and security protocol for RFID technology is challenging, as it is

a very constrained hardware environment, with low computation ability. There is a large

demand to have this security protocol when there is no internet connectivity, which is an

even larger gap as most security protocols are internet dependent. To address these gaps,

the thesis introduces a lightweight security cryptosystem that consists of a lightweight

secure protocol and lightweight prototype device to implement the protocol, named Near

Field Secure Data Extractor (NFSDE).

2.10 Summary

Cryptography has a long history of use for encryption. There are two important types of

cryptographic designs: asymmetric and symmetric cryptography. The effectiveness of

modern cryptography involves the design of cryptographic algorithms based on

assumptions of computational hardness. Linear feedback shift registers () have

been used as generators of random numbers in stream ciphers. A5/1 and A5/2 are examples

of -based stream ciphers commonly used in GSM cell phones, whereas E0 ciphers

are -based stream ciphers used in Bluetooth. Both the A5/1 and A5/2 have various

disadvantages for cryptanalysis. However, in general, the linearity of facilitates

easy cryptanalysis that leads to attacks. One of the most common cryptographic attacks is

the time–memory–data trade-off attack, which involves an attacker attempting to create

conditions related to a space–time trade-off, using one or multiple parameters of data

available in real time.

https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250

37

The shrinking generator, a type of pseudo-random number generator, is used in stream

ciphers. This system uses two : the A sequence, which generates output bits; and

the S sequence, which controls output. Both the A and S sequences clock so that when the

S bit is at 1, the S bit is the output, and vice versa. Random number generators can be

applied in cryptography if the seed is kept secret. They allow both the sender and receiver

to obtain the cipher key, by automatically generating the same set of numbers. These

random number generators can also generate pseudo-random numbers that can be applied

in computer programming. Finally, random number generators can be used to develop

simulations such as Monte Carlo method simulations.

As the pseudo-randomness of binary sequences generated by pseudo-random number

generators is an essential part of any security protocol, cryptanalysis methods including

mathematical and statistical analysis can be used to ensure the encryption methods are

valid for implementation. Improving and analysing existing cryptanalysis methods is a

critical, active and ongoing research area.

Pseudo-random number generators need to be tested in terms of design. One test method

is the black-box method by taking care of binary (key/IV) input and output (keystream)

without considering the internal cipher structure, giving generalisation, so the concern is

the pseudo-randomness of binary sequences produced by the pseudo-random number

generator which can be applied to any cipher, either IV-based or IV-less ciphers. Therefore

Algebraic Normal Form (ANF) based tests and neural networks are important

measurement and testing tools if implemented and designed correctly for testing.

Improving and optimising existing successful cryptosystems still suffers from a research

gap, particularly for newer and growing users in mobile cloud computing and for small

devices. Using lightweight cryptosystems in field mobile cloud computing requires

extensive and in depth research. There is a lack of research on optimised lightweight

cryptosystems in the field of RFID technology and applications such as in eHealth, and in

the role of these cryptosystems in the case of unreliable internet connectivity.

This thesis recognises and addresses the current literature including the security challenges

of applications such as the IoT due to the growing use and need for research in mobile

https://www.codecogs.com/eqnedit.php?latex=LFSRs%250

38

cloud computing and RFID technology to continue to enhance this field which is

dramatically changing communication and information transfer.

In summary, it is necessary to implement and analyse different lightweight synchronous

stream ciphers in real-life IoT applications, including RFID technology and mobile cloud

computing, to enhance security in important and emerging fields such as eHealth, elearning

and blockchain. Therefore, better cryptanalysis methods are required, and optimisation of

lightweight cryptosystems requires in depth research. There is a need to combine data

analysis, security and application with efficient lightweight protocols to overcome the

research gaps in this area. In the following chapters, this thesis presents solutions for these

gaps including new randomness tests in Chapter 3, proposed neural network based

prediction models in Chapter 4, the proposed MICKEY 2.0.85 as a new optimised version

of MICKEY 2.0 in Chapter 5, the FEATHER security protocol for mobile cloud computing

in Chapter 6, and NFSDE for securing IoT based devices in eHealth in Chapter 7.

39

Chapter 3: Randomness tests on synchronous lightweight

stream ciphers

3.0 Chapter overview

This chapter offers discussion about randomness tests, which were adapted and

implemented using the shrinking generator and self-shrinking generator. Section 3.2

provides the mathematical basis, Section 3.3 discusses synchronous stream ciphers,

Section 3.4 discusses self-synchronous stream ciphers, Section 3.5 discusses IV-less

stream ciphers, Section 3.6 discusses shift register, Section 3.7 discusses Unique Window

Size, Section 3.8 discusses the -monomial test and Section 3.9 discusses the shrinking

generator, Section 3.10 discusses the self-shrinking generator, Section 3.11 provides

comparison between shrinking generator and self-shrinking generator results, Section 3.12

discusses other form of d-monomial test and results, Section 3.13 discusses the data

distribution, and introduces the statistical modelling for predicting UWS, and Section 3.14

concludes the chapter.

3.1 Introduction

The chapter provides an explanation of IV-less synchronous stream ciphers, with a focus

on the shrinking generator and self-shrinking generator. This chapter presents the results

found in finding the flaws with lightweight stream ciphers. It uses techniques that

implement randomness with statistical tests including pseudo-randomness generators,

primitive polynomials and Unique Window Size () as a nonlinear complexity

measurement tool. The Algebraic Normal Form () based test is used for the cipher

keystreams in order to find any biases. A multilinear regression model is used to predict

the , with investigations for the best fit distribution for the . This chapter

emphasises the randomness tests method as a cipher strength measurement that identifies

how strong the encryption algorithms are. This enables the users of these cryptographic

methods to evaluate the ciphers for themselves and avoid poor implementations.

https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250

40

3.2 Mathematical basis

This section provides mathematical preliminaries required for the foundations of the tests

used for cipher evaluation in terms of their strength. The aim is to aid the explanation of

the chapter content and tools used for cipher evaluations. It explains binary fields which

are the basic foundation stone of the arithmetic of cryptographic algorithms, based

tests, which combine the algebraic and statistical approach as explained in this chapter, as

well as statistical properties required by a binary sequence to avoid any undesirable baises,

and the regression statistical based model.

3.2.1 Finite field

Definition 3.1: Finite field can be defined as a set that accepts addition, subtraction,

multiplication and division.

Theorem 3.1: Assume is a field and mod is defined, where are positive integer

numbers, and is a prime number. F is considered finite only if the number of the elements

is , and is called a binary field if . The binary field is the basic element of the

mathematical operation of encryption tools such as Linear Shift Register () For

more information about the field and its application see [105].

3.2.2 Algebraic normal form

 is a Boolean representation for the function, as the keystream sequence needs to be

converted to its representation. An explanation for is as follows:

Definition 3.2: If we consider is a map from with binary input bits into one output

bit in , the representation of is:

.

The logical Boolean operations which can be performed in are , and

, but the tests only consider the operation.

https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D%250
https://www.codecogs.com/eqnedit.php?latex=z%250
https://www.codecogs.com/eqnedit.php?latex=q%250
https://www.codecogs.com/eqnedit.php?latex=z%250
https://www.codecogs.com/eqnedit.php?latex=q%250
https://www.codecogs.com/eqnedit.php?latex=q%5Ez%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D%250
https://www.codecogs.com/eqnedit.php?latex=q%3D2%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=ANF#0
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cmathbb%7BF%7D_2%5En%7D%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathbb%7BF%7D_2%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2Cx_2%2C...%2Cx_n)%3D%5Csum_%7BI%5Csubset(1%2C...%2Cn)%7Da_I%20x%5EI%2C%5Cquad%5Cquad%20%20x_I%3D%5Cprod_%7Bi%5Cin%20I%7D%20x_i%2C~~%20a_I%20%5Cin%20%5Cmathbb%7BF%7D_2%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
http://www.texrendr.com/?eqn=XOR%250
http://www.texrendr.com/?eqn=AND%250
http://www.texrendr.com/?eqn=NOT%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
http://www.texrendr.com/?eqn=XOR%250

41

3.2.3 Truth table

The truth table is a mathematical table used specifically in Boolean algebra which is

suggested to calculate functional values arguments with logical expressions, each with a

set of values according to the Boolean variables taken. In particular, the truth table can be

used to see if the expression is given true at all input values or not and the possible values

are true or false in Boolean algebra are 1s or 0s, hence creating a table that can determine

if the given argument is valid.

Definition 3.3: Assume we have a function and the truth table for a binary sequence

, where has a binary output.

3.2.4 Möbius Transform

In this study Möbius Transform is used to convert Boolean function from the truth table

representation to its representation in order to calculate the -monomial (see the

explanation for -monomial test in Section 3.8) then to apply the -test. For the relation

between Möbius Transform and , see [106]. If is the characteristic function of

coefficients of the function , then , where is the Möbius Transform.

3.2.5 Hypothesis testing

When the behaviour or character of a large population (with size) is the subject of study,

scientists often use hypothesis testing on a subset of that population. This subset, known

as a sample of the population (), is chosen, and this data is taken to represent the

whole population for the purpose of the analysis. Because the experimental results are used

to make inferences from the sample, it is important to ensure that any findings that are

made from the sample can be generalised to a high degree of validity for the population

[106], [107]. For example, it could be important to determine if the sample Mean

approximates the population Mean or two populations have a similar mean based on two

samples from these populations. Since the hypothesis test can provide this information, it

is an important tool in scientific research.

https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=(f(a_0)%2Cf(a_1)%2C...%2Cf(a_%7B%7B2%5En%7D-1%7D))%250
http://www.texrendr.com/?eqn=f(a_0)%2Cf(a_1)%2C..%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5C%5Cchi%7D%5E2%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=t%20%3D%20%5C%5Cmu(f)%250
https://www.codecogs.com/eqnedit.php?latex=N%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=n%5Csubset%20N%250

42

Null hypothesis H0

In hypothesis testing, the null hypothesis suggests that the determined population and the

tested sample are similar. If there is an observed difference, this may be due to

experimental error (in sample selection, or extraneous variables), or due to chance. If the

null hypothesis is confirmed, there is no advantage to modifying the testing procedure.

Alternative hypothesis H1

In the hypothesis test, the alternative hypothesis is accepted if the null hypothesis is

rejected. Therefore, is the value which differs from the value.

Type I error occurs when is rejected while it is true, while Type II error occurs if is

accepted while it is false and the is true.

P-value in hypothesis testing

The -value is a fundamental statistical term represented by a number that is used to

evaluate statistical measurements. The -value indicates the probability the null

hypothesis is rejected if the study hypothesis is true. That is, the observed effect is due to

the changes in the model, and not due to experimental error or chance alone.

-value indications can be classified as follows [106], [107]:

: There is a very valid indication to reject .

: There is a valid indication to reject .

: The evidence to reject is very weak.

: No indication to support rejection.

A -value of is an acceptable level for a sample, as it shows that the study’s

hypothesis is true against the null hypothesis.

3.2.6 Chi-square test

A chi-square test, written as (), is a statistical test used for random variables and the

hypothesis method which can be applied to samples which can represent a larger

distribution.

https://www.codecogs.com/eqnedit.php?latex=H_1%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=H_1%250
https://www.codecogs.com/eqnedit.php?latex=p%250
https://www.codecogs.com/eqnedit.php?latex=p%250
https://www.codecogs.com/eqnedit.php?latex=p%250
https://www.codecogs.com/eqnedit.php?latex=p%5Cleq0.01%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=0.01%5Cleq%20p%20%5Cleq0.05%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=0.05%5Cleq%20p%20%5Cleq0.1%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=p%5Cgeq0.1%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=p%250
https://www.codecogs.com/eqnedit.php?latex=p%3C0.05%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%250

43

Definition 3.4 [108]: The test of Goodness of fit is used to find if it is possible to reject

.

The formula for the test is:

where is the observed value and is the expected value.

3.2.7 Balance theory

The keystream output should be balanced to avoid any bias which may lead to an attack.

By using a function which can give the appearance of an unbiased keystream, the Boolean

function can be considered balanced when its output with probability is close to 50% for

1s in the keystream. The balanced Boolean function is essential to avoid a biased keystream

appearance [109]. The randomness test will reveal any bias in the keystream, and detect if

the keystream was unbalanced.

3.2.8 Solomon Golomb for MLS

Maximum Length Sequence (sequence with length) is essential in order to

guarantee pseudo-randomness. When using the pseudo-random number generator it is

necessary to generate such a sequence [106], [107], [110]. Golomb [111] states the

properties required for MLS as the following:

a) Balance property

In a binary sequence the number of 0s and 1s should be approximately equal. If there is a

sequence with maximum length there are number of 1s and

number of 0s, so the number of 1s = the number of zeros + 1 as the term in the sequence

contains only zeros does not exist.

b) Run property

If there is a sequence , we can consider the runs is a subsequence containing consecutive

1sor 0s. Should be as Solomon Golomb rules for which started the runs of ‘1’ or ‘0’

should adhere to the following properties.

https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%250
https://www.codecogs.com/eqnedit.php?latex=H_0%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%20%3D%20%5Csum_%7Bk%3D1%7D%5E%7Bn%7D%5Cfrac%7B(O_k%20-%20E_k)%5E2%7D%7BE_k%7D%250
https://www.codecogs.com/eqnedit.php?latex=O_k%20%250
https://www.codecogs.com/eqnedit.php?latex=%20E_k%250
https://www.codecogs.com/eqnedit.php?latex=X%5Em-1%250
https://www.codecogs.com/eqnedit.php?latex=X%5Em-1%250
https://www.codecogs.com/eqnedit.php?latex=X%5E%7Bm-1%7D%250
https://www.codecogs.com/eqnedit.php?latex=X%5E%7Bm-1%7D-1%250
https://www.codecogs.com/eqnedit.php?latex=X%250
https://www.codecogs.com/eqnedit.php?latex=X%250

44

Consider a binary sequence: 50% of the runs with length 1, 25% of the runs with length

2, 12.25% of the runs with length 3, etc.

For example, 1 is run of length 1, 0 is run with length 1, 11 is run with length 2, 00 is run

with length 2, etc.

c) Correlation properties

The binary sequence has a good correlation property as the coefficients are either 1 or 0

only. For a statistical explanation for the binary sequence and Solomon Golomb for MLS

correlation property, see [111].

3.2.9 Linear complexity and nonlinear complexity

Assume we have an with length , that generates a binary sequence. If the is the

smallest length, then is the shortest which can generate such a sequence, that is

the linear complexity is . On the other hand, nonlinear complexity is similar with the

difference that is replaced by the with the shortest length that can

generate a given binary sequence [112]. The linear complexity was defined for both

and as seen in this chapter.

3.2.10 Maximum order complexity

Maximum order complexity of a given binary sequence can be defined as the degree of the

shortest , which generates this sequence. For more explanation about maximum

order complexity, see [113], [114]. The Unique Window Size () is a type of

maximum order complexity pseudo-randomness test, as demonstrated in this chapter.

3.3 Synchronous stream ciphers

In synchronous stream ciphers, the internal state is updated independently from the

ciphertext and plaintext, so that the updated state depends on the previous state and the

initial state uses the key as a seed [16]. One advantage of synchronous stream ciphers is

that if errors occur in a bit or in ciphertext, this will affect only one bit of plaintext after

decryption. Another advantage of this kind of stream cipher is to give users more speed,

which is important when work is time-consuming [115]. On the other hand, there are some

disadvantages of synchronous stream ciphers. Attacks can happen by insertion or deletion,

https://www.codecogs.com/eqnedit.php?latex=X%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=l%250
https://www.codecogs.com/eqnedit.php?latex=l%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=l%250
https://www.codecogs.com/eqnedit.php?latex=l%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=NLFSR%250
https://www.codecogs.com/eqnedit.php?latex=l%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=NLFSR%250

45

which may reveal the plaintext [115]. Additionally, synchronisation between the sender

and recipient should be maintained at all times as this process will accrue mostly over a

noisy channel and this may cause loss of some bits. Users should therefore employ

different methods of resynchronisation depending on the protocol used in every process.

Examples of synchronous stream ciphers from the eSTREAM project [65] include Trivium

[116] and Grain [117] ciphers among others (see Chapter 5) and the MICKEY 2.0 cipher

(see Chapter 6). Other examples are considered. This chapter focuses on the shrinking

generator and the self-shrinking generator. Figure 3.1 summarises the general design

principles for this kind of stream cipher.

Definition 3.5: Let be a keystream output,

Let be the state at time , with being the initial state. Then for each iteration

we can describe the process as follows:

 (3.1)

 is the keystream function

 (3.2)

 is the ciphertext, is the operation and is the message.

 (3.3)

 is the update function.

 Figure 3. 1 Synchronous stream ciphers general design

https://www.codecogs.com/eqnedit.php?latex=z_i%250
https://www.codecogs.com/eqnedit.php?latex=i%3D0%2C1%2C2%2C..%250
https://www.codecogs.com/eqnedit.php?latex=s_i%250
https://www.codecogs.com/eqnedit.php?latex=t%250
https://www.codecogs.com/eqnedit.php?latex=s_0%250
https://www.codecogs.com/eqnedit.php?latex=i%3D1%2C2%2C...%250
https://www.codecogs.com/eqnedit.php?latex=k_i%3DL_k(s_i)%250
https://www.codecogs.com/eqnedit.php?latex=k_i%250
https://www.codecogs.com/eqnedit.php?latex=c_i%3Dg(k_i%2Cm_i)%250
https://www.codecogs.com/eqnedit.php?latex=c_i%250
https://www.codecogs.com/eqnedit.php?latex=g%250
https://www.codecogs.com/eqnedit.php?latex=m_i%250
https://www.codecogs.com/eqnedit.php?latex=s_%7Bi%2B1%7D%20%3D%20f_k(s_i)%250
https://www.codecogs.com/eqnedit.php?latex=s_%7Bi%2B1%7D%250

46

As there is no use of bits from plaintext or ciphertext, the keystream is with the

plaintext (message) to get the ciphertext in the encryption process, while at the decryption

stage the ciphertext is with a keystream according to the cipher algorithm used to

obtain the original message.

3.4 Self-synchronous stream ciphers

In this kind of stream cipher, the internal state is updated depending on the ciphertext. The

advantage of using self-synchronous stream ciphers is that there is no need for

synchronisation all the time between the sender and receiver [118]. One disadvantage of

self-synchronous stream ciphers is that if errors accrue in the ciphertext during the

transmission phase, this will affect bits from the plaintext after decryption. Furthermore,

if errors accrue in the ciphertext, they can be detected, which in turn can lead to an attack.

A block cipher working in cipher-feedback mode (CFB) can be considered a self-

synchronous stream cipher. Figure 3.2 summarises the general design principles for this

type of stream cipher. To describe the operations within self-synchronous stream ciphers,

refer to equations 3.1, 3.2 and 3.3 in Section 3.3: the change will be in

the initial state and in the update state. In these conditions, the

change will be in equations 3.1 to 3.3 [16].

 Figure 3. 2 Self-synchronous stream ciphers general design

https://www.codecogs.com/eqnedit.php?latex=XORed%250
https://www.codecogs.com/eqnedit.php?latex=XORed%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=s_0%3D(c_%7B-t%7D%2C..%2Cc_%7B-1%7D)%250
https://www.codecogs.com/eqnedit.php?latex=s_%7Bi%2B1%7D%3D(c_%7Bi%2B1-t%7D%2C..%2Cc_i)%250

47

3.5 IV-less stream ciphers

The loading phase uses a key (which should be kept secret), using the internal cipher

function to generate the keystream, as shown in Figure 3.3. The difference with IV-based

stream ciphers (ciphers that use IV) is using an IV which is mixed with a key to create

more confusion, making it harder to solve. This chapter examines the shrinking generator

and self-shrinking generator as IV-less stream ciphers, while Chapter 5 discusses

MICKEY family ciphers as IV-based stream ciphers.

Figure 3. 3 IV-less stream ciphers

The truly random number generator (TRNG) is used to produce truly random sequences of

bits. This could be a physical object such as mouse movement, or tossing a coin times,

that if repeated will be impossible or very unlikely to produce the same sequence of bits.

The pseudo-random number generator (PRNG) is an algorithm used to generate sequences

of bits with random appearance and similar properties as the TRNG [8], [118]. There is a

need for the pseudo-random number generator as it is easy to study and implement,

whereas the truly random number generator requires a physical source and connection to

hardware in order to generate a truly random bits sequence. The TRNG can also be very

costly. One example of a pseudo-random number generator is a primitive polynomial used

on . The pseudo-random number generator can be applied where randomness is

needed, such as in gambling machines where randomness is needed to make it hard to find

https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250

48

correlations within the sequence bits and therefore make the machines more resistant to

prediction of their outcomes.

3.6 Linear Feedback Shift Register (LFSR)

All bits on can be represented as a linear function from their previous states’ bits.

Let us consider the primitive polynomial which has the degree 5. If

, then the with this polynomial output sequence

bits are as follows:

00001110011011111010001001010110000111001101111101000100101011. Here

(00001) is used as a seed (key).

The function is initialised with bits called a seed (also called the key) and then

shifted according to the function which is used. An -bit loaded into the shift register will

have values with random appearance. We can obtain the maximal length if a

primitive polynomial is used, discussed at the end of this section. quickly produces

the output as it has very few logical arguments using gates and the bits controlling

the input bits called taps. The positions of taps will influence the output bits so that the tap

is positioning operations to be performed on certain places to get the sequence of

bits.

Advantages of include clear algebraic analysis and easy hardware implementation,

and the ability to produce sequences with long periods. The advantages of using the

 are similar to those of Trivium and Grain ciphers: hardware, high linear

complexity [105], and harder to predict the sequence generated by it. It is hard to predict

the period with , and statistical properties are hard to analyse [119]. The structure

and properties of are discussed in Chapter 5 with the use of the MICKEY 2.0

cipher.

3.6.1 Primitive polynomials and LFSR

Primitive polynomials are an essential part of as the primitive polynomial will

produce a sequence of bits that has a maximal length . The number of binary

primitive polynomials of degree of () is given by where is the

https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=f(x)%3Dx%5E5%20%2B%20x%5E4%20%2B%20x%5E3%20%2B%20x%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=2%5En-1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
http://www.texrendr.com/?eqn=XOR%250
http://www.texrendr.com/?eqn=XOR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=NLFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=NLFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=2%5En-1%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=%5Cphi(2%5Ed%20-%201)%2Fd%250
https://www.codecogs.com/eqnedit.php?latex=%5Cphi%250

49

Euler totient function. Table 3.1 lists the number of all primitive polynomials for Boolean

functions with degrees from 4 to 35.

 Table 3. 1 Number of primitive polynomials per degree (degree 4 to 35)

Degree Total Number Degree Total Number

4 2 20 24,000

5 6 21 84,672

6 6 22 120,032

7 18 23 356,960

8 16 24 276,480

9 48 25 1,296,000

10 60 26 1,719,900

11 176 27 4,202,496

12 144 28 4,741,632

13 630 29 18,407,808

14 756 30 17,820,000

15 1,800 31 69,273,666

16 2,048 32 67,108,864

17 7,710 33 211,016,256

18 7,776 34 336,849,900

19 27,594 35 929,275,200

Consider a shift register with n-bit and pseudo-random moves happening between

values (length). These moves can occur quickly since there is minimal

involvement of combinational logic (logical gates) and the shift register will therefore

navigate the sequence precisely as before once the final state is achieved. In this case, the

 (ia the highest power in the polynomial) and 1 occurs in primitive polynomials, and

the former can be used as shift register output, whereas the latter can be used as shift

register input. For implementation, it is important to discover the primitive polynomial for

-bit that is associated with it. For example, the internet tap tables can list taps

such as (taps at 0, 1, 4) that correspond to [17], [119]. The taps 0, 1 and

4 have been used in this case since they match powers of in primitive polynomials.

However, there are tap tables that omit 0 and 4 because they are assumed to be naturally

present. The recorded taps are normally connected with one primitive polynomial, however

several polynomials exist with the same degree. This results in diverse tap tables

demonstrating distinctive numbers. For example, and a primitive polynomial

. Moreover, every degree has different primitive polynomials that

must fulfill other mathematical and numerical conditions. For instance, the most critical

https://www.codecogs.com/eqnedit.php?latex=%7B2%5En%7D%20-1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
http://www.texrendr.com/?eqn=X%5En%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=N%3D4%250
https://www.codecogs.com/eqnedit.php?latex=%201%20%2B%20x%20%2B%20x%5E4%250
https://www.codecogs.com/eqnedit.php?latex=x%250
https://www.codecogs.com/eqnedit.php?latex=n%3D8%250
https://www.codecogs.com/eqnedit.php?latex=1%20%2B%20x%5E2%20%2B%20x%5E3%20%2B%20x%5E4%20%2B%20x%5E8%250

50

property of these mathematical conditions is that their reciprocals form primitive

polynomials. For example, is termed degree 4 and its reciprocal is

 (10011 and 11001, which are both primitive) [16].

3.6.2 General attack on LFSR based stream ciphers

If the attacker has a good number of bits from the ciphertext and its corresponding

plaintext, they can apply this information to find the output and try to find a

minimal sequence producing the same output. This may reveal the original

function using the Berlekamp–Massey algorithm [120]. To minimise the risk of this attack,

it is possible to use nonlinear combinations of bits on internal states or to use more

than one so that one is controlling the output of the other (as in). Another

method is to use an Alternating Step Generator, where irregular clocking for is

used [119], [120].

3.7 Unique Window Size (UWS)

The pseudo-randomness tests are based on the maximum order complexity. The goal of

this test is to examine the sequence generated by the targeted cipher if it is complex enough,

such that it is hard to find a certain pattern that allows it to be simulated by the possible

shortest . The larger is better, thus it is hard to find the that can

generate the same sequence. This kind of test investigates the situation when every state in

the keystream is unique by applying a slide window. Let be the keystream sequence.

Now we have sliding window , as there will be repetition, so we start with

, then increase by 1. If the state is repeated, then . See the following

example for illustration.

Example of finding the UWS

This is an example of how to find a unique window size. Assume we have a binary

sequence:

 = 1001011010…

Then we are looking for a sliding window where every state is unique (no repetition), so

we start with size 3 then 4, etc until every state is unique then that will be . We start

https://www.codecogs.com/eqnedit.php?latex=1%20%2B%20x%5E3%20%2B%20x%5E4%20%250
https://www.codecogs.com/eqnedit.php?latex=1%20%2B%20x%20%2B%20x%5E4%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=NFLSR%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=NFLSR%250
https://www.codecogs.com/eqnedit.php?latex=Z%250
https://www.codecogs.com/eqnedit.php?latex=w%20%3E%202%250
https://www.codecogs.com/eqnedit.php?latex=w%3D2%250
https://www.codecogs.com/eqnedit.php?latex=w%3D3%250
https://www.codecogs.com/eqnedit.php?latex=UWS%5Cneq%20w%250
https://www.codecogs.com/eqnedit.php?latex=s%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250

51

with window size as with size there will be always repetition as following

(first row is the sequence):

1 0 0 1 0 1 1 0 1 0 …

1 0 0

0 0 1

0 1 0

1 0 1 duplicated

0 1 1

1 1 0

1 0 1

0 1 0

With sliding window size = 3, 1 0 1 was duplicated.

Now we try the next size which is 4:

1 0 0 1 0 1 1 0 1 0 0…

1 0 0 1

0 0 1 0

0 1 0 1

1 0 1 1

0 1 1 0

1 1 0 1

1 0 1 0

0 1 0 0

With sliding window size , there is no duplicate.

The time complexity of the test is linear which depends on the keystream size.

The following is the algorithmic description for :

https://www.codecogs.com/eqnedit.php?latex=w%3D3%250
https://www.codecogs.com/eqnedit.php?latex=w%3D2%250
https://www.codecogs.com/eqnedit.php?latex=s%250
https://www.codecogs.com/eqnedit.php?latex=w%3D4%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250

52

Algorithm 3.1

STATE Given a periodic bit sequence B[i] with period P, the UWS algorithm calculates

the UWS.

STATE Given: B = Periodic bit sequence, P = Period of B

STATE Calculate: L = Minimum subsequence length such that all L-bit subsequence are

unique

STATE Initialise L with 1

STATE REPEAT

FOR {each bit index, of }

 STATE Test

 FOR {each bit index, , of greater than }

 IF { -bit subsequence of starting at = -bit subsequence of starting at }

 STATE INCREMENT

 STATE CONTINUE the next REPEAT loop

 ENDIF

 ENDFOR

ENDFOR

STATE UNTIL all L-bit subsequences of B are unique

STATE Returns L

3.8 The d-monomial test

The -monomial test is a random statistical test, in which the algebraic normal form (

) is used to represent the Boolean function used in the keystream generated by and

. This test was introduced by Filiol in 2002 [121] to detect the biases in the keystream

in some chosen stream ciphers such as and , and also in the hash function.

Filiol observed that the for the pseudo-random binary sequence contains a

monomial with weight following an approximate normal distribution as follows:

 (3.4)

In 2006 Saarinen [122] applied this test in some IV-chosen stream ciphers and found the

relationship between detectable biases on keystream and gate complexity. Englund et al.

[34] applied this test using polynomial characterisation and introduced other IV-chosen

https://www.codecogs.com/eqnedit.php?latex=i%250
https://www.codecogs.com/eqnedit.php?latex=B%250
https://www.codecogs.com/eqnedit.php?latex=j%250
https://www.codecogs.com/eqnedit.php?latex=B%250
https://www.codecogs.com/eqnedit.php?latex=i%250
https://www.codecogs.com/eqnedit.php?latex=L%250
https://www.codecogs.com/eqnedit.php?latex=B%250
https://www.codecogs.com/eqnedit.php?latex=i%250
https://www.codecogs.com/eqnedit.php?latex=L%250
https://www.codecogs.com/eqnedit.php?latex=B%250
https://www.codecogs.com/eqnedit.php?latex=j%250
https://www.codecogs.com/eqnedit.php?latex=L%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=DES%250
https://www.codecogs.com/eqnedit.php?latex=AES%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=d%250
http://www.texrendr.com/?eqn=%5Cmathcal%7BN%7D%7B(%5Cfrac%7B1%7D%7B2%7D%5Cbinom%7Bn%7D%7Bd%7D%2C%5Cfrac%7B1%7D%7B2%7D%5Csqrt%5Cbinom%7Bn%7D%7Bd%7D)%7D%250

53

stream ciphers based on -monomial tests which they named the monomial distribution

test and maximal monomial test.

3.8.1 Running d-monomial tests

We start with a truth table representation of the Boolean functions to the

representation by using Möbius Transform. Next, the -monomial C program calculates

the number of monomials of weight in the of a Boolean function. Multiple

functions can be analysed by providing their in separate rows in the file, so each

row in the input file contains the of a single Boolean function. Then, we apply the

 (goodness of fit) test to find if the keystream passes the -monomial test and is

monomial.

Example

In the following example, we apply the monomial on of four Boolean functions.

The first row is:

 0101

 1001

 1011

 0011

where 0101 corresponds to a Boolean function with two input

bits: . Note that the coefficients of each term in the

expression correspond to the of the function. Now, from the expression, the ANF

of the function has one monomial of degree as only one term of , and one

monomial of degree as only one term of with two multiplied variables.

As mentioned earlier for Saarinen and Filiol’s adoption for -monomial tests, see [121]

and [122], as well as the other approach in [34]. However, the treatment of this test here is

that each bit of the and keystream is considered a Boolean function which is a

representation of all the variables obtained by different keys as the initial input of

.

Definition 3.6: The () Boolean function as a , let elements of the vector , then:

 (3.5)

Then is transformed as:

https://www.codecogs.com/eqnedit.php?latex=d%250
http://www.texrendr.com/?eqn=ANF%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=d%250
http://www.texrendr.com/?eqn=ANF%250
http://www.texrendr.com/?eqn=ANF%250
http://www.texrendr.com/?eqn=ANF%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%250
https://www.codecogs.com/eqnedit.php?latex=d%250
http://www.texrendr.com/?eqn=ANF%250
https://www.codecogs.com/eqnedit.php?latex=f(x_1%2C%20x_2)%20%3D%200%20%2B%201.x_2%20%2B%200.x_1%20%2B%201.x_1x_2%250
http://www.texrendr.com/?eqn=ANF%250
https://www.codecogs.com/eqnedit.php?latex=d%3D1%250
http://www.texrendr.com/?eqn=(x_2)%250
https://www.codecogs.com/eqnedit.php?latex=d%3D2%250
http://www.texrendr.com/?eqn=(x_1x_2)%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%5C%5Cmathbb%7BF%7D%5E%7Bn%7D_2%5C%5Clongrightarrow%5C%5Cmathbb%7BF%7D_2%250
https://www.codecogs.com/eqnedit.php?latex=x_i%250
https://www.codecogs.com/eqnedit.php?latex=x%250
https://www.codecogs.com/eqnedit.php?latex=f(x%5ET)%3Da_0%5Coplus%7Ba_1x_1%7D%5Coplus%7B...%7D%5Coplus%7Ba_nx_n%7D%5Coplus%7Ba%7D_%7B2%5En%7D_%7B-1%7Dx_1x_2x_3%2C...%2Cx_n%250
https://www.codecogs.com/eqnedit.php?latex=f%250

54

 (3.6)

Such that polynomials is the representation of .

So is monomials () permutations, that is tests based on finding the non-zero bits in ,

in other words, the Hamming weight (the longest monomial in) [123].

3.9 The shrinking generator

The shrinking generator () [24] is an IV-less synchronous stream cipher. It has simple

design features where the internal structure of the contains two .

works as input and as controlling bits (see Figure 3.4). Both must be

primitive polynomials. The selection rule is that if the bits of are then the

input bits 1 or 0 of will be selected, and if the bits of are then the

input bits of will not appear in the outputs. Consider the following example:

For we choose a primitive polynomial and if the key is (001)

then the output will be 1010011.

Let , a primitive polynomial for . If the key is (0001) then the

 output will be 101011001000111. The keystream will be: 11010…

The following example for two with their polynomials shows how the SG

keystreams were generated.

LFSRA ,

Output:

1 0 1 0 0 1 1

LFSRB ,

Output:

1 0 1 0 1 1 0 0 1 0 0 0 1 1 1

SG keystream output:

(1,1) (0,0) (1,1) (0,0) (1,0) (1,1) (0,1) (0,1) (1,0) (0,1) (0,0) (0,0) (1,1) (1,1) (1,1)

https://www.codecogs.com/eqnedit.php?latex=%5Chat%7Bf%7D(x%5ET)%3D%5Csum_%7Ba%5Cin%7BF%7D%5En_2%7D%7Bf(a)%7D%5Cprod_%7Bi%3D1%7D%5E%7Bn%7D%7Bx%7D%5E%7Ba_i%7D_i%250
https://www.codecogs.com/eqnedit.php?latex=%5C%5Chat%7Bf%7D%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=%5C%5Chat%7Bf%7D%250
https://www.codecogs.com/eqnedit.php?latex=x_i%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=%5C%5Chat%7Bf%7D%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=1s%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=0s%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=f_2%3Dx%5E4%2Bx%2B1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=x%5E3%2Bx%2B1%250
https://www.codecogs.com/eqnedit.php?latex=S_%7Bt-1%7D%20%5Coplus%20S_%7Bt-3%7D%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%2Bx%2B1%250
https://www.codecogs.com/eqnedit.php?latex=S_%7Bt-1%7D%20%5Coplus%20S_%7Bt-4%7D%250

55

1 - 1 - 0 1 - - 0 - - - 1 1 1 . . .

Figure 3. 4 Shrinking generator design

3.9.1 Shrinking generator period

To explain the period, consider the following:

Definition 3.7: Let and be the periods of and

respectively, where is the degree of and is the degree of , then the

period of is .

3.9.2 Linear complexity

Definition 3.8: For the linear complexity () of the keystream, the lower bound is

 and is greater than the lower bound, and the upper bound is ,

and is less than or equal to the upper bound, so is located within tight boundaries.

3.9.3 Attacks on shrinking generator

One interesting attack on is the fast correlation attack by Golic [124]. This represents

an important conjecture that the output sequence can be a good target for correlating

attacks with some ' initial states, without the need to go through all of them. This

is further investigated by Zhang et al., through studying the with some known

connections [125].

https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=%7B2%5E%7B%7CA%7C%7D-1%7D%250
https://www.codecogs.com/eqnedit.php?latex=%7B2%5E%7B%7CB%7C%7D-1%7D%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_2%250
https://www.codecogs.com/eqnedit.php?latex=%7CA%7C%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_1%250
https://www.codecogs.com/eqnedit.php?latex=%7CB%7C%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_2%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=(%7B2%5E%7B%7CA%7C%7D-1%7D).2%5E%7B%7CB%7C-1%7D%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
http://www.texrendr.com/?eqn=%5Cleft%20%7CA%20%20%5Cright%20%7C%20.%202%5E%7B%5Cleft%20%7CB-2%20%20%5Cright%20%7C%7D%250
http://www.texrendr.com/?eqn=LC%250
http://www.texrendr.com/?eqn=%5Cleft%20%7CA%20%20%5Cright%20%7C%20.%202%5E%7B%5Cleft%20%7CB-1%20%20%5Cright%20%7C%7D%250
http://www.texrendr.com/?eqn=LC%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SG%250

56

In addition, Golic et al. introduced a statistical distinguisher which reduces the time

complexity for the computations. The idea is based on reconstructing the bits which

clocked in in a regular way. The resulting sequence of bits should satisfy the

recurring low weight polynomial which is constructed from multiple , where

 was chosen randomly [126].

Another interesting observation by Kdahl et al. [127] proposed an attack and observation

by investigating the low weight polynomial which can generate the . They found

that most of the bits on the output can be represented by the linear recursion with

more occurrence than random ones, which in turn can give an estimation of the occurrence

of bits. Furthermore, that can give some prediction of bits distribution on the given

generation sequence.

3.9.4 UWS on shrinking generator

By applying Unique Window Size to find the minimal length for the keystream to

make sure that every state is unique, the results showed that identifying the can lead

to finding the pairs’ weakness. This, in generating the keystream that is pseudo-

random, can in turn help understand which pairs should be avoided. In addition,

the is linked to maximum order complexity (as opposed to linear complexity), thus

yielding experimental evidence of possible weaknesses in the keystream against

attacks which may use this measure. This is another possible area for further research.

As discussed, the consists of two . The C code for the was used to generate

the keystream, then another C code was used to calculate the by using super

computation. EC2 was used to run the C codes, as these computations are time consuming.

Figure 3.5 shows the distribution for the for of degree 19 and Figure 3.6 shows

.

https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_s%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
http://www.texrendr.com/?eqn=UWS20%250

57

Figure 3. 5 Unique window size 19 distribution for Shrinking Generator

Figure 3. 6 Unique window size 20 distribution for Shrinking Generator

The shrinking generator design takes into consideration how to build a cipher with a simple

structure and yet still have good cryptographic properties. Since this cipher appeared, there

58

have been many attacks targeting it but no attack has successfully recovered the key when

the pairs were chosen carefully. However, the attacks reveal some weaknesses

and our results also confirmed weaknesses in the keystream when multi tests were

applied [128]. Some statistical dependencies were also revealed by applying tests.

More details of these results are given in sections 3.12, 3.13 and 3.14.

3.9.6 d-monomial test results for SG

By applying statistical randomness tests on in order to find a weakness in the

keystream, using the -monomial test, results were obtained. The -monomial test was run

for degrees 16–19, in order to find the passing rate using the test. See Table 3.2,

and for more extensive results with variations on initial input, see Appendix 3.1.

Table 3. 2 d-monomial test implemented on Shrinking Generator with degrees 16–

19

 Degree Number of

Pairs

Number of Total Number of Fails at

Passing

Percentage

16 50 409600 198895 51.441%

17 50 819200 510001 37.744%

18 50 1638400 932719 43.071%

19 50 1114112 655568 41.158%

3.10 The self-shrinking generator

The self-shrinking generator consists of one primitive polynomial working as and

the selection rule is within this . If the output pairs are (1,0) the

output will be 0 or if the pair is (1,1) the output will be 1, otherwise the output will be

neglected, as shown in Figure 3.7. The self-shrinking generator was designed by Meier and

Statfelbach, as described in their initial paper [114].

For example, if the primitive polynomial is , then the

output will be 10010…

The following illustration for LFSR with its polynomial shows how the SSG keystreams

were generated.

https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=%7B%5Cchi%7D%5E2%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
http://www.texrendr.com/?eqn=%5Cchi%5E2%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
http://www.texrendr.com/?eqn=f_i%250
http://www.texrendr.com/?eqn=%5Calpha%20%3D0.01%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=f%3Dx%5E4%2Bx%2B1%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250

59

,

Output: 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

SSG output:

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

1 0 0 1

0

 Figure 3. 7 Self-shrinking generator design

3.10.1 The period

 uses one with an output sequence with length . Within the

 there are two decimated sequences: one is the output and the other one

is the controlling sequence which generates keystreams with the period

.

3.10.2 Self-shrinking generator linear complexity

The linear complexity is , where is the length of the keystream

[25], so in is more complex than in . In this thesis, the relation between the

 keystream and the primitive polynomial degree was found to be as follows:

The relationship between degree and LC is estimated to be:

 (3.7)

https://www.codecogs.com/eqnedit.php?latex=LFSR(x%5E4%2Bx%2B1)%250
https://www.codecogs.com/eqnedit.php?latex=S_%7Bt-1%7D%5Coplus%7BS_%7Bt-4%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_t%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=2%5En-1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_%7B2t%7D%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=%7B%7B%5C%7BS_%7B2t%2B1%7D%7D%5C%7D_%7Bt%3D0%7D%5E%7B2%5En-2%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=2%5E%7Bn-1%7D%250
http://www.texrendr.com/?eqn=LC%250
http://www.texrendr.com/?eqn=LC%3C2%5E%7B%5C%5Cleft%20%5C%5Clfloor%20N%2F2%20%5C%5Cright%20%5C%5Crfloor-1%7D%250
https://www.codecogs.com/eqnedit.php?latex=N%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
http://www.texrendr.com/?eqn=LC%250
https://www.codecogs.com/eqnedit.php?latex=ln(LC%2B1)%3D-0.33%2B0.33*degree%250

60

This can be rewritten as:

 (3.8)

See Appendix 3.2 for the complete explanation with scatterplots.

SSG linear complexity profile results and observation

To perform the profile test is vary from of the , by considering the keystream as a

binary sequence, and subsequences which will be calculated by their , that

is the profile. In this case = first bit, = first 2 bits, = first 3 bits,...., = the

whole bits. Appendix 3.2 has a computation for keystream string from primitive

polynomial; from degree 4 to 8.

And the relation between profile and the degree can be represented as:

 (3.9)

This can be rewritten as:

 (3.10)

3.10.3 Attacks

Several types of attacks have already been performed on . One of these attacks relies

on some known bits of the keystream and involves trying to establish an algorithm which

simulates a sequence that can produce the same bits. By producing this sequence, an

attacker can establish the key. This attack is presented in the work of Zenner et al. [129],

who state that the algorithm takes about steps and the key length is . Another

kind of attack is proposed by Debraize et al. [130]. Their attack is performed with a

feedback polynomial which has a Hamming weight of at most 5, and they perform some

guesses on the internal bits of and use the SAT solver to solve the system.

Zhang et al. [129], in their guess and determine attack, aim to simulate the initial state and

reduce the time complexity to where is the keystream length. Their attack

requires reasonable keystream length.

https://www.codecogs.com/eqnedit.php?latex=LC%3D0.72e%5E%7B0.33*degree%7D-1%250
https://www.codecogs.com/eqnedit.php?latex=LC%250
https://www.codecogs.com/eqnedit.php?latex=LC%250
https://www.codecogs.com/eqnedit.php?latex=s_1%2Cs2%2C...%2Cs_n%250
https://www.codecogs.com/eqnedit.php?latex=LC%250
https://www.codecogs.com/eqnedit.php?latex=LC%250
https://www.codecogs.com/eqnedit.php?latex=s_1%250
https://www.codecogs.com/eqnedit.php?latex=s_2%250
https://www.codecogs.com/eqnedit.php?latex=s_3%250
https://www.codecogs.com/eqnedit.php?latex=S_n%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LC%250
http://www.texrendr.com/?eqn=%20$$%250
https://www.codecogs.com/eqnedit.php?latex=ln(LC%2B1%3D-1.37%2B0.58*degree)%250
https://www.codecogs.com/eqnedit.php?latex=LC%3D0.25e%5E%7B0.58*degree%7D-1%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D(2%5E%7B0.694L%7D)%250
https://www.codecogs.com/eqnedit.php?latex=L%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BO%7D(2%5E%7B0.556L%7D)%250
https://www.codecogs.com/eqnedit.php?latex=L%250

61

Some statistical dependencies on are summarised. Computations were run for all

primitive polynomials to find the unique window size up to degree 25, and non-exhaustive

computation from degree 26 up to degree 35 as can be seen in [128].

In addition, seeds were changed. First, the d-monomial test was applied,

performing the test for and applying it to all possible combinations of

and all initial states from degree 7, applying three different scenarios in order to vary their

initial states. Varying percentages keystream bits of failing the -monomial test from

 to were failed with significance level . When 50 pairs from

degrees 16 to 19 were chosen, the same kind of failure rates continued at the significance

level .

3.10.4 Statistical tests on SSG

This section presents results obtained on the shrinking generator () and the self-

shrinking generator (). The computations for the monomial based test and

were done mostly with fast computing power using the Victorian Partnership for Advanced

Computing as well as using from Amazon Web Service () for more extensive

computations.

3.10.5 UWS test on SSG

As is based on maximal order complexity [113], [114], this thesis tries to find within

the binary sequence (keystream) if every state of bits is unique, by using the sliding

windows. The statistical randomness tests expose the flaws in the keystream which in turn

show the poor choice of polynomials that generate such a keystream. Thus caution in the

choice of the (polynomials) is critical.

The findings show that based on the unique window size of the outputs and the

imbalance property, the choice of primitive polynomials on the SSG should avoid

certain polynomials, regardless of the degree of the polynomial. This is because certain

 patterns derived from such polynomials produce biased outputs. For example,

out of 48 primitive polynomials of degree 9, three should be avoided. These extreme

polynomials of degree 9 include:

https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=z_i%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=18%5C%25%250
https://www.codecogs.com/eqnedit.php?latex=58%5C%25%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.01%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%20%3D%200.01%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=d-%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=EC2%250
https://www.codecogs.com/eqnedit.php?latex=AWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250

62

 1)

 2)

 3)

The above examples of degree 9 polynomials were not suitable for , and certain

primitive polynomials of all degrees may also produce extreme results to be avoided

because they affect the randomness appearance of the output.

Regarding primitive polynomials of degree 9, each of degree 9 generates an output

length of 256. Because there are 48 primitive polynomials of degree 9, the total

windows will generate 48 x 256 windows. If the degree of the polynomial in the potential

computation is increased, repeated output segments will grow exponentially.

It is worth investigating the primitive polynomials for with certain weights as shown

in Figures 3.10 and 3.11, which was done for all weight counts as seen for in

Table 3.3 and with only weight 5 in Table 3.4, because the certain weight is easier to

analyse, with less computation effort.

https://www.codecogs.com/eqnedit.php?latex=x%5E9%2Bx%5E8%2Bx%5E7%2Bx%5E5%2Bx%5E4%2Bx%5E2%2B1%250
https://www.codecogs.com/eqnedit.php?latex=x%5E9%2Bx%5E7%2Bx%5E4%2Bx%5E2%2B1%250
https://www.codecogs.com/eqnedit.php?latex=x%5E9%2Bx%5E7%2Bx%5E5%2Bx%2B1%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS21%250

63

Table 3. 3 Unique Window Size 21 for Self-Shrinking Generator counts and

probability, with all weights

UWS21 UWS21 Count P(UWS21)

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

56

58

62

63

85

32

1522

9835

19746

20229

14697

8729

4790

2538

1237

639

355

160

75

32

28

13

6

2

3

1

1

1

1

0.000377929

0.017975246

0.116154101

0.233205782

0.238910147

0.17357568

0.103091931

0.05657124

0.02997449

0.014609316

0.007546769

0.004192649

0.001889645

0.000885771

0.000377929

0.000330688

0.000153534

0.000070862

0.000023621

0.000035431

0.00001181

0.00001181

0.00001181

0.00001181

Table 3. 4 Unique Window Size 21 for Self-Shrinking Generator counts and

probability, with weight = 5

UWS UWS Count P(UWS)

36

37

38

39

40

41

42

43

46

2

21

38

36

32

13

16

5

1

0.012195122

0.12804878

0.231707317

0.219512195

0.195121951

0.079268293

0.097560976

0.030487805

0.006097561

The same implementation as is done for the . The histogram in Figure 3.8 shows

the for the key streams, the range from length 39 up to 106, and

 length concentrates between 42 to 45, so the number of all possible simulations is

356,960. In Figure 3.9, the plot for degrees is from 4 to 24 and the number of

https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS23%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250

64

primitive polynomials is 901,934. In addition, is plotted by choosing the

with weight = 5 and see how they fit against with all weights including 5 in Figure

3.10 and Figure 3.11. The variation is small. Therefore, other kinds of tests on other

than must be considered, thus the need to apply the -monomial based tests.

Appendix 3.3 provides some statistical analysis for with .

Figure 3. 8 Unique window size 23 distribution for Self-Shrinking Generator

Figure 3. 9 Self-Shrinking Generator degrees from 4 to 24 vs Unique Window Size

https://www.codecogs.com/eqnedit.php?latex=UWS19%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS4-24%250

65

Figure 3. 10 Unique Window Size 19 for Self-Shrinking Generator with weight 5

and all weights

Figure 3. 11 Unique Window Size 19 for Self-Shrinking Generator with weight 5

and all weights, with smooth line

66

Appendix 3.4 provides more results for and , counting all weights, as well

as a histogram showing the calculations for primitive polynomials of degree 14, for weight

versus .

Let us take an example for degree 12. Out of 144 polynomials, there are about 10 out of

2048 weak keys (initial seeds). Overall, 680 out of 144 x 2048 keys are weak, resulting in

a bias keystream which can be identified. It is very computationally difficult to find weak

polynomial and key combinations for much higher degrees as higher degrees generally

produce better random appearance keystream [128].

For degrees 2 to 24 for as one set, Table 3.5 summarises how many of each

were repeated.

Table 3. 5 Total count of each Unique Window Size occurrence for degrees 4 to 24

for Self-Shrinking Generator

UWS Count UWS Count UWS Count UWS Count UWS Count

4 2 14 15 24 312 34 8856 44 117

5 1 15 14 25 453 35 10376 45 56

6 3 16 24 26 617 36 10889 46 22

7 1 17 55 27 785 37 8789 47 10

8 3 18 60 28 995 38 5854 48 7

9 8 19 75 29 1577 39 3303 49 6

10 6 20 71 30 2472 40 1818 50 3

11 7 21 110 31 3064 41 1004 55 1

12 6 22 220 32 3730 42 492 58 1

13 15 23 259 33 5940 43 286

3.10.6 The d-monomial test on SSG

Table 3.6 shows, for degree 6 and degree 7, the number of bad, weak and failing

polynomials with different initial seeds (keys). Table 3.7 shows other computations for all

possible variations of keys, as for degrees 6, 7, 12 and 14.

https://www.codecogs.com/eqnedit.php?latex=UWS9%250
https://www.codecogs.com/eqnedit.php?latex=UWS10%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250

67

Table 3. 6 Finding weak polynomials with degrees 6 and 7 with different initial seed

(key)[128]

Degree

No. of bad

No. of

Failing

6 2 1 0 0 1

6 2 1 0 1 0

6 1 2 0 2 0

6 Total number of weak polynomials is 5 out of 6

7 2 1 0 0 1

7 1 1 1 1 0

7 2 2 1 0 1

7 5 1 1 0 0

7 1 3 1 0 2

7 Total number of weak polynomials is 11 out of 18

Table 3. 7 Finding weak polynomials with degree 6, 7, 12 and 14 with all initial seed

(key)

Degree

No. of Number of

Number of

Passing

Percentage of

Passing

6 6 216 186 86.10%

7 18 1152 1136 98.60%

12 144 294912 294236 99.80%

14 756 6193152 6186899 99.90%

3.11 Comparison between Shrinking Generator and Self-Shrinking

Generator results

Table 3.8 shows that for degree 7 for and the passing rate for is

approximately 98.6% and for it is about 67.3%, which shows that is weaker than

.

https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=g(x)%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%3D0.01%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%3D0.05%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%3D0.1%250
https://www.codecogs.com/eqnedit.php?latex=n%250
https://www.codecogs.com/eqnedit.php?latex=g(x)%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250

68

Table 3. 8 d-monomial with degrees 7 to 15 with full keystream string for Shrinking

Generator and Self-Shrinking Generator results for comparison

Degree

Number

of

Pairs

Number

of

Number of

Fails at

Total

Number of

Passes

Passing

Percentage

Passing

Percentage

7 24 768 251 505 67.310% 98.6%

8 72 4608 1561 2255 66.124%

9 72 9216 3121 4329 66.135%

10 216 55296 27847 27359 49.640%

11 624 319488 55203 198895 82.721%

12 648 663552 339627 206071 48.817% 99.8%

13 2520 5160960 2831437 2083684 45.137%

14 3840 15728640 7938000 6542587 49.531% 99.9%

15 3840 31457280 18213724 13183968 42.100%

3.12 Other d-monomial based tests and results

This section provides some ANF based tests which show some variations of the d-

monomial test. The monomial distribution calculates the frequency of each monomial with

a certain weight over a list of Boolean functions.

The -monomial test is looking for a monomial of certain degree () per polynomial. In

contrast, the monomial distribution test is looking for all monomials with degree across

all functions in [34], [121].

The maximal distribution test finds the maximal degree monomial per polynomial in

. Table 3.9 shows results for degrees 7, 8 and 9, with the number of observed maximal

monomials vs the number of functions (polynomials). This test is simple and indicates if

the key produces a proper mixing of monomials, which in turn can illustrate the strength

of a given pair.

https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=f_i%250
https://www.codecogs.com/eqnedit.php?latex=%5Calpha%3D0.01%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=d%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=ANF%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250

69

Table 3. 9 Shrinking Generator exhaustive testing results for maximal monomial

test for combined LFSR lengths 7 to 9

Observed with

Fixed

Observed with

Fixed

Number of

functions

0 12 32

0 14 32

0 14 32

0 16 32

0 66 128

0 66 128

0 70 128

0 80 128

3.13 Data distribution

Usually the sequences of data that are generated using or would be a discrete

array of data. Most of the data columns or variables follow a pattern, such as one of the

probability distributions: normal, log-normal, gamma, beta, Poisson, binomial, negative

binomial or hyper-geometric. Figure 3.12 compares some types of distributions. It is useful

to eliminate the type of distributions that do not apear to be good candidates, and reduce

them to the best few candidates. One of the most important population data distributions

is the normal or Gaussian distribution. If data follows this distribution, or could be

transformed to follow a normal distribution, then parametric statistical methods can be

used to further analyse the data as most of the parametric methods are based on the

assumption of normality of data [34], [107], [121]. One of the advantages of parametric

methods is that they are very strong and powerful compared to the non-parametric

methods.

The normal distribution provides a frequency distribution along a bell shaped curve. This

distribution has two parameters: mean and standard deviation. The importance of the

normal distribution is to study and analyse various statistical phenomena, and in particular

to find the probability of a specific event and its occurrence.

https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_B%250
https://www.codecogs.com/eqnedit.php?latex=LFSR_A%250
https://www.codecogs.com/eqnedit.php?latex=x%5E3%20%2B%20x%5E2%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E3%20%2B%20x%5E2%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E3%20%2B%20x%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E3%20%2B%20x%5E2%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E5%20%2B%20x%5E2%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E5%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E5%20%2B%20x%5E2%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E5%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=x%5E4%20%2B%20x%5E3%20%2B%201%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250

70

3.13.1 Statistical modelling: Predicting UWS

To predict or model any variable, the inherent probability distribution of that variable must

be known. A goodness of fit test is conducted on several or most of the probability

distributions that could relate to this kind of data, based on the plot or best guess. Easyfit

software [131] runs goodness-of-fit tests on most of the statistical probability distributions

and ranks the most suitable distributions in preferential order. Easyfit and the “fitdistrplus”

package in R software [131], [132] were used to manually check the preference criteria

using graphs and goodness-of-fit test results on the most expected probability distributions.

One of the data sequence variables, the Unique Window Size of degree 20 (UWS20), was

used to test the process of prediction modelling or forecasting. UWS20 was plotted and

found it to be skewed (Figure 3.12). Using the “descdist” command in R, a graph was

produced for data fit and the distribution of UWS20 approximately follows any one of the

log-normal, normal, gamma or Weibull distributions (Figure 3.13) which was also

supported by the Easyfit software. R was then used to approximate the probability

distribution by using goodness-of-fit tests and graphs (Figure 3.14). By comparing the

cumulative density functions of these distributions, it can be seen that the lognormal

distribution has better fit than other kinds of distributions.

Figure 3. 12 Unique Window Size 20 different kinds of distributions for Shrinking

Generator

71

Figure 3. 13 Comparison of cumulative density functions of observed and

theoretical distributions, Unique Window Size

Figure 3. 14 Unique Window Size 20 lognormal distribution for Shrinking

Generator

72

Figure 3.14 and the Easyfit software distributional preference showed that the distribution

of UWS20 approximately follows a lognormal distribution. More detailed statistical

observation showed the lognormal was the best probability distribution based on goodness

of fit (see the table in Appendix 3.5, as well as plots and figures for comparison of different

statistical distributions).

Definition 3.9: The distribution function of the lognormal distribution is:

 (3.11)

Where is the mean, and is the standard deviation(sd), is the variable and its

variance.

Using the Bartel rank test, Cox Stuart test, rank test and runs test showed that the sequence

of data () is actually a non-random sequence (p-value <0.001) as shown in Table

3.10.

Table 3. 10 Three randomness tests for Shrinking Generator with Unique Window

Size 20

Test Statistic P value Decision

(alternative hypothesis)

Bartels Ratio test -83.926 < 2.2e-16 non random

Cox Stuart test 8957 < 2.2e-16 non random

Runs test -66.186 < 2.2e-16 non random

This indicates that this sequence of data can be predicted using statistical models.

Two methods were used to learn about the pattern and predict the sequence: (1) generating

a theoretical lognormal sequence (simulated UWS20) from the mean and standard

deviation of the observed data (e.g., UWS20) of the same length and comparing the

accuracy of prediction, and (2) using a linear regression method to predict and check the

accuracy of the predicted sequence including validation and calibration.

https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BN%7D(%5Cln%20x%3B%5Cmu%2C%5Csigma)%3D%20%5Cfrac%7B%5Cexp%20%20%5B-%20%5Cfrac%7B(%5Cln%20x%20-%20%5Cmu)%5E2%7D%7B2%5Csigma%5E2%7D%5D%7D%7B%5Csigma%20%5Csqrt%7B2%5Cpi%7D%7D%251
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%250
https://www.codecogs.com/eqnedit.php?latex=x#0
https://www.codecogs.com/eqnedit.php?latex=ln%20%20x#0
https://www.codecogs.com/eqnedit.php?latex=UWS20%250

73

Method 1

Definition 3.10: The lognormal variate (X), and the standard normal variable is defined

as:

 (3.12)

which follows the probability density function:

Using R software, the mean () and standard deviation () of the observed were

3.70 and 0.09 respectively. Then, commands in R software were used to generate

equal numbers of observations (70,416) from the lognormal distribution using the above

mentioned mean and standard deviation in Figure 3.14. The difference between observed

 and simulated was calculated and the accuracy compared, with the

difference between the observed and simulated predicted being 0. The accuracy

was 7.8%. It would be higher if the accuracy is allowed to be flexible e.g., within 1 or 2

units of the observed . This was expected, as was found to be non-

random and hence a random sequence could not entirely predict the sequence.

Method 2

The linear regression model was used where the outcome was “observed ” and

explanatory variables were input degree, input weight, control degree, control weight,

input polynomials and control polynomials. Each of the input and control polynomial

variables had up to 17 degrees of polynomials and hence produced 17 separate variables

based on the possible terms in a primitive polynomial of degree 17. For with degree

20, the highest degree is 17 and the lowest is 3 for primitive polynomials

combination.

The first step in method 2 was to extract 34 variables from the input and control

polynomials and add them with four other independent variables (input degree, input

weight, control degree and control weight) to form a pool of independent variables. The

input and control polynomial variables extracted from mathematical formulas (which were

initially used to generate) are binary variables and are recorded in binary form,

either in “Yes” or “No” depending on whether that degree of polynomial was present in

https://www.codecogs.com/eqnedit.php?latex=z#0
https://www.codecogs.com/eqnedit.php?latex=X%3D%7Be%5E%7B%5Cmu%2B%5Csigma.z%7D%7D%250
https://www.codecogs.com/eqnedit.php?latex=%5Cmathcal%7BN%7D(%5Cln%20x%3B%5Cmu%2C%5Csigma)%3D%20%5Cfrac%7B%5Cexp%20%20%5B-%20%5Cfrac%7B(%5Cln%20x%20-%20%5Cmu)%5E2%7D%7B2%5Csigma%5E2%7D%5D%7D%7B%5Csigma%20%5Csqrt%7B2%5Cpi%7D%7D%251
https://www.codecogs.com/eqnedit.php?latex=%5Cmu%250
https://www.codecogs.com/eqnedit.php?latex=%5Csigma%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=rlnorm%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250

74

that equation or not. It is not unusual to include a mix of continuous, discrete and binary

variables among the independent or predictor variables as long as the outcome or

dependent variable is numerical (continuous or assumed as such) [107]. In the following

step, a simple linear regression model was run on each of these 38 variables to find

univariate significance, in order to find suitable candidates for the multivariable linear

regression model. It appears that, out of all the variables, input degree is the strongest

predictor, as it has the highest R square value and accuracy rate. Interestingly, it is highly

correlated with control degree and, as such, the two cannot be included in the same model.

This means that control degree and input degree as variables are correlated, or input degree

= (control degree), so only one of them is necessary.

To run a multivariable model with all the suitable predictors altogether, multicollinearity,

the correlation between the predictors or independent variables, was checked. One of the

assumptions of linear regression is that the independent variables are not correlated.

Although most of the variables were highly correlated, three of them were so highly

correlated (almost perfectly correlated with one or more of the independent variables) that

they could not be included in the same model due to multicollinearity. Hence, these three

variables were discarded: control degree, input14 and input17. Then the rest of the variables

were put in a backward elimination stepwise regression where all the variables are included

in the multivariable linear regression model and then variables that have p-values higher

than 0.05 are discarded. From the stepwise regression 11 variables were discarded (input2,

input3, input4, input5, input6, input7, input8, input9, input10, input15, input16) and the rest of

the 24 variables were kept in the multivariable model for predicting as they were

all significant. After putting all of the chosen variables in the final model, the prediction

model is:

=

https://www.codecogs.com/eqnedit.php?latex=f%250
https://www.codecogs.com/eqnedit.php?latex=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=Predicted%3Alog(UWS20)%250
https://www.codecogs.com/eqnedit.php?latex=3.9541011-Input_%7BDegree%7D*0.0121524%2BInput_%7BWeight%7D*0.0005625-Control_%7BWeight%7D*0.1042675-input_%7B1%7D*0.0023569%2Binput_%7B11%7D*0.0051394-input_%7B12%7D*0.0057957-input_%7B13%7D*0.0122590-input_%7B17%7D*0.0106996%2Bcontrol_%7B1%7D*0.1060109%2Bcontrol_%7B2%7D*0.1035639%2Bcontrol_%7B3%7D*0.1034507%2Bcontrol_%7B4%7D*0.1062923%2Bcontrol_%7B5%7D*0.1051447%2Bcontrol_%7B6%7D*0.1061192%2Bcontrol_%7B7%7D*0.1001495%2Bcontrol_%7B8%7D*0.1053034%2Bcontrol_%7B9%7D*0.1104407%2Bcontrol_%7B10%7D*0.1036258%2Bcontrol_%7B11%7D*0.1058865%2Bcontrol_%7B12%7D*0.0999843%2Bcontrol_%7B13%7D*0.0953821%2Bcontol_%7B14%7D*0.1055764%2Bcontrol_%7B15%7D*0.1042613%2Bcontrol_%7B16%7D*0.1049406%250

75

The R square of the above model is 0.2605 which is the prediction performance of the

linear regression model. It indicates that 26% of the variation in the predicted UWS20 can

be explained by the multivariable linear regression model. The prediction accuracy was

11.66% and it increased to 37.04%, 61.78% and 78.54% with 1 unit, 2 units and 3 units of

deviation from the observed UWS20 respectively. For example, if UWS=40 then within 1

unit prediction, , and 2 unit .. etc. Appendix 3.6

shows the most effective variables on the prediction based on value.

3.13.2 Sensitivity analysis

To run sensitivity analysis, three datasets were randomly produced containing almost 50%,

25% and 10% of the original dataset.

Running the model with 50% of the data

After running the model with 50% of the data (), the following model and

prediction performance of adjusted R square = 0.2587. The prediction accuracy was

11.85% and it increased to 37.25%, 62.12% and 78.62% with 1 unit, 2 units and 3 units of

deviation from the observed UWS20 respectively.

Running the model with 25% of the data

After running the model with 25% of the data, the following model and prediction

performance of adjusted R square = 0.2560. The prediction accuracy was 11.33% and it

increased to 47.23%, 60.74% and 77.15% with 1 unit, 2 units and 3 units of deviation from

the observed UWS20 respectively.

Running the model with 10% of the data

After running the model with 10% of the data, the following model and prediction

performance of adjusted R square = 0.2643. The prediction accuracy was 11.22% and it

increased to 36.81%, 62.12% and 79.03% with 1 unit, 2 units and 3 units of deviation from

the observed UWS20 respectively.

The sensitivity tests show that even a dataset reduced to 10% produces similar prediction

capability or accuracy as the full dataset. The model does not lose its prediction

performance due to loss of data, but the dataset still needs to be considerably large, more

than 1% of data, for a better performing model.

https://www.codecogs.com/eqnedit.php?latex=39%5Cleq%20UWS%20%5Cleq%2041%250
https://www.codecogs.com/eqnedit.php?latex=38%5Cleq%20UWS%20%5Cleq%2042%250
http://www.texrendr.com/?eqn=R%5E2%250
https://www.codecogs.com/eqnedit.php?latex=n%20%3D%2033800%250

76

As another sensitivity analysis, , and were modelled, with

similar prediction performance (adjusted R square) and accuracy.

Lastly, was modelled using around 50% of the data and the was

approximately 26.6% which means modelling can be done with less data and still achieve

similar accuracy, which will reduce the computation complexity.

3.14 Conclusion

This chapter introduces the importance of randomness and the potential to use the pseudo-

random number generator as a powerful tool to obtain a sequence of bits that look random

with good application for cryptographic usage. In addition, it discussed using as a

tool for a pseudo-random number generator and how the choice of primitive polynomial is

important to gain a good security level.

It discussed the shrinking generator and the self-shrinking generator as IV-less based

synchronous stream ciphers and explained how they also implement , including a

description of how they are designed and how they work.

Finally, it provided statistical test results for and and discussed the weaknesses

of both and . These tests are valid to implement in similar ciphers, which can

help improve the tests and also enhance the ciphers’ strength by finding their flaws to

overcome them at the design stage. In addition, the prediction for was modelled

using a multivariate linear regression model and will use a superior prediction method with

a higher prediction rate by implementing the neural network models in Chapter 4.

The following chapter presents a new prediction and randomness method based on the

proposed neural network models which had high accuracy for predicting the for the

binary sequences which represent the keystream for and .

https://www.codecogs.com/eqnedit.php?latex=UWS19%250
https://www.codecogs.com/eqnedit.php?latex=UWS18%250
http://www.texrendr.com/?eqn=UWS17%250
http://www.texrendr.com/?eqn=UWS20%250
https://www.codecogs.com/eqnedit.php?latex=R-square%250
https://www.codecogs.com/eqnedit.php?latex=LFSR%250
https://www.codecogs.com/eqnedit.php?latex=LFSRs%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=UWS%250
https://www.codecogs.com/eqnedit.php?latex=SG%250
https://www.codecogs.com/eqnedit.php?latex=SSG%250

77

Chapter 4: Proposed neural network-based prediction models

4.0 Chapter overview

This chapter provides discussion about proposed neural network prediction models as a

new tool for randomness tests, which were implemented using the shrinking generator and

self-shrinking generator. Section 4.1 gives a general introduction, with transition from

Chapter 3. Section 4.2 provides a brief introductory background on neural networks, and

section 4.3 discusses the related work on neural networks and security. Furthermore,

section 4.4 details neural network importance for the unique window size with neural

networks. Section 4.5 details the neural network prediction model implementation, while

section 4.6 provides mathematical background. Additionally, section 4.7 provides Python

usage for building prediction models, section 4.8 offers results analysis, and section 4.9

concludes the chapter.

4.1 Introduction

Neural networks are widely used in various fields and have applications in cryptography.

However, there is a lack of research regarding measuring randomness for a given binary

sequence. Because the binary sequence is the building block of any secure cryptosystem,

as mentioned in Chapter 3, the keystream generated by the shrinking generator (SG) and

self-shrinking generator (SSG) ciphers was used to calculate the unique window size

(UWS). UWS is important for ensuring the cipher has high nonlinear complexity by using,

for example, the Berlekamp–Massey algorithm [133], which works by finding the shortest

feedback shift register (FSR) that can generate the same sequence. Chapter 3 also discussed

how UWS is important for ensuring the cipher has high nonlinear complexity, which works

by finding the shortest FSR that can generate the same sequence, such as with the

Berlekamp–Massey algorithm, which is important for preventing simulations.

The neural network model proved its importance in measuring the effectiveness of the

cryptosystems used in this study, especially in the field of information protection and

confidentiality, where it was used as a predictive tool. It has also demonstrated its

superiority as a randomised test when compared to the tests presented in Chapter 3.

78

Although the multilinear regression model was introduced earlier in Chapter 3, it is worth

noting the importance of the knowledge it provides of the significance of independent

variables on the prediction, illustrating the weaknesses in the selection of the primitive

polynomials pair for the SG. However, its effectiveness with the prediction increases by

adding ±1 to the output prediction data and is even better with ±2. Hence, there is the need

to test the possibility of more accurately predicting the UWS by applying the neural

network model. Therefore, this chapter focuses on the following main questions:

1. How can neural networks be applied as a prediction method for the nonlinear

complexity of a binary pseudo-random sequence?

2. How can randomness tests be applied to find weaknesses in a given stream cipher?

3. How can this study contribute to real-world applications in terms of security?

4. How can this study inspire further new directions in research?

The neural network model is enforced to predict nonlinearity and pseudo-randomness

levels for given binary sequences. Being able to predict the maximum order complexity is

important for identifying if the sequence has a random appearance [114].

Using the calculation of UWS as the maximum order complexity tool, which was explained

in Chapter 3, can establish the measurement of pseudo-randomness for a given binary

sequence due to the following:

1. Use the UWS as a maximum order complexity measurement tool for the binary

sequences generated as keystreams by the SG and SSG.

2. Implement the neural network models to predict the UWS in order to evaluate the

keystream (binary sequences) strength, hence, providing a solid indication of the

strength of the ciphers generated by the SG and SSG as keystream(s). In addition,

this method could be generalised for other ciphers’ keystreams, as well as applied

to their internal components, such as linear feedback shift registers (LFSRs) and

nonlinear feedback shift registers (NFSRs), which can also produce a binary

sequence, and then calculate the UWS and implement the neural network model

for prediction. This may inspire other uses of neural network models in

cryptography and in security in general, such as communications security. This

would help cipher designers evaluate a cipher’s efficiency in producing a highly

pseudo-random keystream as well as provide users with the option of an optimal

encryption method [134]. This, in turn, enhances the evaluation methods for a given

binary sequence in general. The results are very promising, as they have both high

levels of accuracy and a very small error margin.

79

4.2 Background

The neural network model, in principle, simulates how the human brain works by learning

from collected information and data to deal with future incoming data. The neural network

model uses an algorithm to learn from input data in order to predict expected outputs in

the future [135]. The many applications of neural network models and varieties include

those used for climate forecasting [136]; stock market price prediction [137]; health care,

for forecasting diseases such as cancer [138]; image recognition [139]; pattern recognition

[140]; and for production in the music industry [141].

There are two main approaches for training an artificial neural network: supervised training

and unsupervised training. Through unsupervised training the network adapts its

parameters in order to form a structure representing the training data. On the other hand,

in supervised training, as in [135] the protection of information shown by the example of

selecting secret keys, the algorithm used in the neural network model is applied by entering

the given information, obtaining the output, and comparing the input and output data with

the expected data. The model is then developed to reach the nearest result so that the

prediction is highly accurate, with possible errors minimised, and the process continues

until the model is adapted [135].

The ability of the neural network to learn by processing incoming data and producing

predicted outcomes makes it attractive for applications in cryptography [142]. Because any

cryptosystem has different mixes of components such as the generation of secure

keystreams, protection of keys, and ensuring the security of communications, neural

networks can be considered for implementation on different levels of a given cryptosystem,

taking into consideration the particular cryptosystem’s design and special properties.

Recently, the importance of finding and calculating a UWS to measure the nonlinearity of

the keystream, as explained in Chapter 3, has become apparent. Through this, the extent of

the pseudo-randomness of binary sequences produced by the ciphers to be studied is

known, which in this case are SG and SSG. In addition, the predictability of UWS, as

mentioned in Chapter 3 and this chapter, allowed applying the neural network model as a

predictor of UWS, and good results with a high accuracy ratio were obtained, as shown in

Section 4.8.

80

This contributes to the study of binary sequences, which are essential for use in ciphers

and, in turn, that extends to security in general and also contributes to research being

conducted in these areas. Neural networks have great potential for predicting attacks on

encryption systems or devices. It is necessary to know the importance and quality of the

given data and then how to design neural network models that are able to learn and predict.

Other uses of neural networks beyond establishing and sharing keys include designing

symmetric ciphers [143].

4.3 Related work on neural network and security

In terms of public cryptography methods, available keys are typically created using the

Diffie–Hellman algorithm, developed in 1976 [144]. These keys can be used to create

discrete algorithms through unsafe connection channels in public networks, but this makes

it difficult for devices with limited capabilities to deal with them, especially with the choice

of many keys. This led to the study of the circulation of these keys through general

communication channels when using an interactive neural network model [145]. In

addition, there is investigation into the implementation of an interactive neural network to

produce secret keys on public channels by implementing the DES algorithm [146].

When implementing a neural network for public cryptography, two multi-layer neural

networks can be used, where one model provides the defined data, and the other one learns

from that data in order to establish a general classification pattern. The idea is to then make

the two models interact. Although communication can be recorded by an attacker, because

the encryption key was generated over public networks, it cannot be calculated [147]. The

advantage is that this makes communication faster than other asymmetric encryption

methods, but that does not guarantee there will not be a feasible algorithm facilitating an

attack.

One of the important applications in the field of cryptography using the neural network

model is the implementation of a random algorithm with a time variable for the production

of a binary sequence used to cover plaintext, which has the aim of protecting the

transmission of information through an unprotected network [148]. In a similar study, the

aim was to use a neural network model to design a symmetric cryptosystem using a neural

network model that has a matrix permutation process and classifying the data based on

their randomness properties, ultimately producing a new coding technique. This has been

81

tested and found to be an effective system by using the permutation process through the

matrix as a secret key [149].

With neural network protection systems, machine learning helped by engineering

(designing specific hardware to facilitate the algorithm learning) may produce

cryptographic systems that provide higher data flows, while ensuring protection by

communicating with the cloud server. This is particularly critical for protecting sensitive

economic or medical data, as examples of cloud server needs [150].

It is possible to design an asynchronous network model that works on two devices, where

the first random weight can be used as the secret encryption key. The weight is updated

only if the values of the output devices are identical. The results of a study examining this

idea showed its effectiveness when using a large common key size [151], where

researchers implemented a recurrent neural network, and the cipher worked in two stages,

where the first stage was extending the key, and the second stage was the encryption

process.

In searching for a study to facilitate the template for the web model, a classification

algorithm was adopted to provide a larger framework for learning data and obtain a

generalised model through testing datasets. This, in turn, is reflected through a learning

phase with access to accurate classification, avoiding overfeeding of the classification.

This has been applied to online combat phishing, and better results were obtained than with

other methods, such as average harmonicity [152], providing more proof of the superior

effectiveness of using neural network models for assessment and testing.

Implementing neural network models for prediction of the UWS means it is another

measurement tool for binary sequence randomness testing and will, therefore, evaluate the

level of cryptosystem using these binary sequences. In order to guarantee a good binary

sequence is generated by a pseudo-random number generator, in this case SG and SSG, it

must be hard to distinguish the sequence from a truly random sequence and hard to predict,

while using limited computational resources. Therefore, the neural network was used to

predict the pseudo-randomness of the sequence and ensure it will be indistinguishable from

a truly random sequence [16]. Conversely, a cipher using a pseudo-random number

generator to generate a pseudo-random binary sequence, requires that the sequence be

82

evaluated to make sure the cipher is secure, using a truly random number generator, which

requires physical resources, making it an impractical and costly method [153].

Predicting the pseudo-randomness of binary sequences and finding approximations of its

complexity are important for determining if an FSR can produce the sequence or its

subsequences [114]. The lower predictability of the UWS increases the complexity of these

binary sequences as well as their pseudo-randomness, and thus it will be more resistant to

attacks. It will also require a substantially more complex attack because the UWS requires

that the sequence be nonlinear to ensure its effectiveness [154]. Also, a stronger UWS for

the binary sequence is essential for ciphers that use NFSRs, which have become more

common, so deep research into these kinds of encryption systems has become more

attractive to developers [155]. Also important is the nonlinear complexity profiles, which

can be determined by looking at the complexity of the subsequences of a given binary

sequence.

Given the NN model’s efficiency in generating results with high rates of accuracy [156],

it will be important to further investigate the performance of the neural network model.

Examining neural network models to establish a high correlation measurement tool for the

automatic sequence is also worth investigating [157]. In addition, the predictions from the

UWS can be added to the most recently introduced methods to gain more insight into the

pseudo-random behaviour of binary sequences [158].

4.4 The importance of the neural networks for the UWS

As already noted, UWS is a tool for measuring the strength and randomness of a given

sequence to learn how to use the SG as a source for the binary sequence that is used to

calculate the UWS. However, other ciphers can also be used as a source for the UWS.

The possible choice for the two LFSRs of the SG and the one LFSR for the SSG is

important; hence, neural network models are useful predicting tools for learning how the

UWS is predictable, meaning that the choice of an LFSR can be avoided. Because the

UWS is predictable, it can easily be simulated, which leaves it vulnerable to certain kinds

of attacks, such as correlation attacks [124] and divide and conquer attacks [159].

The pseudo-random binary sequences are also important because, in this case, this

sequence is the keystream, and this sequence is calculated by finding the UWS. Using the

83

neural network models for UWS prediction shows how neural networks are a strong

cryptanalysis tool. This could be considered a black-box analysis approach. Typically, the

keystream generated from the cipher’s LFSRs is needed. However, this could be handled

by simulating the LFSR output and then applying the neural network model for predictions

in order to determine generalisations about the cipher’s internal components that could

lead to similar kinds of attacks as discussed above.

4.5 Implementation

This section introduces the proposed neural network models that were implemented for the

UWS for the different degrees that resulted from the SG and SSG keystream.

4.5.1 Model specifications

Assume there is a neural network model with four independent variables (input) and one

dependent variable (output). A sequential model is implemented with four layers used only

for data input, and no computations will be performed in these layers. There are also four

hidden layers using a rectified linear unit (ReLU) [159], [160] activation function. A

sequential function is used to give the model the ability to learn layer-by-layer. For the first

layer, it needs to know the shape of the data, and the other layers will recognise it

automatically. The first hidden layer has 50 nodes, the second hidden layer has 20 nodes,

the third hidden layer has 10 nodes, and the fourth hidden layer has five nodes. There is

also an output layer with one node to make the shape of the desired output (the UWS) and

also to classify the predicted datasets. The learning rate = 0.0001; the optimiser used is

AdaGrad [161], an algorithm for gradient-based optimisation; and the batch size is 8.

4.5.2 Terminology

1. Batch size: It is difficult to feed in the entire sample at once, so it is divided into

smaller parts called batches. The size of the batches is determined based upon the

ability of the model to learn well.

2. Iterations: The number of batches required for one epoch.

3. Epoch: The complete dataset going through the neural network forward and

backward one time.

84

4. Gradient descent: An iterative optimised algorithm to find the best fit for the model

by processing the results multiple times until it determines the most possible

optimal results.

5. Learning rate: The step size the gradient descent needs to perform to gain the

optimal results.

4.5.3 Variables

For the SG, the independent variables are input degree, input weight, control degree, and

control weight, and the dependent variable is the UWS. For the SSG, the independent

variables are the two LFSR degrees and weights.

The backend used Keras [162] with TensorFlow [163], which are Python (version 3) [164]

packages for data analysis. In order to use the neural network model, the UWS calculations

was conducted with EC2, provided by Amazon Web Services [165]. The characteristics of

the server components were based on the number of CPUs and the memory used with

Linux-based instances. Ubuntu 16.04 was used to issue mathematical commands and

Filezilla to investigate communication between a PC and the instance of EC2 [166] on the

server. The operations were completed for different grades of UWS, and then the previous

model was calculated to get the prediction for UWS.

4.6 Mathematical background

As the neural network has the neuron as the main data processing unit, it has a particular

task of checking how data obeys a given condition:

 𝑌 = ∑(𝑊𝑖 ∗ 𝑋𝑖) + 𝑏𝑖 (4.1)

where 𝑋𝑖 is the input data to be checked by the neuron for correctness and is then converted

to single input 𝑌, and every input X is combined with weight 𝑊𝑖 (the weight depends on

how the 𝑋𝑖 is important or how much influence it has on the model) to be fed to another

neuron in the following layer with the associated weight. But to make it work, the

activation function must decide if the neuron will activate or not. Here, ReLU was used as

an activation function. An example of neuron work is illustrated in Figure 4.1, which is an

example with two independent variables (inputs) of 𝑋1 and 𝑋2, and the dependent variable

(output) 𝑌, where W1 and W2 are the weights of the independent variables. The equation

will be 𝑌 = 𝑓(𝑋1 ∗ 𝑊1 + 𝑋2 ∗ 𝑊2 + 𝑏), and b is the bias vector.

85

Figure 4. 1 The output of the neuron

4.6.1 Mean square error (MSE)

Mean square error (MSE) is a statistical tool used to evaluate the performance of an

estimator. The lower the value of MSE, or the nearer to zero, the more accurate the model

is considered to be. The MSE values can be used to compare two or more models.

If 𝑋�̂� is the value of the given data prediction, where 𝑋𝑖 is the actual value:

 𝑀𝑆𝐸 =
1

𝑛
∑ (𝑋𝑖 − 𝑋�̂�)
𝑛
𝑖=1 (4.2)

where n is the number of data inputs for the UWS simulated data.

The lower the MSE, the lower the difference between the predicted value and the actual

value, and then the weight Wi are updated until the possible minimum MSE.

4.6.2 Rectified linear unit (ReLU) activation function

The ReLU [160] is a nonlinear activation function used in numerous models because it can

be implemented widely in a deep learning network. As the formula suggests, the negative

value is set to zero. While ReLU can be used for datasets that have both negative and

positive values, the discrete datasets here have only positive values, which makes this

activation function even more effective.

 R(x)= max(x,0) (4.3)

And based on equation (4.1),

 𝑅(𝑥𝑖) = 𝑥 𝑖𝑓 𝑥𝑖 × 𝑤𝑖 + 𝑏 > 𝑑 (4.4), and d is a predefined value.

When the neuron reaches it, the activation function R(xi) will be decided and R(xi) = x.

Otherwise, if (4.4) is not satisfied, then R(xi)=0. The ReLU helps the model to transfer

faster, and it is computationally uncomplicated, so it helps reduce costs. Figure 4.2 shows

the ReLU graph.

86

Figure 4. 2 ReLU activation function graph

4.6.3 Mathematical representation for the neural network models

For the input value for SG and the independent variables, and it is a

matrix of size 𝑁𝑥∗𝑟, with N being the number of training examples and r being the number

of features. In this case, this would be four features. Let 𝑀𝑛∗𝑚 be a matrix with n rows

and columns. Therefore, the matrix 𝑋𝑖 would be 𝑋𝑁∗𝑟 .𝑊𝑖 with the weight matrices such

that each row x and each column y denotes the connection of the previous layer’s neuron

X to the next layer’s neuron y. Additionally, bi is the bias vectors that span the total number

of rows of Wi, and there are five layers, so i=1 to 5. Also, let us introduce the broadcasting

operation, or the basis vector bi, such that it duplicates the vector for as many columns as

there are in Wi, which is denoted as [b1]*. This allows us to add the bias vector for every

example’s transformed output at each layer. Also let hi represent the raw output after each

layer and let R(.) represent the nonlinear activation function applied after the output of

each layer. In this case, this is represented as the ReLU activation function. Applying the

activation function to the raw output produces yi, which gets sent to the next hidden layer.

The above operations are chained for each hidden layer until the final output layer.

Therefore:

http://www.texrendr.com/?eqn=%7BX_1%2CX_2%2CX_3%2CX_4%7D%250

87

Layer 1: Dense (100 neurons)

h1= W1 * Xi +[b1]* , Mn*m for W1= M100*4 , X = M4*1, b1=M100*1

Then:

 y1=R(h1)

Layer 2: Dense (50 neurons)

h2= W2 * y1+[b2]*, W2= M50*100, y1= M100*1, b2=M50*1

Then:

 y2=R(h2)

Layer 3: Dense (20 neurons)

h3= W3 * y2+[b3]* , W3= M20*50 , y2= M50*1, b3=M20*1

Then:

 y3=R(h3)

Layer 4: Dense (10 neurons)

h4= W4 * y3+[b4]*, W4= M10*20 , y3= M20*1, b4=M10*1

Then:

 y4=R(h4)

Layer 5: Dense (1 neurons) ➞ Output layer

h5= W5 * y4+[b5]* W5= M1*10 , y4= M10*1, b5=M1*1

y5=R(h5) = predicted UWS

In general, to change the feature space of the input layer, the columns are simply

subsampled to extract the relevant features, and the number of input neurons into the neural

network changed.

Let us define a subset of indices 𝐼 = {𝑖1, 𝑖2, . . . 𝑖𝑝} representing unique columns of the

input matrix X to be extracted. To extract the index at position j, this is denoted as I(j).

Define this new input matrix as X', and further introduce the notation of extracting out all

the rows for a single column as X(:, i), where i is the column of interest in matrix X to be

extracted.

88

Therefore, the new matrix X' is formed such that X'(:, j) = X(:, (Ij)), for j=1,2,…p. The

neural network can be retrained using this feature subset stored in X', ensuring that the

number of input neurons is the same size as the number of features in this new matrix X'.

The notation for propagating information forward into the network remains the same,

conditionally dependent on the number of features represented in the input neuron

changing to accommodate the reduced feature set.

Explicitly:

Layer 1: Dense (100 neurons)

h1 = W1 * Xi+[b1]* , Mn*m for W1= M100*|I| , Xi = M|I|*1, b1=M100*1

Then:

y1 = R(h1)

|I| is the cardinality of the set of indices I. For example, this could be 2, which represents

two indices and thus two features (as in SSG). The rest of the notation for the other layers

remains the same.

4.7 Python for model building

The Python language has a diverse open source community. The following libraries in the

code, available for free, are used:

• Pandas: This library helps read a dataset and do basic data manipulation.

• Scikit-learn: This library helps split and scale the dataset to meet the requirements.

• Keras: This library helps train the dataset on the neural network architecture.

Figure 4.3 is an example of NumPy (the Python library supports multi-dimensional arrays

and matrix manipulations) and Keras implementation using the formatted data and with

the neural network architecture as proposed.

Figure 4.3 section 1 examines the desired value for prediction in the dataset and determines

the smallest and largest values. This helps undo the preprocessing performed on the data

to scale the data so that each feature has a range of [0, 1]. Figure 4.3 section 2 uses Scikit-

learn to transform the data so that each feature is scaled to the [0, 1] range. The desired

value for each sample in the dataset is also extracted as it is embedded with the data and is

in the last column. It pulls out the column with the desired value as a separate variable and

deletes the last column in the original dataset for compatibility with Scikit-learn and Keras.

Figure 4.3 section 3 thus defines the neural network model in the same order of

presentation for each of the layers as explained above. It defines 100, 50, 20 and 10 neurons

89

and 1 neuron in the same order, with each activation function being the ReLU function.

The model is configured for training such that the loss is the MSE, and the AdaGrad

optimiser is the parameter optimisation rule used [167]. The model is then trained using

the training data and expected output values, and the network used to test accuracy on a

validation dataset. Finally, Figure 4.3 section 4 uses the predicted values, unscales them to

their original ranges for each feature, and calculates the average deviation for the predicted

and true values in the validation dataset. Figure 4.3 section 5 measures the feature

importance in the dataset. Specifically, if the columns are reshuffled and retrained on the

same data, this will determine how sensitive each feature is to the learning and shows how

much the output is influenced. Specifically, one pair of columns is changed while the other

columns remain fixed. Features that have very little sensitivity can be safely removed from

the dataset without any loss of generalisation. Features that have a greater sensitivity are

quite important and contribute to the overall accuracy of the model.

90

Section 1
rangetop = dataset['MinW'].max() #getting the max value of y
rangebot = dataset['MinW'].min() #getting the min value of x
rangel = rangetop - rangebot #getting the range of values in y

Section 2
scaler = MinMaxScaler() #defining a scaler object
X = scaler.fit_transform(dataset) #creating a dataset with all the values with min max normalization
y = X[:,4]
#y = dataset.iloc[:,4].values #extracting the output variable from the dataset
X = np.delete(X,4,1) #extracting the input variables from the dataset

Section 3
model = Sequential() #defining the model as sequence model -- it is used so that we can define model layer by layer
model.add(Dense(100, input_dim=4, kernel_initializer='normal', activation='relu')) #defining the len of input

dimensions, ouput neurons for hidden layer as 100, activation function as relu
model.add(Dense(50, kernel_initializer='normal', activation='relu')) # defining the hidden layer 2 with 50 nodes
model.add(Dense(20, kernel_initializer='normal', activation='relu')) # defining the hidden layer 3 with 10 nodes
model.add(Dense(10, kernel_initializer='normal', activation='relu')) # defining the hidden layer 4 with 5 nodes
model.add(Dense(1, kernel_initializer='normal', activation = 'relu')) #defining the ouput layer as 1 node
adagrad = optimizers.Adagrad(lr=0.001, epsilon=0.0001, decay=0.0)
model.compile(loss='mean_squared_error', optimizer= 'adagrad', metrics = ['mse']) #defining the loss function as mean

squared error and the learning rate optimisation technique as adam optimiser
model.fit(X_train, y_train, epochs=5, batch_size=8, callbacks=[stop_here_please], validation_data = [X_test,

y_test]) #fitting the data to train the model

Section 4
y_pred = model.predict(X_test) #getting the prediction for the test data
y_predscaled = [int(i*rangel + rangebot) for i in y_pred] #unscaling the predictions
y_testscaled = [float(i*rangel + rangebot) for i in y_test] #unscaling the test
dev = []
for i in range(len(y_pred)):
 dev.append(abs((y_predscaled[i] - y_testscaled[i]))/y_testscaled[i])
 #dev.append(abs((y_predscaled[i] - y_testscaled[i]))/y_testscaled[i])
1 - sum(dev)/len(dev) #getting the accuracy number
#Average deviation from the actual to the predicted is 5.6% on average (across the test dataset)

Section 5
perm = PermutationImportance(model, random_state=1, scoring = "neg_mean_squared_error").fit(X_test, y_test)
eli5.show_weights(perm, feature_names = dataset.columns.tolist()[:4])
Figure 4. 3 Python code using Keras for the neural network model for SG (for SSG,

the input in Section 2 is changed to two inputs)

Table 4.1 shows the model structure for SG taken from Python code, as well as some

sample inputs for an SG cipher that were fed into the models in order to predict UWS24,

which is shown in Table 4.3.

91

Table 4. 1 Shrinking Generator unique window size 24 model summary

Layer (Type) Output Shape Parameter #

dense_1 (Dense) (None, 100) 500

dense_2 (Dense) (None, 50) 5050

dense_3 (Dense) (None, 20) 1020

dense_4 (Dense) (None, 10) 210

dense_5 (Dense) (None, 1) 11

 Total parameters: 6,791

 Trainable parameters: 6,791

 Non-trainable parameters: 0

4.8 Results analysis

This section reviews the results obtained for the predictions and the results for the SG and

SSG ciphers.

4.8.1 Shrinking generator (SG) results

The SG results were obtained by implementing neural network models for UWS (20, 21,

23 and 24), as shown in Table 4.2, and with a sample of 10 inputs for UWS24 for SG, as

shown in Table 4.3 for illustration.

Table 4. 2 Shrinking generator model results for the new neural network models,

including results for degrees 20, 21, 23 and 24

UWS20

Model

UWS21

Model

UWS23

Model

UWS24

Model

Number of layers 3 4 4 4

Number of nodes (10, 5, 2) (50, 20, 10, 5) (50, 20, 10, 5) (50, 20, 10, 5)

Learning rate 0.0001 0.001 0.0001 0.0001

MSE 0.0088 0.0138 0.0033 0.0019

Training set 56,333 196,502 713,395 770,997

Validation sample 14,084 49,126 178,349 192,750

Total parameters 6,791 6,791 6,791 6,791

Prediction percentage 96.01 94.07 95.39 95.42

Table 4.2 shows how accurate the predictions are, with accuracy around 95% and with

error margin MSE <0.008 and MSE = 0.0019. UWS24 has the largest dataset, and hence,

the model is better able to learn.

92

Table 4. 3 Unique window size 24 chosen 10 input samples for the shrinking

generator

Input degree Input weight Control degree Control weight UWS

2

7

8

9

10

11

5

4

3

6

3

5

5

5

5

7

3

3

3

5

22

17

16

15

14

13

19

20

21

18

3

11

11

9

9

5

11

11

13

9

96

51

28

43

43

56

52

43

47

39

4.8.2 Self-shrinking generator (SSG) results

The SSG results for neural network models degrees UWS21 to UWS25, and one neural

network model for UWS from degree 4 to 20, all in one dataset, are shown in Table 4.4.

The independent variables used to predict the 10 input UWS25 samples for SSG are shown

in Table 4.5.

Table 4. 4 Neural network model for a self-shrinking generator, with different

unique window size degrees

UWS

model for

degrees 4 to

20

UWS21

model

UWS22

model

UWS23

model

UWS24

model

UWS25

model

Layers 4 4 4 4 4 4

Nodes 100, 50, 20,

10

100, 50,

20, 10

100, 50,

20, 10

100, 50,

20, 10

100, 50,

20, 10

100, 50,

20, 10

Learning

rate
0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

MSE 0.0012 0.0014 0.016 0.0046 0.0098 0.0052

Training set 58232 67737 96025 285568 221184 1036800

Total

parameters
6591 6591 6591 6591 6591 6591

Validate

sample
14558 16935 24007 71392 55296 259200

Prediction

percentage
96.05 96.66 89.61 90.14 97.01 97.14

93

Table 4. 5 Unique window size 25 for the chosen self-shrinking generator (SSG)

input sample

Polynomial weight UWS

3

5

5

3

5

5

9

5

7

5

51

51

47

47

45

46

51

50

46

46

The data for UWS21 to UWS25 was modelled in one model each and, for comparison, all

data from UWS4 to UWS20 was included in one model to study the behaviour of the model

when the data is merged into one dataset.

4.8.3 Comparison of the shrinking generator (SG) and self-shrinking generator

(SSG) results

Although SG is weaker than SSG, as found in Chapter 3, the UWS could be predicted by

implementing the neural network models for both ciphers with close accuracy, which is

more evidence of the strength and effectiveness of neural networks as a predictor and

measurement of the actual ciphers.

4.8.4 Influences of model features

The influence of the independent variables on the other variables for UWS24 (SG cipher)

is shown in Table 4.6.

Table 4. 6 The importance of independent variables for the neural network model

using unique window size 24 for the self-shrinking generator

Feature Influence of feature

Input_Weight 0.0062 ± 0.0004

Input_Degree 0.0088 ± 0.0005

Control_Degree 0.0171 ± 0.0001

Control_Weight 0.0000 ± 0.0000

94

The analysis strongly supports that control_degree is the most important feature in

deciding the value of the dependent variable (the influence value is highest at 0.0171),

followed by input_degree, input_weight and control_weight. Thus, any changes to control

degree data (randomly reordering the data) will have the most impact on the final output

of UWS prediction, producing the worst prediction. Conversely, doing the same with any

other independent variable, the prediction will suffer less.

4.8.5 Comparison of the neural network models and linear regression results in

Chapter 3

Comparing the results of the predictions based on the neural network models demonstrates

the neural network model’s superiority to the multilinear regression model in Chapter 3.

In a general sense, the neural network can be used as a measurement tool for binary

sequence randomness, which can help in two main research directions. First, the same

models can be used with some modifications in similar ciphers. Second, this can further

enhance neural network modelling for testing the appearance of cipher randomness with

different methods other than testing of the keystream, as in this research.

As previously shown in Chapter 3, the maximum order complexity is an important tool for

investigating pseudo-randomness behaviour. UWS can determine the minimum window

size, which guarantees that every subsequence is unique. Thus, the research evaluated how

the cipher generated this sequence is strong and has statistical properties that are necessary

for cipher pseudo-randomness, which will help to evaluate the attack complexity required

to simulate the sequence. A further step the research can take after calculating the UWS

for different degrees is to predict it, which will reflect the ability to predict the cipher

pseudo-randomness property.

The neural network model showed its effectiveness as a tool for predicting UWS. This has

an important role for investigating the effectiveness of the random binary sequences

resulting from an encryption system. Neural network models can add another randomness

testing tool to help establish how strong a cipher is and whether it is sufficient to use, as

done here for the SG and SSG ciphers, by using the keystream as a binary sequence. Hence,

the models can be adapted for different ciphers, which is another advancement in

cryptanalysis methods, as well as in security in general. The use of neural network models

designed and applied to SG and SSG ciphers opens the way for their application, with some

modifications, to test other ciphers.

95

Comparing the multilinear regression model in Chapter 3 with the neural network model

in this chapter revealed that the neural network model was better than multilinear

regression, which confirms its importance in the field of cryptography and security in

general. The use of neural network models as a randomness measurement tool and for

investigating and developing generalised models for a standard test of different

cryptosystems is also worth studying.

4.9 Conclusion

The calculation of UWS, which is a form of maximum order complexity, shows the level

of pseudo-randomness of a given binary sequence, as done in this chapter with the SG and

SSG cipher keystreams as pseudo-random binary sequences. Hence, it can be a strong

indicator of the level of cipher security and resistance against attacks.

By using the neural network model to predict the UWS, this chapter showed how the

pseudo-randomness of a given cipher can be predicted well with the neural network model,

revealing it as a new measurement tool for cipher security. As well, the neural network

prediction models were far more effective in prediction than the multilinear regression

models in Chapter 3.

There are several future research directions. Firstly, using UWS and neural networks for

the internal cipher components of, for example, SG with two LFSRs each, can generate a

binary sequence by calculating the UWS and applying a neural network as a predictor to

investigate the internal ciphers’ strength, which enhances the entire structure of cipher

security. Secondly, using this method in other ciphers, with some modification of models,

which depends on the targeted ciphers’ internal structure, will expand applications.

Thirdly, converting the image data into a binary sequence and then applying the neural

network model to predict the outcome will help in fields such as facial recognition, which

is an active research area with many applications.

The following chapter demonstrates the implementation of the MICKEY 2.0 cipher in

mobile cloud computing. SG and SSG and the MICKEY 2.0 cipher are all lightweight

synchronous stream ciphers suitable for small hardware devices such as RFID tags and

microprocessors. The differences include their structures, where SG and SSG are IV-less

96

stream ciphers, and MICKEY 2.0 is an IV-based stream cipher. MICKEY 2.0 is more

secure than SG and SSG, and the existing body of literature reports a number of attacks on

SG and SSG. For MICKEY 2.0, the main attack is a differential fault attack [168]. In

addition, SG and SSG show weakness based on the statistical analysis and the results in

Chapter 3 and this chapter, but there have been no successful statistical attacks with any

complexity against MICKEY 2.0, as shown in the next chapter.

97

Chapter 5: Proposed lighter and faster MICKEY 2.0 reduced

variant for low cost implementations

5.0 Chapter overview

This chapter is devoted to the thesis proposed lightweight secure protocol. Section 5.1

offers a general introduction for lightweight encryption methods, with security challenges,

Section 5.2 provides optimisation methodology, Section 5.3 provides the randomness test

designed by the US National Institute of Standards and Technology (NIST), Section 5.4

provides the power consumption estimator, Section 5.5 provides the MICKEY cipher

family design principles, Section 5.6 provides the reduction process, Section 5.7 provides

the NIST tests results, Section 5.8 provides the proposed cipher performance test, Section

5.9 provides the power consumption testing, Section 5.10 presents the cryptanalysis for the

proposed cipher, Section 5.11 discusses the results and analysis, and Section 5.12

concludes the chapter.

5.1 Introduction

Transferring information over different networks, especially insecure networks, using

mobile devices and RFID technology must overcome security issues to maintain data

security Not all encryption methods are suitable in these situations as some methods

require high computation power, storage and power consumption. Lightweight encryption

methods must be implemented, where lightweight means smaller size and power use. A

greater range of lighter encryption methods are needed for even smaller devices such as

tiny microcontrollers like those with 16 bit and smaller devices with less computational

capability which also need to consume less power. With advances in IoT technology and

networking, there is a pressing need for lighter secure encryption to be used in the devices

used in such technologies such as the small 16-bit Raspberry Pi.

To design secure and lighter ciphers based on secure existing ciphers, MICKEY 2.0 is

chosen as a base as it has more resistance to attacks, and performance and high throughput.

This chapter proposes a lighter MICKEY 2.0 based version, named MICKEY 2.0.85, based

on the internal registers length, to meet the need for less power consumption, and fewer

98

gate equivalents (GEs) to be more suitable for smaller devices and reduce the overall cost

as the chip size will be small and cheap.

The challenge is how to develop lighter ciphers while maintaining a high level of security.

The efficiency and security of a new cipher are evaluated by using randomness tests to test

security and methods to test the speed of keystream generation and power consumption

and then comparing results to existing ciphers.

The pseudo-randomness of the binary sequences, which is the keystream generated by the

cipher, is an important part of cipher security. In study[169] provides an important insight

linking the authentication and encryption with IoT device communications by

implementing an artificial intelligence approach to ease authentication management. In

another study[170] provides further insight about the security challenges on small devices

and in IoT with communications networks including cloud computing.

Lightweight stream ciphers have been an active research area for the last 20 years, due to

the increasing usage of network communications which use some small hardware within

their main components [171].

The number of gate equivalents (GEs) is important in hardware structure, influencing both

performance and power consumption. Smaller devices have fewer GEs. Therefore,

designing new ciphers or even optimising or modifying existing ciphers to be adaptable

for such devices is challenging. In designing encryption methods for small devices,

designers must consider the possible required number of GEs [172].

Optimising the popular AES cipher for use in IoT technology has been a focus in recent

literature. For example, [173] introduced a 32-bit AES for implementation in small devices

by tweaking the S-box structure to reduce the original required size of the device hardware

by 20%. Another cipher “PRESENT” [174], which is a block cipher targeted at IoT

technology and sensor networks which requires fewer GEs, aims to introduce an alternative

to AES and Data Encryption Standard (DES), however, some cryptanalysis and recent

attacks based on linear attacks, as shown in [175], were able to establish an attack on

PRESENT in round 28 with key = 80-bit and key = 128-bit. In study [176] which provides

an overview of the recent investigation of lightweight cryptographic methods.

99

The chapter makes several contributions. First, it proposes a lighter version of the

MICKEY 2.0 cipher and tests it for pseudo-randomness. Second, it shows how the

algorithm was altered for new MICKEY 2.0.85, with fewer GEs. Third, it shows by tests

how MICKEY 2.0.85 is faster and consumes less power than MICKEY 2.0, with a passing

rate which is quite high and slightly better than MICKEY 2.0. Fourth, by applying

cryptanalysis methods it shows that the MICKEY 2.0.85 cipher is resistant to attacks.

Methods for reducing power and time can inspire more research in security applications.

This lightweight stream cipher with enhancements will be more efficient for use in IoT

technology, including RFID and near field communication.

This chapter presents and evaluates the novel proposed and lighter secure version of

MICKEY 2.0, named MICKEY 2.0.85 based on the internal registers’ length. MICKEY

2.0 is a lightweight synchronous stream cipher with good throughput, fast encryption and

suitable for hardware security, and the design and overall concept are presented in this

chapter.

5.2 The proposed cipher and the design optimisation methodology

In order to find an optimal lightweight encryption system, this study follows the best

scientific methodology to ensure the validity of the study framework. Several experiments

are required to select the best MICKEY 2.0 interior possible modifications. Randomness

tests were performed to confirm the validity of the proposed variant and the level of

confidentiality that it can provide was also analysed.

Study hypothesis

The initial hypothesis which proposed an optimised version of MICKEY 2.0 which is

lighter and faster and still has randomness property is achievable. The reduction is in the

two internal shift register sizes. To achieve the optimised version, the research questions

are:

1. How can MICKEY 2.0 ciphers be optimised, and how can lighter versions be proposed

to avoid shortcomings in implementation in small devices?

2. How can cryptanalysis be tested to provide sufficient confidence in the proposed novel

MICKEY 2.0 reduced variant cipher to ensure validity for use?

100

This study used the following methodology.

1. The number of bits were reduced by 15 bits for both MICKEY 2.0 registers, so the new

internal state was reduced from 200 bits (100 bits for each register) to 170 bits. The reason

and the process are explained in the algorithm in Section 5.6.

2. A suite of randomness tests suite designed by the US National Institute of Standards and

Technology (NIST) was implemented to evaluate the required statistical properties of the

reduced version. The passing rate was calculated to compare the new version with

MICKEY 2.0 and MICKEY 1.0.

3. Power consumption was estimated by using Xilinx Power Estimator (XPE) [177] to see

how MICKEY 2.0.85 can consume less power. MICKEY 2.0.85 was compared to

MICKEY 2.0 and another reduced variant of other ciphers such as the Trivium cipher

(Micro-Trivium).

4. C code was used to test the encryption speed for MICKEY 2.0.85, compared to

MICKEY 2.0.

5. Randomness, power consumption and encryption speed for MICKEY 2.0.85 were

compared to the original MICKEY 2.0, to evaluate the overall performance and security

of MICKEY 2.0.85. The proposed version should be lighter, faster, require fewer GEs and

consume less power, and pass the randomness tests.

6. Levenshtein Distance and Cosine similarity attacks were used to show how MICKEY

2.0.85 is resistant against statistical attacks.

5.3 NIST randomness test

The NIST suite of 15 different randomness tests [27] is carefully designed to catch any

biases in the sequences that need to be tested. These tests are still trusted for randomness

testing as NIST determined the standard requirements for encryption methods, which are

sufficient for security evaluation based on passing the randomness tests [178].

NIST tests provide a standard test customised for lightweight cryptography methods

including authentication, hash functions, ciphers and data management, as well as the

hardware implementation guidance [179]. Cipher designers need to take into consideration

the pseudo-randomness of the keystream, which needs to satisfy the statistical properties

to ensure the cipher is a pseudo-random number generator. The NIST test suite plays an

important role [178], because if a cipher passes these tests it means the cipher has met the

101

requirements to be valid for use. For instance, [180] test a chaotic system based cipher

which consists of two NFSRs, by implementing NIST tests to measure the validity of their

cipher which targeted small devices.

Another study [181] implemented multiple pseudo-random number generator sources, by

taking their keystream and altering them to be suitable for IoT small devices, and their

NIST test results provided a good success rate. NIST randomness tests help improve IoT

technology, as the tests can evaluate security, based on the encryption methods. [182] used

NIST tests to analyse the pseudo-randomness of some chosen algorithms, to evaluate their

performance based on encryption speed, and to measure the performance using different

microcontrollers.

5.4 Power consumption

With increasing growth in small devices such as mobile phones, as well as increasing

dependency on wireless communications which rely on small microcontrollers and RFID

technology, security remains a massive challenge. Lightweight encryptions that consume

less power which are adequate for such constrained technology and proposed lightweight

ciphers are needed to satisfy the power consumption limitations. Therefore, it is important

to use a power estimator to measure cipher usage. This study used Xilinx Power Estimator

(XPE) [177] which is a useful tool to estimate power consumption. Many studies have

implemented this estimator, including [183].

5.5 MICKEY 2.0 internal design

MICKEY 1.0 was first submitted by the designers Babbage and Dodd to the eSTREAM

project [184]. It is designed for use in hardware as it is a lightweight synchronous stream

cipher, however it can also be implemented in software. The key and IV are both 80-bit,

and 80-bit for each R (Linear register) and S (Nonlinear register). It is described in full in

[184]. However, In [185] found that there is a detectable weakness in the state

convergence. The designers then developed a stronger version, MICKEY 2.0 [186], to

solve this issue. The MICKEY 2.0 [186] cipher consists of two shift registers with a length

of 100-bit each, R (Linear register) and S (Nonlinear register). Each stage in the internal

state contains only one bit. Figure 5.1 summarises the MICKEY family cipher design. The

(Key, IV) loading is indirect as the mixing is done before clocking, which is different from

102

ciphers such as Trivium that allow direct loading, therefore, there is a pre-clocking phase

before loading into registers.

Loading bits

The MICKEY 2.0 cipher accepts 80-bit for key(K), and 80-bit and for initialisation

vector(IV).

Let C= ciphertext, P = plaintext and Z = keystream

 K=K0,K1,K2,...,K79

 IV=IV0,IV1,IV2,...,IV79

 Z=Z0,Z1,Z2,...,Z79

 C= Z xor P (mod 2)

Every (K,IV) generates up to 240bit (maximum length). The length of K and IV should be

the same. It is possible to reuse the same K. However, it is not acceptable to reuse the IV

with the same K.

R register clocking: Clock_R=(R, INPUT_bit_R, CLOK_bit_R). Figure 5.3 and Section

5.6 provide an explanation.

S register clocking: S register internal structure consists of controlling components:

COMP0, COMP1, FB0 and FB1, each of 100 states, and controlling taps (positions) as in

tables (5.1-5.10) where if there is 1 that is the bit control position. Figure 5.4 and Section

5.7 provide an explanation. Figure 5.1 summarises the general structure of the MICKEY

family cipher.

Figure 5. 1 MICKEY cipher family general internal design

103

The principle of the MICKEY family of ciphers is that the CLOCK_KG drives both

CLOCK_R and CLOCK_S in order to perform the XOR operation for the bits positions

that form the keystream, as shown in Figure 5.2.

Figure 5. 2 The core logical process for the MICKEY cipher family

CLOCK_KG produces the keystream bit by performing the XOR operation on the first bit

of the register R (R[0]) with the first bit that comes from the register S (S[0]). The bits

positions are advanced for both R and S, by clocking both CLOCK_R and CLOCK_S

functions. In the initialisation stage there is mixing of the key and the IV bits by CLOCK_R

in such a random way. Figure 5.2 shows the selected values of (N,M,Q) which are selected

to be scattered through R and S. The mechanism to advance the register R is shown in

Figure 5.3.

104

Figure 5. 3 Process flow for the linear register (R)

Figure 5.3 shows the flowchart for the CLOCK_R clocking in order to mix the bit position

of the register R, by determining if the current XOR bit is 0 or 1 according to the previous

bit and the position of the taps on the R_MASK. For MICKEY 2.0.85, the number of bits

of both R and the taps on R_MASK were reduced and reorganised as shown in Section

5.6.

For the register S, the principle of clocking can be seen in the flowchart in Figure 5.4. The

bits positions are determined in a more random way, determined based on the current state

of S. The mixing parts of S are the functions COMP0, COMP1, FB0 and FB1 which ensure

the random appearance of S bits.

105

Figure 5. 4 Process flow for the nonlinear register (S)

Figure 5.4 shows that for the nonlinear register S the way of clocking is by the CLOCK_S

function to control the bits positions in a very mixed way to ensure bits confusion among

the S register. The CLOCK_S function implements internal controlling randomiser

sequences which are COMP0, COMP1, FB0 and FB1, which add more complexity to the

output of the S register, which also works to randomise the bits generated by the R register.

Therefore, the S register as a whole adds more complexity to the R register output, by

adding more nonlinear complexity of the keystream generated by the MICKEY family of

ciphers.

To be more precise, within the CLOCK_S the functions COMP0 and COMP1 are the

controlling randomisers for the S register bits that control bits from FB0 and FB1.

Furthermore, the sequences FB0, FB1, COMP0 and COMP1 bits arrangement were done

carefully and expertly chosen in such a way to have appropriate positions, which results in

106

randomness of both the S output and the keystream. Section 5.6 provides more detail on

the FB0, FB1, COMP0 and COMP1 precise arrangements.

To ensure the randomness of the keystream, the initial design by the MICKEY 2.0

designers [186] was done by ensuring the initial state of the internal clocking functions and

controlling sequences guaranteed the appearance of randomness as much as possible. For

the proposed MICKEY 2.0.85 cipher in this thesis, the bits in the internal structure were

adjusted by multiple experiments with a target to avoid any biases or predictability. As

there were multiple bits selections and arrangements, many trials were conducted on the

NIST randomness tests. The experiments were repeated until an optimal bits arrangement

was achieved which passed the NIST tests.

5.6 Reduction process

To explain the thesis reduction approach and how reductions were achieved, the MICKEY

2.0 algorithm is described, together with the MICKEY 2.0.85 algorithm.

5.6.1 MICKEY 2.0 and MICKEY 2.0.85 algorithms

(Some contents of the this section were published as a part of this thesis in [23])

In the MICKEY family of ciphers, the basic concepts of producing the keystream rely on

clocking operations. Clocking is the main part of the algorithm that drives the rest of the

functions, including the clocks functions in both registers R and S which change the state

of bit positions separately, or together considering each register’s current state. For the

initial inputs, the position of controlling bits either changes the bits positions by performing

the XOR operation, or shifts it based on the specific bit in the register. Critically, these

operations are performed in such a way to ensure the positions change rather unpredictably.

The complexity of the hardware electronic circuits is determined by GEs. If the number of

GEs is large, that will affect the speed performance and consume more power. Thus,

reducing the number of GEs will improve overall performance of lightweight devices.

Appendix 5.1 for MICKEY 2.0 and Appendix 5.2 for MICKEY 2.0.85 illustrate the GE

counting approach and the reduction of GEs for MICKEY 2.0.85, and compare both

ciphers. The following is an algorithmic description for MICKEY 2.0 and MICKEY

2.0.85:

107

Algorithm 5.1: CLOCK_R

The CLOCK_R function forwards the linear register.

The CLOCK_S function forwards the nonlinear register.

The CLOCK_KG function generates a keystream by joining both CLOCK_R and

CLOCK_S.

The function CLOCK_R advances the position of the linear register and determines

whether or not the current XOR mask bit is 1 or 0 based on previous operations and the

R_MASK.

CLOCK_R: 1: Initialisation of the Internal Register (Single XOR)

CLOCK_R 2: Loop (Conditional) Feedback Bit Logically Assigns Linear Register Bit

(Within Loop)

MICKEY 2.0: for i = 0 to 99

MICKEY 2.0.85: for i = 0 to 84

CLOCK_R 3: Linear (R_MASK) Logic to Invert Bit (Single XOR) (Within Loop)

MICKEY 2.0: for i = 0 to 99

MICKEY 2.0.85: for i = 0 to 84

CLOCK_R 4: Multiple Related Operation (Single MUX) – Conditionally executed based

on control bit.

CLOCK_R 5: Multiple Related Operation (Single MUX) – Conditionally executed based

on feedback bit.

With the nonlinear register (S), the correspondence between bit and position is more

arbitrary, but it is driven by the state of the linear register. The internal data structures

COMP0, COMP1, FB0 and FB1 are also arbitrary (random) bits.

The function CLOCK_S advances the position of the nonlinear register. Using four

internal and random structures (COMP0, COMP1, FB0 and FB1) the current bit position

is far more nonlinear.

Algorithm 5.2: CLOCK_S

CLOCK_S: 1 Initialisation of Internal (Nonlinear) Register (Single XOR)

MICKEY 2.0: For i = 0 to 99

MICKEY 2.0.85: For i = 0 to 84

CLOCK_S: 2, CLOCK_S: 3: Bitwise operations on internal structures 3 XORs and One

AND (gates)

CLOCK_S: 4: Conditional Logic on Feedback and Control Bit (Single MUX)

MICKEY 2.0: For i = 0 to 99

108

MICKEY 2.0.85: For i = 0 to 84

CLOCK_S: 5: Change Nonlinear Register (Single XOR)

CLOCK_KG invokes CLOCK_R and CLOCK_S for the purpose of determining the

appropriate XOR bit for each bit position within the generated keystream.

CLOCK_KG: 1-5: Simple Initialisations: (4 XOR, 1 AND)

The IV and key were used along with the internal masks to initialise the registers in the

function ECRYPT_keysetup, ECRYPT_ivsetup. By arbitrarily mixing the bits of the key

and the IV, the initial state of both the linear and nonlinear registers will be unpredictable.

MICKEY 2.0: IV_i 1: For i = 0 to 79: Initialise on IV (Single MUX)

MICKEY 2.0: IV 2: For i = 0 to 80: Initialise on Key (Single MUX)

Therefore, the MICKEY algorithm works as follows:

Algorithm 5.3: MICKEY algorithm

MICKEY 2.0: Process (Single MUX to represent Logic):

1. Initialise the internal state using: IV, key and CLOCK_KG (which uses CLOCK_R

and CLOCK_S) to mix in the IV and key bits based on the internal driver structures.

(R_MASK and COMP0, COMP1, FB0, FB1)

2. For each bit in the message invoke CLOCK_KG.

a. CLOCK_KG invokes CLOCK_R, which advances the linear bit and masks it with

R_MASK to determine its final value.

b. CLOCK_KG also invokes CLOCK_S, which may or may not advance the nonlinear

bit depending on the linear position and the values of (COMP0, COMP1, FB0 and FB1).

c. CLOCK_KG determines the keystream bit by XORing the current linear and nonlinear

registers and ANDs them with 1.

d. Ciphertext Generation: The current plaintext message bit is XORed with the current

keystream bit, which becomes the ciphertext output [23].

Tables 5.1–5.10 show the controlling bits position for R_mask, COMP0, COMP1, FB0

and FB1 for ciphers MICKEY 2.0 and MICKEY 2.0.85, to highlight the change of bit

positions for MICKEY 2.0.85 from MICKEY 2.0

109

Table 5. 1 MICKEY 2.0 R_mask

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1

1 1 1 1

1

1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value 1 1 1

1

1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1 1

1 1

1

1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value 1 1

1 1 1 1 1

1 1

1

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value 1 1 1

1 1 1 1 1 1

1 1 1 1

Table 5. 2 MICKEY 2.0.85 R_mask

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1

1 1 1 1

1

1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value 1 1 1

1

1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1 1

1 1

1

1

1 1

1 1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value 1 1 1

1 1

1 1 1 1 1 1

1

BIT 80 81 82 83 84

Value 1 1 1

Table 5. 3 MICKEY 2.0 COMP0

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value

1 1

1

1 1 1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1

1

1

1

1 1

1

1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1

1

1

1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value 1 1 1

1

1

1 1 1 1 1 1 1 1 1

1

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value

1 1 1 1 1 1

1

1

1 1

Table 5. 4 MICKEY 2.0.85 COMP0

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value

1 1

1

1 1 1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1

1

1

1

1 1

1

1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1

1

1

1 1 1 1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value 1 1 1 1 1

1 1 1 1 1 1

1

1

BIT 80 81 82 83 84

Value

1 1

110

Table 5. 5 MICKEY 2.0 COMP1

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value

1

1 1

1

1 1 1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1 1

1

1 1 1

1 1 1 1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value 1

1 1 1

1

1

1 1 1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1 1 1 1 1 1

1

1 1 1

1 1 1 1

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value

1

1 1 1

1

1 1

Table 5. 6 MICKEY 2.0.85 COMP1

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value

1

1 1

1

1 1 1 1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1 1

1

1 1 1

1 1 1 1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value 1

1 1 1

1

1

1 1 1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1 1 1 1 1 1

1

1 1 1

1

BIT 80 81 82 83 84

Value 1 1

Table 5. 7 MICKEY 2.0 FBO

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1 1 1

1

1 1 1 1 1 1 1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value 1 1 1 1 1 1 1 1 1

1 1

1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value 1 1

1

1

1

1

1

1 1 1 1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1

1

1

1 1

1

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value

1 1

1 1 1

1 1 1

1 1

Table 5. 8 MICKEY 2.0.85 FB0

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1 1 1

1

1 1 1 1 1 1 1 1

1

1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value 1 1 1 1 1

1 1 1

1

1

1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1

1

1 1 1 1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1 1

1 1 1

1 1 1

BIT 80 81 82 83 84

Value 1 1

111

Table 5. 9 MICKEY 2.0 FB1

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1 1

1 1 1

1 1 1

1

1 1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1

1 1

1

1 1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1 1

1 1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1

1 1

1

1

1

1

1 1

BIT 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99

Value 1 1

1 1 1 1 1

1

1

Table 5. 10 MICKEY 2.0.85 FB1

BIT 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Value 1 1 1

1 1 1

1 1 1

1

1 1

BIT 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

Value

1

1 1

1

1 1

1 1

BIT 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59

Value

1 1

1 1

1

1

1

BIT 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Value

1

1 1 1

1 1 1 1 1

1

BIT 80 81 82 83 84

Value

1

5.7 Results of NIST tests

This section presents results of the NIST tests for MICKEY 2.0, MICKEY 2.0.85 and

MICKEY 1.0. MICKEY 1.0 failed 14 of 15 tests for the keystream and passed only one

test of 15 for the ciphertext randomness test. The results confirm MICKEY 2.0.85 is secure

as it shows a high level of randomness based on NIST tests.

5.7.1 NIST test results for the keystream

MICKEY 2.0 is a good encryption method and has a higher security level than other

popular ciphers such as Trivium and Grain. It has more resistance to algebraic attack and

fault analysis attack, for example [168]. MICKEY 2.0’s good attack resistance is due to

the irregular mixing in the bits in the internal state. MICKEY 2.0 was used as a reference

to measure the proposed reduced variant. This research used 410 (key, IV) difference pairs

to generate 410 different keystream sequences with length 106 bits for both MICKEY 2.0

and 410 sequences for MICKEY 2.0.85 ciphers for comparison, as MICKEY 2.0.85 needs

to have a similar security level as MICKEY 2.0.

112

By applying the NIST pseudo-randomness test suite as shown in Table 5.11 and Table

5.12, with 410 sequences and each sequence of length 106 bits, MICKEY 2.0.85 has a

slightly better passing rate than MICKEY 2.0 with almost 100% in some of the tests, and

a passing rate very close to 100% in the rest of the tests. Comparing the results in Table

5.11 and Table 5.12 with MICKEY 1.0 as shown in Figure 5.5, MICKEY 1.0 only passed

the linear complexity test.

Figure 5. 5 Comparison histogram of NIST test passing rates for MICKEY 2.0,

MICKEY 2.0.85 and MICKEY 1.0

To further test MICKEY 2.0.85, 1350 sequences with length 106 bits each were generated.

Table 5.13 shows the passing rate is high which confirms the security level of MICKEY

2.0.85 and shows it has a good statistical randomness appearance. The NIST test results

can be used as a standard indicator for the validity of the ciphers to be used.

The results of running NIST randomness tests on MICKEY 1, MICKEY 2.0 and MICKEY

2.0.85 ciphers showed that MICKEY 1 failed all tests except the linear complexity test

with p-value = 0.162606 and a passing rate of 100%. Table 5.11 and Table 5.12 show that

MICKEY 2.0 and MICKEY 2.0.85 passed all tests, with better results for MICKEY 2.0.85

for tests Rank, FFT, Frequency, Overlapping Template, Universal and linear complexity

with a pass rate of 100%.

To optimise the cipher structure, the reductions of the versions were modified and every

version was tested on the NIST tests to derive the most optimal possible secure version

that has an optimal passing rate with the lowest number of GEs.

113

Table 5. 11 MICKEY 2.0.85: 410 sequences, each sequence with a length of 106 bits

Tests Min

P-value

Max P-value Average Proportion

Frequency 0.122325 0.739918 0.377364 1

Block Frequency 0.350485 0.534146 0.381095 0.966667

Cumulative Sum (Forward) 0.122325 0.911413 0.663548 0.966667

Cumulative Sum (Backward) 0.739918 0.739918 0.739918 0.983333

Runs 0.350485 0.534146 0.381095 0.983333

Longest Run 0.350485 0.350485 0.350485 1

Rank 0.122325 0.534146 0.228988 1

FFT 0.213309 0.534146 0.289644 1

Non-Overlapping Template 0.458868 0.500555 0.466752 0.98705

Overlapping Template 0.066882 0.739918 0.627745 1

Universal 0.122325 0.534146 0.259599 1

Approximate Entropy 0.534146 0.911413 0.785657 1

Random Excursions 0.574584 1 0.726513 0.988839

Random Excursions Variant 0.499518 0.929764 0.700181 0.996032

Serial 1 0.122325 0.213309 0.137489 1

Serial 2 0.350485 0.739918 0.446001 1

Linear Complexity 0.122325 0.911413 0.269004 1

Table 5. 12 MICKEY 2.0: 410 sequences, each sequence with a length of 106 bits

Tests Min

P-value

Max P-value Average Proportion

Frequency 0.035174 0.911413 0.397568 0.997561

Block Frequency 0.122325 0.911413 0.428437 0.997561

Cumulative Sum (Forward) 0.066882 0.911413 0.788651 0.997561

Cumulative Sum (Backward) 0.017912 0.911413 0.68968 0.997561

Runs 0.066882 0.911413 0.400601 0.995122

Longest Run 0.122325 0.739918 0.373471 1

Rank 0.122325 0.911413 0.273754 0.997561

FFT 0.122325 0.911413 0.323092 0.995122

Non-Overlapping Template 0.451814 0.528983 0.473251 0.986487

Overlapping Template 0.066882 0.911413 0.639514 0.995122

Universal 0.066882 0.911413 0.29319 0.995122

Approximate Entropy 0.213309 0.991468 0.815439 1

Random Excursions 0.679305 1 0.899804 0.995427

Random Excursions Variant 0.598409 1 0.867777 0.996296

Serial 1 0.066882 0.911413 0.271612 1

Serial 2 0.122325 0.911413 0.397487 0.995122

Linear Complexity 0.008879 0.911413 0.247633 0.992683

114

Table 5. 13 MICKEY 2.0.85: 1,350 sequences, each sequence with a length of 106

bits

Tests Min

P-value

Max P-value Average Proportion

Frequency 0.004301 0.911413 0.247507 0.932593

Block Frequency 0.035174 0.991468 0.408853 0.999259

Cumulative Sum (Forward) 0.008879 0.911413 0.475431 0.931852

Cumulative Sum (Backward) 0.066882 0.991468 0.438661 0.931852

Runs 0.017912 0.911413 0.350936 1

Longest Run 0.035174 0.991468 0.569959 0.997778

Rank 0.008879 0.991468 0.562409 1

FFT 0.017912 0.911413 0.334836 0.997778

Non-Overlapping Template 0.45673 0.544193 0.506632 0.99076

Overlapping Template 0.066882 0.991468 0.684628 0.996296

Universal 0.035174 0.911413 0.444997 0.997037

Approximate Entropy 0.035174 0.911413 0.513536 0.998519

Random Excursions 0.545207 1 0.724354 0.994351

Random Excursions Variant 0.438734 1 0.717153 0.972019

Serial 1 0.017912 0.991468 0.538686 0.999259

Serial 2 0.035174 0.991468 0.313621 0.995556

Linear Complexity 0.008879 0.911413 0.614827 0.999259

5.7.2 NIST test results for the ciphertext

Tables 5.11, 5.12 and 5.13 summarised the results for the keystream generated by the

ciphers. It is also useful to test the pseudo-randomness of the ciphertexts generated by

those ciphers, as there are specific ciphertext attacks [187], [188]. The results for MICKEY

1.0, MICKEY 2.0 and MICKEY 2.0.85 shown in Table 5.14 and Table 5.15, using 13 MB

bits for each cipher for comparison, shows how the proposed cipher has good pseudo-

randomness properties.

By running NIST randomness tests on MICKEY 1.0, MICKEY 2.0 and MICKEY 2.0.85

with 13 MB ciphertext files for each cipher, MICKEY 1.0 failed all tests except the linear

complexity test with p-value = 0.162606 and pass rate of 100%. Table 5.14 and Table 5.15

show MICKEY 2.0 and MICKEY 2.0.85 passed all tests, with better results for MICKEY

2.0.85 compared to MICKEY 2.0 for the Rank, FFT and Serial tests with a pass rate of

100%.

115

Table 5. 14 MICKEY 2.0 NIST test results for ciphertext with 13 MB bits length

Tests P-value average Proportion

Frequency 0.090936 1

Block Frequency 0.637119 1

Cumulative Sum (Forward) 0.048716 1

Cumulative Sum (Backward) 0.437274 1

Runs 0.090936 1

Longest Run 0.000648 1

Rank 0.437274 0.9230769

FFT 0.162606 0.9230769

Non-Overlapping Template 0.301262 0.9885655

Overlapping Template 0.964295 1

Universal 0.437274 1

Approximate Entropy 0.162606 1

Random Excursions 0.42722271 1

Random Excursions Variant 0.59290552 1

Serial 1 0.834308 0.9230769

Serial 2 0.275709 0.84615384

Linear Complexity 0.437274 1

Table 5. 15 MICKEY 2.0.85 NIST test results for ciphertext with 13 MB bits length

Tests P-value average Passing rate

Frequency 0.437274 1

Block Frequency 0.637119 1

Cumulative Sum (Forward) 0.090936 1

Cumulative Sum (Backward) 0.437274 1

Runs 0.437274 1

Longest Run 0.275709 1

Rank 0.437274 1

FFT 0.437274 1

Non-Overlapping Template 0.331186 0.989604989

Overlapping Template 0.275709 1

Universal 0.048716 1

Approximate Entropy 0.048716 1

Random Excursions 0.61271597 1

Random Excursions Variant 0.90774056 1

Serial 1 0.090936 1

Serial 2 0.090936 1

Linear Complexity 0.275709 1

116

5.8 MICKEY 2.0.85 performance tests

As one of the performance measurements is the speed of generating the keystream,

multiple speed tests measured in microseconds were conducted to record the encryption

time for both MICKEY 2.0 and MICKEY 2.0.85. The hardware used was an Intel i3

processor which has a speed of 2.53 Ghz. A file of 39,900 bytes of plaintext for encryption

with random 10 bytes of key and 10 bytes of IV was used. Tests were run 10 times, each

encryption time measured, and the average calculated to determine the accurate speed. The

test process was:

1. Record the starting time S.

2. Use the 39,900 bytes plaintext as input.

3. Record the end time E.

4. Calculate E-S.

Table 5.16 shows MICKEY 2.0.85 was 23.36% faster than MICKEY 2.0.

Table 5. 16 Improvement in the encryption speed for MICKEY 2.0.85 compared to

MICKEY 2.0

Elapsed time in microseconds

Bytes encrypted MICKEY 2.0 MICKEY 2.0.85

39,900 719,041 496,029

39,900 640,037 514,030

39,900 670,038 499,028

39,900 670,038 528,030

39,900 648,037 485,028

39,900 646,037 512,030

39,900 661,037 510,029

39,900 649,037 520,030

Average 662,912.75 508,029.25

Improvement percentage over MICKEY 2.0 0 23.364%

MICKEY 2.0.85, which has fewer GEs, has faster encryption speed which will reduce

power consumption, and be suitable for smaller devices such as microcontrollers and RFID

readers and tags. Even small improvements in speed will considerably improve

performance in constrained devices and applications. This research direction is important

for further and continuous improvements as digital devices with smaller size and memory

capacity will be used more frequently.

117

5.9 Power consumption testing

To evaluate the power consumption of MICKEY 2.0.85, Xilinx Power Estimator (XPE)

[177] was used. It is compared to MICKEY 2.0 and Micro-Trivium [189] which is a lighter

version of Trivium. Table 5.17 shows MICKEY 2.0.85 has the lowest power consumption

of the four ciphers. The values for Trivium and Micro-Trivium were obtained from [189].

Table 5. 17 Power consumption for MICKEY 2.0.85 and other ciphers

Cipher Number of GEs Power consumption

(microAmps @ 100KHz)

MICKEY 2.0 3,131 0.574

MICKEY 2.0.85 2,741 0.481

Trivium 3,091 0.681

Micro-Trivium 2,696 0.517

The relationship between the number of GEs and the power consumption for all four

ciphers in Table 5.17 is explained by the polynomial of degree 3 as given below:

Let G= number of GEs, and P= Power Consumption

The relationship between G and P for all ciphers in Table 5.17 is modelled using 3rd degree

polynomial as following:

 P=-0.0000000271175791*G3+0.000234730685*G2-0.675800572*G+647.741649

For MICKEY 2.0.85 and MICKEY 2.0, the relationship between the number of GEs and

the power consumption can be represented as a linear model as given below:

 P=0.00023846*G-0.17262308

For MICKEY 2.0 and MICKEY 2.0.85, R2 = 1 for both models which indicates clearly

that the models are accurate, as there is a high correlation and all observed values can be

represented by these models. R2=1-errors, here errors= 0, which indicates the high

determination of the model coefficients.

118

5.10 Cryptanalysis

The NIST tests provide a standard evaluation of the cipher pseudo-randomness as standard

efficiency requirements. However, including more attack analysis for MICKEY 2.0.85

compared to MICKEY 2.0 adds another level of proposed cipher usage feasibility, as it

ensures more security. Analysis of two types of attacks is presented: many time pad attack

and cosine similarity attack.

5.10.1 Many Time Pad Attack

A repeated key attack, which may be called a many time pad attack, is a type of attack

when the same key is reused. Assume we have the same key (K) used to encrypt message

𝑚1 𝑎𝑛𝑑 𝑚2 and the attacker has access to the ciphertexts for the two messages 𝐶1𝑎𝑛𝑑 𝐶2.

The XOR functions as the following:

 𝑚1⊕𝐾 = 𝐶1 (5.1)

 𝑚2⊕𝐾 = 𝐶2 (5.2)

Then from 5.1 and 5.2

𝐶1⊕𝐶2 = 𝑚1⊕𝐾 ⊕ 𝑚1⊕𝐾 (5.3)

𝑦𝑖𝑒𝑙𝑑𝑠
→ 𝑚1⊕𝑚2

It is not secure to reuse the same key with different messages, as some of the solution is

mixed with IV. However, from the previous example, multiple messages were encrypted

with the same key, then if the attacker gains access to a sufficient number of the messages

then the attacker can extract the plaintext from the given ciphertexts given that the same

key was used.

To simulate this attack the IV with the same key with different messages was used, by

using multiple plaintext files with length ranging from 56 KB to 96 KB encrypted by both

MICKEY 2.0.85 and MICKEY 2.0. Python code was used to perform multiple XORing

operations of ciphertext with keystream for each message, then the Levenshtein Distance

[175] calculated to find the similarity.

119

Calculating the Levenshtein Distance

Let LD be the percentage of the Levenshtein Distance. If the LD between the calculating

message 𝑚𝑝 and the original message 𝑚𝑜 by the attacker is LD = 0%, then 𝑚𝑝 and 𝑚𝑜

are completely different. On the other hand, if LD between 𝑚𝑝 and 𝑚𝑜 is 100%, the 𝑚𝑝

and 𝑚𝑜 are completely similar. Figure 5.6 shows the Levenshtein Distance between

multiple 𝑚𝑝 and 𝑚𝑜 messages with length mentioned earlier.

Figure 5. 6 Levenshtein similarity test for MICKEY 2.0 and MICKEY 2.0.85

interrupted messages

Figure 5.6 shows that MICKEY 2.0.85 is as random as MICKEY 2.0 by using the same

number of intercepts for the same texts for both ciphers, showing they are very similar,

with MICKEY 2.0.85 slightly better in resistance against the many reused key attacks.

5.10.2 Cosine similarity attack (cryptanalysis)

Cosine similarity [190] can be an effective tool to determine how similar two documents

or texts are. Assume we have two texts represented as non-zero vectors v1 and v2 and their

lengths are ||v1|| and ||v2 ||, and their dot products are v1 v2.

Then:

 Cos(v1,v2) = (v1 v2) / ||v1|| ||v2||

The similarity is cos(𝜭), 𝜭 is the angle between v1and v2

120

The similarity between the two texts = cos(𝜭) = (v1 v2) / ||v1|| ||v2||

Comparing two texts is based on the value of 𝜭. If 𝜭 has small value, the texts are more

similar and vice versa. If 𝜭 is close to zero, it implies the texts are very similar. Figure 5.7

shows the cosine similarity between the two vectors v1and v2.

The plaintext and ciphertext pair are used as numerical bits vectors, by calculating the

cosine similarity of the two vectors, then finding the mean of the cosine similarity as the

following:

Cosine similarity = 1 − Cosine distance

Figure 5. 7 Cosine similarity between two vectors V1 and V2

Table 5.18 compares the cosine similarity results of MICKEY 2.0.85 and MICKEY 2.0

for multiple plaintext and ciphertext pairs. The results were obtained by using 132

sequences of length 106 bits for MICKEY 2.0.85 and MICKEY 2.0. MICKEY 2.0.85 has

less similarity between the plaintext and ciphertext. For both MICKEY 2.0.85 and

MICKEY 2.0 the Mean Cosine Similarity are far from zero, thus they are both immune

from this kind of attack.

121

Table 5. 18 MICKEY 2.0.85 and MICKEY 2.0 results by applying cosine similarity

Methods Mean Cosine Similarity STD Cosine Similarity

MICKEY 2.0 0.8472 0.0225

MICKEY 2.0.85 0.8418 0.0298

5.11 Discussion of results and analysis

The proposed MICKEY 2.0 variant called MICKEY 2.0.85 is suitable for RFID tag usage

as the tags have limited size and power consumption. MICKEY 2.0.85 is also suitable for

small devices and microcontrollers. In tests for encryption and read required time

(microseconds as seen in Table 5.16) by an Intel i3 processor with speed 2.53 Ghz,

MICKEY 2.0.85 was 23.36% faster. The result is a good security improvement for RFID

technology and IoT technology in general.

The scaled down MICKEY 2.0.85 version is 23.36% faster than the original MICKEY 2.0

and uses 16.202% less power than MICKEY 2.0, which was achieved by reducing the

number of GEs by 12.45% (as in Table 5.17). The suite of NIST randomness tests

confirmed that MICKEY 2.0.85 was slightly more random than MICKEY 2.0, hence

MICKEY 2.0.85 is resistant against attacks, especially statistical attacks which target the

keystream, internal state and ciphertexts.

Further reduction may be achieved, however it is important to ensure it does not

compromise the security, and NIST randomness tests can help to evaluate that. The

reduced version was based on many experiments and statistical evaluations to derive the

optimal possible version. In MICKEY 2.0.85 the internal state was reduced by 30 bits to

170 bits, as the MICKEY 2.0 internal state has 200 bits. Further reduction should be limited

within the range of 160 bits to 170 bits, as the general security rule is the internal state

should remain at least twice the key length.

The methodology in this chapter for introducing a MICKEY 2.0 based version can inspire

further improvement in lightweight cryptography. For example, the same methodology can

be implemented to create lighter variants for other lightweight stream ciphers. Designing

new lightweight stream ciphers is important with increasing use of IoT technology.

Nevertheless, optimising and improving the current lightweight stream ciphers, which

have a reasonable level of security, is still crucial.

122

The importance of statistical randomness tests is emphasised in the current literature, as

well as in this study. Chapters 3, 4 and 5 show the use and value of statistical testing and

modelling, including NIST tests, to investigate and provide detailed explanation and

results. The tests showed how MICKEY 2.0.85 is resistant against two statistical based

attacks.

Another possible area worth investigating is the reduction in specific register. For example,

for S the nonlinear register, a future research direction is to work around the internal state

of length within the range of 160 bits to 170 bits, and make S length > R length and apply

the NIST tests to measure the level of randomness. It may also be worth modifying taps

positions in R-Masks, COMP0, COMP1, FBO and FB1 to determine the best version

which satisfies desired randomness requirements, power consumption, fewer GEs and

keystream generation speed, which has already been achieved in MICKEY 2.0.85.

5.12 Conclusion

This chapter has introduced a lighter, secure and faster version of MICKEY 2.0, called

MICKEY 2.0.85, which uses less power, making it more suitable for IoT applications. All

tests and performance measurements were applied to ensure MICKEY 2.0.85 is an optimal

version that has a good trade-off between security and suitable features for IoT

implementation. The proposed MICKEY 2.0.85 cipher is an important contribution to the

current literature of lightweight encryption methods enhancement.

The proposed version MICKEY 2.0.85 is compared to existing lighter versions of other

stream ciphers such as Trivium as there are many reduced and optimised versions,

including the recent Micro-Trivium.

The following chapter implements MICKEY 2.0 in an IoT field of mobile cloud

computing. It presents a secure protocol for mobile device communication over an insecure

communication channel.

123

Chapter 6: Mobile cloud computing and FEATHER, a

proposed lightweight security protocol

6.0 Chapter overview

This chapter develops a lightweight security protocol called FEATHER for use in securing

mobile cloud computing communication. The outline the sections of the chapter are:

section 6.1 the essential introduction, section 6.2 provides a brief background in cloud

computing, section 6.3 introduces the proposed lightweight protocol FEATHER and its

design principles, section 6.4 about the protocol implementation, section 6.5 provides the

performance results with analysis, section 6.6 show how FEATHER is resistance against

possible attacks, section 6.7 for the overall discussion, section 6.8 concludes the chapter.

6.1 Introduction

Cloud computing, and the related mobile cloud computing, are large and growing fields.

The continuous and exponential [191] growth of mobile devices in quantity and quality

means mobile cloud computing is gaining more attention as it serves important

applications such as mobile learning, mobile commerce, mobile gaming, eHealth

applications and web searching [9]. Furthermore, the limitations of personal computers

and devices’ computation abilities generates the need for more powerful computation

resources. Cloud computing facilities provide more powerful and affordable personal

usage. As cloud computing providers are continually improving their services, new

providers are likely to join this growing market which will create competition, which is

beneficial for the service users, thus an essential requirement is the security of client data.

Mobile cloud computing is an active and important research area as it supports people

using the internet for communications, at any time and at any place, by using the storage

and computer activities which can be done by adapting mobile cloud computing [192].

Mobile phones have become very widespread and are a major part of daily lives. According

to “Statatisa” based on more than 22,500 sources, the number of mobile devices in 2015

was 2.15 billion, 4.3 billion in 2016 and 4.57 billion in 2018, with a prediction of 4.78

billion devices in 2020 [193]. With many devices connected to each other via big networks,

there is a threat of attacks which requires the use of good security protocols. Because users

124

need to communicate confidentially, especially sensitive information transmitted through

insecure communication channels such as Wi-Fi, 3G and 4G, encryption systems suitable

for these devices are needed. It is important to design a protocol to ensure confidentiality

and effectiveness, considering the following requirements:

1. Speed

2. Ensuring identity

3. Ensuring confidentiality

4. Compatibility with mobile devices

5. Effective communication between cloud server and mobile devices through a

communication channel which is not safe.

Companies such as Google, Microsoft and Amazon provide platforms for cloud computing

users. For example, Google provides services such as Google Maps which can be accessed

from mobile phones for navigation and location searching and sharing [194]. Amazon

provides services such as EC2 for computing and S3 for storage and they introduced

services based on users’ demand to customise their service according to the users’

requirements [195]. Microsoft provides their version of cloud computing called Azura.

Cloud computing related security concerns such as confidentiality, integrity and storage

are important challenges [196].

In this age of advanced communications technologies and growth in using communications

devices, the demand for privacy and security of systems to ensure the transfer of

confidential information is also growing. Many cryptosystems meet this demand, however

some of them need a large computation capability. Advanced Encryption System (AES) is

widely used as it is considered a very strong and secure cryptosystem [197]. However, it

is a “heavy” system which requires large computation resources and power consumption,

and is not suitable for small devices with limited computation capacity such as mobile

devices.

As AES is the first choice to be used, and due to the need to use a similar cryptosystem in

small devices, some researchers have introduced lightweight versions such as ALE [198]

as AES needs more resources such as more central processing units (CPUs) and memory

to generate the keystream. Some components in cloud computing such as embedded

systems on cloud computing with 32-bit, 16-bit and 8-bit microcontrollers usually struggle

125

to keep up with real time demands for conventional methods of cryptography [199],

therefore AES is not a good solution for many embedded devices in cloud computing that

have a small computation ability.

6.1.1 Cloud computing

There is a current need to adopt a lighter encryption method in cloud computing, and

lightweight stream ciphers can be implemented to provide the required security.

Lightweight stream ciphers are schemes of encryption that include a decryption function

as well as an encryption function with the capability of handling messages of arbitrary

length. Thus, they are better than block ciphers such as AES that only handle inputs of a

fixed length (flexibility is important). Due to their functionalities, they are well adapted to

low bandwidth or noisy communications and thus are a good solution particularly in cloud

computing. Speed, memory, number of CPUs and cost efficiency are important factors

[200]. Chapter 5 proposed a MICKEY 2.0 variant, MICKEY 2.0.85, as the preferred choice

rather than other lightweight stream ciphers as it needs less size and has less energy

consumption, which in turn is cost efficient [201]. However, the protocol can be adapted

to implement other lightweight ciphers such as Trivium or Grain.

Lightweight stream ciphers are an important security tool for IoT applications, such as

RFID tags, which have a very constrained environment which can adopt small and

lightweight cryptosystems [202].

Now mobile device users can use the mobile device terminal to send files to a server to get

a cryptographically secure keystream, and also use mobile communication with other

mobile devices through Wi-Fi, 3G, 4G and the imminent 5G. This circle of

communications between mobiles and servers also needs to be achieved in a secure

manner. A secure protocol is needed which can be implemented in mobile devices for

secure communication between mobile devices and between mobile devices and a server.

6.2 Background for mobile cloud computing

Data transfer between two mobile devices and transfer from a mobile device to the cloud

needs to be done securely, as there are multiple communications through different

channels, such as the Wi-Fi network, 4G and 5G. Because those channels do not provide

126

the necessary security, there is a need to establish a secure protocol for data transfer

through this unsecure communication method. The privacy and integrity of files and data

must be guaranteed and maintained in all aspects of communications.

As mobile devices have limited computation power, it is hard to address all security

cryptosystem tasks. Bahl et al. [203] published a short study based on cloud computing

and mobile computing and debated the importance of leaving the offloading tasks to be

done in an external application which can be carried out by an external server. They

proposed a mobile cloud computing enterprise that consists of four elements: mobile

devices, wireless core, Wi-Fi access point, and regional information centres (RDC).

In addition to the limited computational capabilities in mobile devices, battery

consumption due to heavy computation adds another challenge which makes mobile cloud

computing a good solution. Kumar et al. [204] showed that mobile computing could save

energy by offloading some tasks to the cloud server such as battery life and wireless energy

which is used for transferring the data in some applications, however some applications

are not energy efficient.

Bahrami et al. [205] studied the adequacy of using AES in mobile cloud computing. and

explained the cost and how cryptosystems such as AES are beyond the ability of mobile

devices to handle. By studying the current methods provided they showed that, in the case

of mobile cloud computing, when considering that mobile devices have limited resources,

such as limited power energy, low speed processors and tiny RAM capacity, it is not a

good approach to use AES as the encryption technique for each file once offload/download

is done for every single transferred file. Therefore, they introduced a lightweight method

such as pseudo-random permutation based on chaos systems [205]. Another solution for

this challenge is lightweight security methods that provide a balance between maintaining

energy efficiency and security. A lightweight security technique can be considered an easy

operation, in this regard permutation, instead of using complicated and expensive

operations when using secret key or public-key encryptions [206-208].

6.2.1 The advantage of using stream ciphers in small devices

A stream cipher is a symmetric cryptosystem which uses the same key for encryption and

decryption. Stream ciphers can transform data faster than other ciphers such as block

127

ciphers which is another branch of a symmetric cryptosystem, and also faster than ciphers

in an asymmetric cryptosystem [16], [209].

Stream ciphers are less secure than other symmetric and block cipher types of

cryptosystems such as AES which is known as one of the most secure ciphers. The

encryption process in AES involves permutations and a substitution process and a number

of rounds which need more power and storage space. On the other hand, lightweight stream

ciphers such as MICKEY 2.0, Trivium and Grain [210] need much less power and memory

which is attractive for small applications and devices. When looking for suitable ciphers

for small applications, widely used lightweight stream ciphers include E0 used in

Bluetooth, RC4 in Web, and A5 family in GMS [16]. In addition, in a small device, such

as a RFID tag, mobile and microcontroller, the large throughput generated by the cipher

needs to be offloaded to the cloud even for more recent mobile devices due to the need to

encrypt a large file quickly [211]. Furthermore, it can be used for noisy channels and cases

with low bandwidth [212], making them the optimal choice for mobile cloud computing.

Stream ciphers have advantages due to their high throughput property and low

computational complexity. Lightweight stream ciphers [213] are a better choice than block

ciphers as they need less memory and less hardware complexity.

6.2.3 Using lightweight stream ciphers in cloud computing and mobile cloud

computing

Lightweight stream ciphers have several advantages for cloud computing. They provide

fast encryption by generating the secure keystream faster than other popular ciphers such

as AES. They need fewer computation facilities such as CPUs and memory required in the

cloud which reduces the cost and the power consumption significantly. Microcontrollers

in the server with 8-bits and 16-bits make it hard to achieve the heavy computation power

using cryptosystems such as AES.

In addition to the advantages of using lightweight encryption in cloud computing,

additional benefits in mobile cloud computing include helping more mobile devices to

communicate as the encryption is fast, consumes less battery power, and needs less

bandwidth.

128

6.2.5 AES and CLOAK protocol

CLOAK is a lightweight protocol based on the AES cipher which enables two mobile

devices to communicate with each other, while leaving the keystream generation on an

external server (AWS in their implementation) [214]. As CLOAK can get the keystream

from either trusted or untrusted external servers, the main security concern in

implementing the protocol is to protect the keystream. Security can be compromised by

fetching the keystream from an external server and from communication media.

Lightweight stream ciphers which can be used in mobiles include Trivium [116], Grain

[117] and MICKEY 2.0 [215]. The advantage of using MICKEY 2.0 cipher over the others

is that it is more resistant to statistical attacks [216], with no successful algebraic attack so

far [217], [218]. It can also produce large throughput. The lightweight protocol developed

here does not rely on the server to be secure and will not be compromised as in the CLOAK

protocol which assumed the security of the server relies on the server provider [214]. Using

MICKEY 2.0 in this lightweight protocol to provide a secure keystream is significantly

faster than using AES for example, reducing the time needed by the server to generate the

keystream which in turn reduces the time to transfer the data between the server and the

mobile. If multiple mobile devices need to connect to the server at the same time, that will

significantly reduce the overall time to transfer information between the mobiles and the

server. The external server is usually used for complex operations that require large

processing capacity and large computational capabilities. In this case, the lightweight

protocol needs to offload producing a secure keystream task.

It may use two external servers: one is to produce a keystream, and the second is to save

the keystream to avoid a breach of the server. This adds another security dimension for

sensitive information.

6.2.6 Motivation and challenges

To meet the security challenges, as well as the demand for a lighter security protocol to

save time and address computation power, device hardware limitations and battery

consumption, the research questions to answer are:

1. How can MICKEY 2.0 be implemented efficiently to secure communication between

mobile devices in mobile cloud computing?

129

2. How can the performance of a new security protocol be evaluated against the existing

protocol?

3. How can a clear justification be provided that the new proposed protocol is immune

from possible attacks?

The aims are to:

• Implement MICKEY 2.0 efficiently to secure communication between mobile

devices in mobile cloud computing.

• Evaluate the performance of the new security protocol against the existing protocol.

• Provide a clear justification that the new proposed protocol is immune from

possible attacks.

6.3 The lightweight protocol FEATHER

This thesis research designed a MICKEY 2.0 cipher based protocol, called FEATHER, to

strengthen confidentiality and protection during messaging between mobile devices as well

as communication between devices and the cloud server, see Figure 6.1. The MICKEY 2.0

cipher produced a secure keystream in the external server to reduce reliance on mobile

devices which have limited computing power and memory. The role of mobile devices is

only encryption and decryption which provides mobile devices with the ability to compute

and reduce energy consumed by the device battery.

Figure 6. 1 Communications between mobiles and external server – FEATHER

protocol

130

A lightweight secure protocol is introduced to communicate between devices and the

external server over the cloud, as well as design applications on mobile devices for the

process of verification and encryption and decryption. The proposed protocol is faster and

moves larger files compared to the CLOAK cipher [214]. The protocol also maintains a

high level of security. A protocol was designed to achieve security through the application

of the MICKEY 2.0 cipher with additional protection systems for identity verification such

as hash functions, time stamp, and out-of-band password.

A lightweight stream cipher is needed for important reasons such as generating the

keystream faster, and using fewer resources, such as CPUs and memory, so more secure

applications can be created to take advantage of advances in mobile cloud computing. If

the keystream generated in the server is faster, it will allow more mobiles to get it from the

cloud compared to a heavy encryption system like AES. Thus it will be more efficient and

will greatly reduce costs. For example, using MICKEY 2.0 meets most of these needs.

6.3.1 FEATHER protocol design principles

The concept is that person A wants to share some secret information with person B. Person

A might be using a mobile device and may want to share chat messages, image files, etc.

Alternatively, Person A may have several simple IoT devices (microcontrollers) and want

them to report back sensor data. Person A considers the information private or sensitive

and wants to prevent a third part from intercepting the data.

There are nine design principles for a lightweight protocol.

Principle 1 Avoid implementing a heavy encryption method

As some popular encryption algorithms, such as AES, require considerable resources in

terms of CPU time and/or memory usage, the aim was to design a protocol that offloaded

the more computing-intensive steps to a server in the cloud, while simplifying the steps

carried out on the mobile device. Therefore, a lightweight protocol, from the viewpoint of

the mobile device, can offload generation and storage of the keystream to a server using

the MICKEY 2.0 algorithm.

131

Principle 2 Avoid relying entirely on the server

It is important to avoid relying entirely on the server to ensure the security of the

communication. Even if an adversary compromises the server, they cannot easily use the

captured keystream data to decrypt messages directly. Therefore, the following is

considered. Although the client receives a keystream from the server, the client does not

use it directly. Instead, the client selects a few random values using primitive polynomials

to apply the keystream to the plaintext to compute the encrypted data.

Principle 3 Send messages between the client and server over the internet

The protocol must assume an adversary may intercept messages, or an impostor may try

to insert invalid messages in the client–server communication. One popular approach

would be to use a key-exchange algorithm, such as Diffie–Hellman (which is vulnerable

to a man-in-the-middle attack), or a more sophisticated Station-to-Station protocol [219],

which avoids this vulnerability. Both of these approaches require significant computation

that may not be appropriate for simple mobile or microcontroller devices. This protocol

needs to assume the ability to send brief out-of-band messages using a different

communication medium. For example, if the protocol is implemented on top of the HTTP

protocol, a secret out-of-band message may be sent by email or SMS. In this protocol, an

out-of-band message is sent from the server to the client to convey a one-time-pad, and

from one client to another client to convey a file token and secret values (using primitive

polynomials) used to step through the keystream.

Principle 4 Focus authentication on unique security parameters

For authentication, this protocol uses a “bring something, know something” technique. The

protocol assumes each mobile device (or microcontroller device) has a universally unique

identifier (UUID). It also allows each user to select a username that is not necessarily

unique. These are combined using a hash function to generate a unique identifier (UID)

for each user. At the initiation of the protocol, each user registers their UID and then

communicates an encrypted copy of their secret password to the server.

For subsequent communication, all messages between the client and server are validated

using a digital signature based on hashing the message and the secret password. In this

case the “bring something” refers to the device and its UUID and the “know something”

refers to the user’s secret password. Since an adversary does not know the secret password,

132

it cannot generate a valid signature, so the client and server can reject messages with

invalid signatures.

Principle 5 Secure the communication between the client and the cloud server

To secure the communication between client and server, they rely on a shared keystream.

This shared keystream is first generated by the server when the client sends a message to

register the user. In its response to the client, the server sends the shared keystream,

encrypted with the one-time-pad, to prevent an adversary from capturing the keystream.

Principle 5 Offload the keystream generation to the cloud server

The server implementation may use any reasonable technique for keystream generation. In

practice, a method is needed that is computationally efficient and still provides a reasonable

level of security. To generate a new keystream for each user, the server must first create

an initial key (or key+IV pair).

Principle 6 Ensure client request for the keystream from the cloud has time

authentications

When the client submits a request to generate a new keystream, it includes a token and

expiry time. There are two possible implementations. The server may simply generate and

store a key, and then generate the actual keystream “on the fly” whenever it is requested.

Alternatively, the server may generate the keystream right away and store it as a file, to be

retrieved later when the client submits the corresponding token. The expiry time allows

the client to limit the time the keystream is stored on the server. This reduces the

availability of the keystream if an adversary tries to compromise the server.

Principle 7 Ensure there are possible and flexible variations for secure data transfer

To enhance the security of the protocol, the server never has access to the unencrypted

data. The data is encrypted by the client, using a modified version of the keystream, and

the modification is unknown to the server. When transferring encrypted data from one

client to another, there are three main options available.

1. In one variation, since the data is securely encrypted, the file can be uploaded

to any simple file server. This may provide an increased level of security, since it

introduces a separation from the keystream server and the file server. In fact, clients

133

would be free to use a variety of different file servers to transfer encrypted data

files, as long as these are communicated between the sender and receiver.

2. In a simpler implementation, the clients can upload or download the encrypted data

to the server, and are identified by a unique token. This token can be generated pseudo-

randomly to make it difficult to guess. Any other client can download the encrypted file,

asynchronously, once it receives the appropriate token from the first client. Some

efficiency can be gained if the file upload/download is implemented on the keystream

server, since the same protocol mechanism could be used to download a keystream (given

a token), or to download encrypted data (given a token). In fact, once a keystream is

generated and stored as a file, the keys used to generate the keystream could be deleted,

reducing the vulnerability of the protocol.

3. In the third option, the encrypted data could also be transferred directly and

synchronously from one client to another. This approach could make sense when a pair of

clients wish to send and receive a number of smaller messages, as in a secure chat session.

This can be accomplished first by generating and downloading a keystream, and then

sending encrypted messages back and forth, without requiring an intermediate file server.

Principle 8 Modify the keystream to further enhance the security

For efficiency, the client uses a keystream generated by the remote server, but for security,

the keystream is modified in a way unknown to the server. In particular, the client

randomly selects a small number of parameters that describe a particular pseudo-random

permutation of keystream values. By sharing these secret permutation parameters with the

other client through an out-of-band communication, the other client will be able to decrypt

the encrypted file.

Principle 9 Ensure data in the cloud server is tied to expiry time

The security of the protocol is enhanced by reducing how long information is retained

before being deleted. Both the keystream and encrypted files have an associated expiry

time, after which the server deletes them. This reduces the information that is exposed if

the server is ever compromised.

134

6.4 Protocol implementation

This communication protocol enables mobile devices with limited computational resources

to share encrypted files with the help of an external server with greater computing, storage

and bandwidth resources.

The protocol uses two communication channels. The first channel is assumed to be

insecure, such as the internet, using HTTP to transport messages between the mobile

devices and the external server. The second channel carrying “out-of-band” messages is

assumed to be secure and could be implemented using SMS messages to mobile devices,

with possible alternatives of email.

The first channel allows mobile devices to initiate six actions, by sending a message to the

external server and receiving a response.

The second out-of-band channel is used to send and receive three kinds of secret

information:

• a one-time-pad, which could use a more secure parameter instead with justification

• a file id

• a token id (and some additional parameters).

The protocol also uses a cryptographic hash function, such as SHA-256 which outputs a

32 byte hash value. For distinct pairs of strings s, t, we have H(s) != H(t) (with very high

probability).

Messages in the protocol are simply concatenated key=value pairs of parameters.

Each of the 11 possible parameters is identified by a unique character:

 a = action

 s = status

 c = code (error code)

 u = uid

 p = phone

 f = token or file

 d = data

 n = number

135

 e = expire

 t = timestamp

 x = signature

The timestamp is Unix time in seconds, and can help prevent “replay attacks”. The

cryptographic signature is a hash of the entire message string (before the signature is

added) and is used to authenticate messages.

The six actions and messages are: REGISTER, UPDATE, VALIDATE, GENERATE,

UPLOAD, and REQUEST.

1. REGISTER

The person using the mobile device app provides a username (eg, “Jason”). The device

hardware is also assumed to have a unique hardware identifier (eg, DeviceID). The mobile

app combines these strings using a hash function to get a unique id that can be sent to the

external server, without revealing any private information.

 uid = H(device-identifier, username); 32-byte value

The mobile device also has a telephone number at which it can receive an out-of-band

message via SMS.

The person registers an account on the external server by sending a message:

 a = register

 u = uid

 p = phone

 t = timestamp

When the external server receives this message, if no account exists for that uid, a new

account is created, and this message is sent back:

 s = OK

 t = timestamp

136

If an account already exists for that uid, the server responds:

 s = ERROR

 c = code (indicating type or error)

 t = timestamp

If an account already exists for the given uid, the person needs to pick a new username, to

create a different uid.

 ONE-TIME-PAD via SMS

Following a successful REGISTER message, the external server sends a one-time-pad to

the mobile device via an out-of-band channel using SMS to the phone number provided.

The person would need to cut-and-paste this string into the mobile device app to be stored.

2. UPDATE

In the mobile device app, the person also provides a password (eg, “MySecret”) which

provides a type of “bring something, know something” security.

(bring something = mobile device; know something = username, password)

The user’s simple password is combined with the uid to create a “hashed password”, which

will be sent to the external server.

 pass = H(uid,password)

The hashed password is encrypted using XOR with the secret one-time-pad. The entire

message (before the signature) is hashed to create a cryptographic signature for

authentication.

 a = update

 u = uid

 d = XOR(pass, OTP)

 t = time

 x = H(message)

137

The external server confirms the validity of the message by recomputing the signature, and

then decrypts and stores the hashed password in the account. The response is either OK,

or ERROR.

3. VALIDATE

This message is optional, but useful for debugging purposes when implementing this

protocol for the first time. The mobile device sends the following message asking the

external server to confirm the hashed password and signature are valid.

 a = validate

 u = uid

 d = XOR(pass, OTP)

 t = time

 x = H(message, pass)

The external server decodes the hashed password, recomputes the signature, and responds

with OK or ERROR.

4. GENERATE

The mobile device provides a unique 32-byte token and asks the external server to generate

a new encryption key that will be used to generate a keystream of “number” bytes that will

be stored until a given “expire” time. The unique token is created by hashing the uid, expire

and timestamp.

 token = H(uid,expire,timestamp)

The token is XOR-encrypted with the shared-keystream. The message sent to the server

has these parameters:

 a = generate

 u = uid

 f = XOR(token,shared-keystream)

 n = number (of bytes in the keystream)

 e = expire

 t = timestamp

138

 x = H(message, pass)

The external server generates a random MICKEY 2.0 key (20 bytes of key+IV). There are

two implementation-dependent choices:

• The server can simply store the 20-byte in association with the token and generate

the keystream on-the-fly when requested, or

• The server can generate and store the keystream, and then discard the 20 byte key.

With this option, the token becomes equivalent to a file-id and the keystream

becomes equivalent to the file contents.

5. UPLOAD

The mobile device asks the external server to store a file by providing a 32-byte file-id, the

encrypted contents of the file, and an expiration time, after which the file will be deleted.

The unique file-id is created by hashing the uid, filename, expire and timestamp.

 file = H(uid,filename,expire,timestamp)

The file-id is XOR-encrypted with the shared-keystream. The mobile device sends a

message with these parameters:

 a = upload

 u = uid

 f = XOR(file, shared-keystream)

 d = XOR(file-contents, token-keystream)

The external server stores the file and response with OK, or else ERROR if something

went wrong.

6. REQUEST

A mobile device can request a token-keystream or encrypted file contents by providing the

appropriate 32-byte token or file-id. The message has these parameters:

 a = request

 u = uid

 f = XOR(token, shared-keystream)

139

or f = XOR(file, shared-keystream)

 t = timestamp

 x = H(message, pass)

The external server uses the token (or file-id) to look up the requested data and sends it

back to the mobile device.

 s = OK

 d = XOR(token-keystream, shared-keystream)

or d = XOR(file-contents, shared-keystream)

 t = timestamp

 x = H(message, pass)

The protocol assumes the first mobile device (the sender) is able to communicate the

“token” and “file” to the second mobile device (the receiver) through a secure out-of-band

channel, here assumed to be sending an SMS message.

In addition, it is important the communication remains secure even if the external server is

compromised by an adversary. Therefore, the token-keystream is not used directly to

encrypt the file contents, since someone with access to the server could easily decrypt the

file.

Instead, the first mobile device must pick several random numbers R1, R2, R3, ... that are

used to walk through the bytes of the token-keystream in a deterministic but difficult to

predict order. These sets of random numbers must also be communicated to the second

mobile device through a secure out-of-band channel. For example, for a token-keystream

with length N=2k-1, which is a prime number, the index of the next byte to be used could

be calculated:

 index(i) = R1 mod N

 index(i+1) = (R2 * index(i) + R1) mod N

Appendix 6 provides a sample of previous FEATHER operations.

The mobile app was designed by using Android studio, then the app was transferred as a

file to be converted as a mobile local app. The code was written in Java on the Android

140

studio platform which works on the major operating systems of Windows, MacOS and

Linux. Tables 6.2–6.5 show the computations by the app after it was installed in five

different Android-based devices. Table 6.1 summarises the devices’ specifications.

6.5 Results and analysis

The protocol performance is measured based on two items: the overall speed as presented

in the following tables, and battery consumption.

6.5.1 FEATHER speed performance

Five different mobile devices with Android-based operating systems, shown in Table 6.1,

were used to test the protocol performance. The total time from downloading the

keystream, encryption and writing to storage was measured.

Table 6. 1 Specifications of five mobile devices used to test FEATHER

D-1 D-2 D-3 D-4 D-5

Model

Name

LG V20 Huawei

Nova 3e

Samsung

Galaxy S9+

Samsung

Galaxy A6+

Lenovo M10

Tablet

OS Android 7.0

Nougat

Android

8.1 with

EMUI 8.0

Android 9.0 P Android 8.0

Oreo

Android 8.0

Oreo

API

level

24 26 28 26 27

CPU Quad-core

2.15GHz +

1.6GHz

Quad-core

2.36 GHz

Octa-core

(4×2.7 GHz &

4×1.7 GHz)

Octa-core

1.8Ghz

Octa-core

1.8GHz

Chipset Qualcomm

Snapdragon

820

HiSilicon

Kirin 659

Qualcomm

Snapdragon

845

Qualcomm

Snapdragon

450

Qualcomm

Snapdragon

450

RAM 4GB 4GB 6GB 4GB 3GB

GPU Adreno 530 Mali-T830

MP2

Adreno 630 Adreno 506 Adreno 506

Battery 3200 mAh,

Li-Ion

3000 mAh,

Li-Polymer

3500 mAh,

Li-Ion

3500 mAh,

Li-Ion

4,850 mAh,

Li-Ion

Polymer

Table 6.2 shows the total time average for the five different devices. The LG V20 device

was the slowest at 18.44169 seconds, however it was very fast for 8 MB file size. The

Samsung Galaxy S9+ device had the fastest total time average (for Download, Decode and

141

Write) at 10.34381968 seconds. The total time for all five devices was 71.64568994

seconds and the average was 14.329137988 seconds.

Table 6. 2 Running 8 MB file 60 times and taking the average time (in seconds) for

five different devices

D-1 D-2 D-3 D-4 D-5

Device

Model

Name

LG V20 Huawei Nova

3e

Samsung

Galaxy S9+

Samsung

Galaxy A6+

Lenovo

M10

Tablet

Download 18.08334 11.594383 10.162450 17.28501 13.083983

Decode 0.13299 0.090583 0.08720308 0.1512014 0.1143399

Write 0.22536 0.12371666 0.0941666 0.2327666 0.1841967

Total time 18.44169 11.80868266 10.34381968 17.668978 13.3825196

In the experiments, 15 different file sizes from 1 KB to 16 MB were used to measure the

overall performance, as shown in Tables 6.3, 6.4 and 6.5. It is clear that FEATHER can

handle large files, and 16 MB is sufficient to transfer documents and photos. These

calculations use the Samsung Galaxy S9+, and a 16 MB file only needs about 19.0 seconds

for the overall time which includes downloading the encrypted file from the external

server, decryption time and storing it to the device (write).

Table 6. 3 Running 1 KB to 16 KB files and calculating time (in seconds)

File size 1KB 2KB 4KB 8KB 16KB

Download 0.302 0.317 0.445 0.274 0.283

Decode 0.00321577 0.00405 0.00138742 0.00310880 0.00486269

Write 0.092 0.066 0.067 0.071 0.086

Total time 0.39721577 0.38705 0.51338742 0.3481088 0.3738701

Table 6. 4 Running 3 KB to 512 KB files and calculating time (in seconds)

File size 32KB 64KB 128KB 256KB 512KB

Download 0.324 0.38 0.424 0.743 1.001

Decode 0.00102811 0.00158865 0.00231273 0.00852277 0.01105330

Write 0.085 0.066 0.068 0.057 0.052

Total time 0.41002811 0.44758865 0.49431273 0.80852277 1.0640533

142

Table 6. 5 Running 1 MB to 16 MB files and calculating time (in seconds)

File size 1 MB 2 MB 4 MB 8 MB 16 MB

Download 1.684 2.957 5.439 9.625 18.664

Decode 0.03689342 0.02132185 0.03243165 0.08367915 0.15980173

Write 0.057 0.085 0.092 0.106 0.19

Total time 1.77789342 3.06332185 5.56343165 9.81467915 19.0138017

6.5.2 Power consumption

An Android-based application GSam Battery Monitor [220] was used to measure how

much of the overall battery power FEATHER will consume using a Samsung Galaxy S9+

with a 3500 mAh Li-Ion battery. After running GSam and the mobile app for FEATHER,

results found that performing the operations on ten files varying from 2 MB to 16 MB

consumed less than 1% of all apps running in the background which consumed 1% of

battery power so FEATHER consumes only 0.0001% of battery power.

6.5.3 FEATHER vs CLOAK

The proposed FEATHER protocol is lighter than CLOAK, and is also much faster.

Comparing the file sizes 1 MB, 2 MB, 4 MB and 8 MB shows that FEATHER is faster.

For example, in Table 6.6, total time for file size of 8 MB is 110 seconds for CLOAK, and

about 9.8 seconds for FEATHER. Therefore, FEATHER will be even more practical if

multiple devices need to communicate at the same time. In addition, FEATHER consumes

80% less battery power than CLOAK.

Table 6. 6 CLOAK and FEATHER protocols: total speed time for different files

sizes

File size/total time in second CLOAK FEATHER

1 MB 20 1.77789342

2 MB 30 3.06332185

4 MB 60 5.56343165

8 MB 110 9.81467915

143

6.6 Attack analysis

This section provides an analysis of common attacks, and shows how FEATHER is

resistant to these types of attacks.

Man in the middle attack

The attacker can interrupt the data, can inject information and can redirect the traffic. This

can be between the two devices or between the devices and the external server, so it is

working on the communication channel. This can be prevented from occurring by

providing strong mutual authentication and end point authentication, as the FEATHER

protocol does, and by using hashing for messages, which is met as all messages are

wrapped in hash functions. Thus FEATHER is immune from man in the middle attacks.

Insider attack

On the server side, if an insider can gain access to the information, the only thing the insider

can get is the keystream. However, the message will be included in a hash function, as well

as the one-time-pad, another secure parameter such as timestamp and random number only

known by the mobile device users. On the mobile side, the mobile will validate the

messages received from the server and other mobiles.

Denial of service attack

The FEATHER protocol has steps in the external server to authenticate users before

accessing the service by 1) authentication of users’ credentials, 2) updating the accessing

parameters, and 3) validating the users’ messages and hash functions. As the verification

by the server and devices is mutual, a denial of service attack is not applicable.

Chosen IV-attack

The keystream is generated by using MICKEY 2.0 and (key, IV) as the initial input. In

FEATHER, the IV is not used more than once with the same key, thus FEATHER

eliminates this threat by preventing reusing the IV, as well as by including the IV in the

hash function, so an attacker choosing the IV will not result in the key being revealed.

Two time pad attack

Assume there are two messages m1 and m2, if the same key (k) is used that is called two

time pad, and there are two ciphertexts (c1, c2) then

144

 m1⊕ k that results in c1 and

 m2⊕ k that results in c2

So it is easy for the attacker to perform the XOR operation for ciphertexts in order to reveal

the plaintext as:

 c1⊕ c2 that is, using statistical frequency analysis leads to m1⊕ m2

In the FEATHER protocol, each file was encrypted by using a different keystream as well

as a different one-time-pad for every session and time timestamp, thus this attack is not

applicable.

Impersonation attack

This kind of attack can happen where the attacker gains access to a mobile and requests a

response from the server. The server will validate and authenticate the request. As mobile

users will be using a hash function including one-time-pad (as discussed in the protocol

implementation), the server also will hash the keystream with one-time-pad among other

user credentials, meaning this attack is not feasible with FEATHER.

Brute force attack

As the complexity of a brute force attack in key = 80 bit in general 280, the FEATHER

protocol used a hash function. For example, using D-3 (a user may choose other stronger

hash functions, and that will not affect the speed performance as the slower part is the

downloading time), the computation power relies on the implementation, and adding other

secure parameters such as using OTP, that is similar to the one-time-pad cipher, which

substantially raises the computation power needed to break the protocol.

6.7 Discussion

In FEATHER, downloading is the most time consuming task compared to the CLOAK

protocol. If it requires more than two mobile devices to communicate at the same time, the

external server generating the keystream in the FEATHER protocol is much faster than

CLOAK. This will reduce the overall time as the decoding time is just performing XOR

on messages with the keystream which is fast. The mobile battery lifetime is also longer.

The proposed lightweight security protocol FEATHER will help to provide confidentiality,

authorisation and security for users in mobile cloud computing technology and IoT

145

technology. It also helps to reduce power consumption, which will improve mobile

applications’ overall performance. The proposed lightweight protocol was analysed

against possible known attacks, which showed it is secure for implementation. The

MICKEY 2.0 cipher was used as a pseudo-random number generator, however the

FEATER protocol can be adapted to use other IV-based lightweight synchronous stream

ciphers. The proposed MICKEY 2.0.85 in Chapter 5, which is 23% faster in generating

pseudo-random numbers, can also be used. However, even using MICKEY 2.0 in

FEATHER is fast enough. MICKEY 2.0.85 is useful for other smaller applications.

6.8 Conclusion

Security in mobile cloud computing is critical and is a demanding challenge.

Improvements in this field are essential for the IoT. By developing a new lightweight

security protocol, the FEATHER protocol will reduce cost and reduce time used in the

external server. Therefore, it will increase the number of devices communicating at the

same time, and will enhance mobile cloud computing applications. It will help external

server providers serve more users, and assist more new cloud providers to join this market

to meet growing consumer demands. The FEATHER protocol is an important step to fulfill

the requirements for secure mobile cloud computing with internet connectivity.

The following chapter continues the implementation of lightweight encryption in small

hardware with a real-world application. It presents a secure system including prototype

device and secure protocol for communications without internet connectivity using

MICKEY 2.0 and the proposed variant MICKEY 2.0.85 presented in Chapter 5 as the

optimised tools.

146

Chapter 7: Proposed security cryptosystem with proposed

device for security application in eHealth without internet

connectivity: Near Field Secure Data Extractor

7.0 Chapter overview

The FEATHER protocol developed in Chapter 6 requires internet connectivity. This

chapter presents a lightweight cryptosystem with RFID technology that does not need

internet connectivity. It provides security for extraordinary situations, such as emergencies,

remote areas and pandemics, where internet connectivity is not accessible.

Section 7.1 provides an overview of the chapter including the aim of the study and the

contribution, Section 7.2 introduces the essential background, Section 7.3 presents the

chosen scenario to demonstrate the proposed security cryptosystem, Section 7.4

demonstrates the major processes for the prototype device with security protocol and

discusses the proposed cryptosystem in an eHealth setting, Section 7.5 describes the major

components of the prototype device, Section 7.6 outlines the RFID tag creation procedures,

Section 7.7 discusses key management, storage and rotation, Section 7.8 discusses device

processes, Section 7.9 discusses the emulation of the device and present device

performance testing, Section 7.10 presents attack analysis, and Section 7.11 presents

overall analysis and discussion, and shows other potential scenarios which may benefit

from the cryptosystem. Section 7.12 summarises the research contributions and the

importance of the proposed cryptosystem in security applications with RFID technology.

7.1 Introduction

This chapter describes the development of a prototype device called Near Field Secure

Data Extractor (NFSDE), which has strong security and lightweight protocols for RFID

tag communications [221]. RFID tags are widely used for recognition and authentication

in sensor networks which are prominent in the internet of things (IoT). Older applications

of the IoT suffered from an insufficient defence in low-power systems [222]. Poor or non-

existent IoT security has allowed devices to be seriously compromised via the internet

[223]. In supermarket authentication, RFID tags require data to be transmitted without

touch [224]. This ensures RFID tags are an easy and cost-effective validation method for

147

technologies such as pass keys, monitoring (such as product monitoring, shipping of

products and goods) and transmitting data including package information descriptions and

receiver directions. RFID systems offer an efficient alternative, and avoid human error

because of the lack of manual interaction as RFID tags include prompt verification that

can also be verified directly [225].

Because of these benefits, RFID tags can improve healthcare, especially with an ageing

population and the risk of medical errors by healthcare practitioners. Solutions should be

sought to ensure medical information is stored safely and efficiently and to retain vital

health documents in identification cards. Consumers have continued to ignore data

protection and safety requirements because RFID tags are simple to use and cost-effective

[226].

Scientists have begun suggesting stream ciphers as an appealing security solution for low-

cost implementations [227]. Present stream cipher solutions typically lack authorisation,

integrity and authentication by public key infrastructure asymmetric algorithms [228].

Stable key exchange is a continuing problem in cryptography [229], [230]. While

asymmetric algorithms should fix this issue, they need more computing resources than are

available in small and constrained device systems. [231] selected these issues for a

hardware solution and proposed custom hardware called Recryptor. For near-sensor IoT

implementation, another study [232] used a specialised chip named Fulmine. This thesis

research uses a radically different method to achieve the same goal. The approach is better

as it uses off-the-shelf software and equipment, meaning the new method and device is

more scalable and affordable, and available for common devices. The approach uses

symmetric cryptosystems that are suitable for the modern key exchange approach to

maintain privacy, authentication and integrity.

MICKEY 2.0 is a lightweight stream cipher used in physical and portable applications and

has different uses including hardware and software systems [233]. While MICKEY 2.0

was developed to incorporate hardware, it is also suitable for software usage. Its efficiency

and effectiveness were evaluated compared to Trivium and Grain (see [65] and [171] for

more information). Banik [234] proved MICKEY 2.0 was not vulnerable to attacks as it

uses an unusual combination to change its internal components, rendering it impossible to

find R or S bits (R and S are both linear and nonlinear registers, see Section 5.5).

Furthermore, the dynamic internal architecture offers a more robust randomness than

148

Trivium and Grain ciphers [235] to differential fault assaults. For the reasons stated earlier,

users use the specific lightweight encryption MICKEY 2.0. There has been one recent

encoding approach for portable, computerised devices [236] that examines eight

lightweight different hash functions integrated in block cipher using software

implementation. They used a passive cryptographic RFID (CRFID) to detect the basis of

these encryption methods in their studies and proposed the MD5 hash feature as the most

random among them.

The aim of this chapter is to use a lightweight synchronous stream algorithm that fits RFID

technology, recognising the need for low-cost, power and computation efficiency, while

using RFID tags without internet access while taking advantage of and retaining the usual

advantages of a public key infrastructure (see Table 7.1 for explanation). To accomplish

this authentication framework, the chapter develops a prototype device named NFSDE,

using the MICKEY 2.0 cipher and carried out a safe key–IV exchange. A prototype tool is

developed. The proposed system’s device emulation includes a stable protocol for

encryption. This device’s security relies on a reliable record keeper (R) and secure flash

drive (USB).

An example of use is a medical practitioner needing to access substantial medical records

(for example, allergies and current conditions) where an individual (patient) is situated in

a rural location or in a hazardous zone, and internet or cellular access is either not available

or cannot be trusted. This medical case has been selected for this research as one example

of how the product is used, because it has the good protection criteria and requirements as

a demonstration method. For cases where connectivity is insecure, the definition should be

used and modified for virtually any security sensitive application involving connectivity

to protected networks. As internet access is not always possible, this new system can even

be used to authenticate out-of-band for used devices.

Main contributions

1. This research proposes a protected RFID-based critical data security device named

NFSDE. This tool is a concept which could be used directly or adjusted if desired by the

customer. It may also be viewed as a reference for building specialised hardware with

functionality compatible with the prototype system.

149

2. By applying the MICKEY 2.0 encryption, a secure eHealth (proof of concept)

framework is suggested. The framework is easily adaptable for uses other than those in the

health field. This includes a mechanism instead of using a public key infrastructure to make

it easier to use various lightweight stream ciphers.

3. The proposed cryptosystem is built using off-the-shelf hardware encryption and

streamlined lightweight stream ciphers to improve RFID protection and offer comparable

benefits to the public key exchange.

4. It contributes to the creation of robust and secure key and initialisation vector (IV)

sharing (multiple key) mechanisms as well as key management and key-update strategies

for a secured RFID reader that are not focused on the internet or wireless communication.

5. The process time of using NFSDE to retrieve 4 K of RFID content using MICKEY 2.0

is a matter of milliseconds [221].

7.2 Background

RFID security is challenging in current worldwide applications. RFID technology has

become very widespread for authentication, monitoring and object tracking. It is now part

of IoT technology. This technology uses radio waves to track objects. For instance in retail,

it is used for goods scanning. A label containing the identification number can be scanned

to get the price and name of the item and all related information. RFID tags can be in

different forms including in cards, wristbands and keyfobs. Advances in technology are

making tags smaller with more data storage capacity, and reducing the cost over time.

Figure 7.1 shows the RFID main components of the RFID reader and RFID tags. Tags

store the object information, while the reader checks and receives the tag information by

implementing stored software. The antenna creates a magnetic range that detects tags. For

more information about the RFID technology infrastructure, see [237], [238].

150

Figure 7. 1 Illustration of RFID tag basic functionality

There are two main types of tags: passive tags and active tags. Passive tags do not have an

internal power source, so rely on the electromagnetic waves that come from the RFID

reader. Passive tags are the cheapest in the RFID system. These tags are used for access

verification, contactless payment, goods itemising and labelling for identification, and

object tracking [239]. Active tags are self powered by an internal battery. They are more

efficient in object tracking as they can identify the object’s status and locations. Being self

powered they generate signals with a higher range than passive tags, and are more

expensive than passive tags. For cost efficiency, the passive tags are more desirable for

small verifications and tracking applications [239]. For applications for RFID tags in real-

time object tracing and location identification, especially in radio noisy environments, see

[240].

This thesis uses an eHealth example as security and medical data protection are very

critical in health. The eHealth scenario is used to demonstrate step by step system

implementation. The NFSDE device with secure protocol can be implemented in other

situations where internet connection is not reliable.

Stakeholders in eHealth implementation include patients needing medical care, and

providers of medical care including, for example, paramedics, nurses, medical

practitioners, medical records keepers and administrative staff. The patient may make a

regular visit or have an urgent situation that requires a medical practitioner.

151

7.2.1 Lightweight cryptosystem

As this thesis cryptosystem is lightweight, lightweight cryptosystems are reviewed. Using

lightweight encryption as a security approach, where there are processes like exclusive OR

(XOR), which are appropriate for use in smaller devices, is one way to provide fair

protection to counterfeit attack resistance as shown in study [241] which presented a

lightweight verification protocol for hardware deployment and clarified how their method

can enhance protection in RFID.

 Research in [18] explain the use of a lightweight encryption framework for RFID

applications, as well as for the IoT generally and include an outline of lightweight

encryption solutions. They also address the protection offered by every system and

illustrate the use of software and hardware. They also demonstrate how lightweight

encryption cryptosystems have benefits over using the traditional advanced encryption

standard (AES). In recent decades lightweight encryption has become more popular as it

provides substantial security and can be used in computation-restricted devices and low

memory. Products benefitting from lightweight encryption include paypass cards [242].

While some cryptosystems like AES have better arithmetic capabilities, lightweight

encryption makes encryption faster and enables more information transfer in a shorter

period. Lightweight encryption enables improved inter-device connectivity. The related

research then concentrated on lightweight stream ciphers. The eSTREAM project [19],

[65] assessed the proposals of ciphers for their suitability for software and small device

hardware. In the final step of the eSTREAM initiative three candidates, Trivium, Grain

and MICKEY 2.0 ciphers, were chosen for hardware deployment, however they are

compatible with software implementation. Study [242] provides an extended description

of lightweight cryptographic algorithms, their implementations and the classification of

such systems in terms of their properties and specifications, such as lightweight systems

and ultra-lightweight cryptosystem [242].

Lightweight stream ciphers have been used for recognition and verification purposes. The

goal of the chapter is to build a secure protocol with a encryption tool with a high level of

simultaneous identity authorisation, concentrating on immunity from denial of service

(DoS) attacks and compatibility with RFID tags [243].

152

Lightweight cipher blocks, including LBlock [244], were used for the security of the device

with a small number of gate equivalents like 1320 GEs. Nevertheless, another study [245]

showed a 23-round LBlock is vulnerable to attack.

Mimicking the Data Encryption Standard (DES), DESL [246] lightweight block cipher

was developed to be a similar lightweight encryption cryptosystem to have consistency

with the RFID tags, and it was designed to be an alternative competitor to the lightweight

stream cipher in the eSTREAM project, which is 25% smaller than DES (45% less than

AES) [247].

In situations where the key is reusable and saved for encryption, the data has to be

protected. In this sense, the use of electrically erasable read-only programmable memory

(EEPROM) is one of the methods suggested. This method has been contrasted with other

storage techniques which were introduced in [248].

For low-power computation hardware, many realistic real-life implementations such as

RFID tags, need effective encryption. The first to use MICKEY 2.0 as an encryption

method was Babbage and Dodd [215]. Depending on the cost effectiveness of RFID tags,

they must be tracked, checked and modified to maintain their protection [249], which made

this technology effective in securing information with affordable cost. This thesis research

uses the identification device, NFSDE and MICKEY 2.0. With the aid of a microcontroller,

such as Raspberry Pi, that is paired with a RFID reader and a fingerprint reader, RFID tags

can now be verified without the need for internet access.

7.2.2 Physically Unclonable Functions

Physically Unclonable Functions (PUFs) [249] designed for resource-controlled protection

became an important research and industrial improvement area. However, PUFs are not

suitable for this current use, as PUF products available for the market are still

environmentally responsive and are not cost-efficient. PUFs may not have compatible

security under severe conditions. Due to the focus on the eHealth scenario which needs to

be suitable for unfavourable circumstances, PUFs are not included in this architecture.

Recent work demonstrates potential to mitigate this problem [250], [251]. Appendix 7.3

provides more detail on PUF usability with NFSDE and explains improved future PUFs.

153

7.3 eHealth as case study and illustrative scenario

An example of an eHealth RFID based system includes tracking the performance of

students in universities by integrating RFID towards their state of health. These provide

patient history, health reports and relevant clinical details such as blood pressure and

medication scripts [252]. eHealth applications require strong protection. However, if

internet communications are untrustworthy, potential risks by attackers will be aggressive

[253] because the current protocols have to be adapted in order to resolve connectivity

problems and to include cryptographical methods suited to this case. Nevertheless, they

offer approaches on open and untrustworthy networks in their study [253] whereas the

system developed here gives protection whenever the network is weak or absent.

Researchers emphasise the value of laws and guidelines to maintain secure contact in order

to examine emerging eHealth applications in the IoT [254] and to check further in-depth

analysis. See [255-257] for more detail on IoT protection issues and technological

upgrades.

7.3.1 eHealth scenario description

In some situations there is no internet connectivity such as remote places or disaster areas,

or when internet coverage malfunctions for any reason. The security and privacy of patient

data is still critical, as unauthorised people can delete or manipulate patient health data

status, and sensitive information such as medical condition and medicine dosage, which

could be life threatening. The eHealth scenario is chosen as an example for demonstration

purposes for NFSDE devices and the security protocol.

One application of implementing the RFID technology in eHealth monitoring is linking

students’ RFID tags for their progress performance at university with their health record,

which can include their medical history, current health status, current medications if any

and also the relevant useful health data. Some students may have heart conditions, asthma,

diabetes or blood pressure, and they may have prescribed medications for these medical

conditions [252]. Where there is no internet connectivity, the proposed protocol is

important, as the data needs to be protected considering the attacks can be more brutal,

which can alter or modify or even delete critical health data [253]. The current protocols

must address the communication challenges by modifying and fixing the used

154

cryptographic methods that are customised for such situations [253]. In a research study,

[255] proposed a security solution that targets untrusted or anonymous networks. On the

other hand, this protocol provides security in cases where the internet connection is either

weak or not available. More insight about eHealth applications and current IoT real time

healthcare technologies is in [254], which also emphasises the importance of establishing

strong policies, guidance and protocols that regulate the communications to ensure

security. [255-257] review the current security challenges in IoT applications.

7.3.2 eHealth scenario process

This section describes how to implement the proposed cryptosystem. Table 7.1 describes

the notation used in this chapter.

Table 7. 1 Notation description

Notation Name Explanation/Notes Notation Name Explanation/Notes

R Medical Record

Keeper

This is a role and

indicates a person

who has privileged

access to all data

and cryptographic

secrets. The person

acts as a gatekeeper

to sensitive data and

authorisation.

This role is likely to

be fulfilled by

multiple individuals

depending on the

administrative

organisation of the

issuing authority.

K1e Data key

stored in the

SD before

decryption

When the provider

enters the passcode

for the SD(USB), K1e

is decrypted to K1.

P Patient Is a person in an

emergency or a

remote situation,

where a reliable

internet connection

is not available.

Emergency or

rescue workers

represent an

appropriate use

case.

IV0 IV “seed” for

the record

keeper after

decryption,

which is

considered a

“Secret”

IV0 is used as a

starting point for

generating the

initialisation vector

for encryption of

authentication. It is

XORd with a unique

tag ID to create the

final authorisation

IV. For the provider,

it is XORd with the

provider’s unique tag

ID to create IVrd. For

the patient, it is

XORd with the

patient’s unique tag

ID to create IVrp.

These hashes are

used because they

155

consume low

power/CPU.

D Medical

Provider, (eg

EMT,

paramedic,

nurse)

The provider has a

device to read the

RFID tag of the

patient.

IV0e Encrypted IV0

(in the SD) for

the record

keeper

When the provider

enters the passcode

for the SD, IV0e is

decrypted to IV0.

SD Secure Flash

Drive (USB)

It has a “keypad,”

which is used to

independently

encrypt/decrypt data

stored therein.

IVrp IV for

authenticating

patient

signature

Created by XORing

IV0 with the patient’s

unique tag ID. These

hashes are used

because they

consume low

power/CPU.

K0 Key to

Encrypt/Decrypt

Patient Data

K0 is read from the

SD. Together with

IVP, this is used to

encrypt or decrypt

patient data by using

MICKEY.

IVrd IV for

authenticating

provider

signature

Is created by XORing

IV0with provider’s

unique tag ID. These

hashes are used

because they

consume low

power/CPU.

K0e Data key stored

in the SD before

decryption

When the provider

enters the passcode

for the SD, K0e is

decrypted to K0.

IVd IV to encrypt

authorisation

for provider

Is created by hashing

the checksum of the

provider’s PIN with

unique ID through

concatenation. These

hashes are used

because they

consume low

power/CPU.

K1 Key to Encrypt

Authentication

(from the record

keeper)

Authentication from

the record keeper is

encrypted with

MICKEY using K1,

IVrp (for patient),

and IVrd (for

provider)

IVP IV to encrypt

patient data

Is created by

concatenating

checksum hash of

fingerprint template

with unique patient

tag ID. These hashes

are used because they

consume low

power/CPU.

Source: [221]

In the eHealth scenario, as shown in Figure 7.2, the patient (P) will be given an RFID tag

which can store around 4 KB of encrypted patient health information by the MICKEY 2.0

cipher. There are many ways to carry the tag as the patient can use a card, wristband or key

fob that contains the tag. The patient’s tag needs to be certified for encryption by those in

charge of storing the medical records.

156

Figure 7. 2 Relationships between the individuals in eHealth scenario

To create the patient tag, first the record keeper (R) will scan the tag to ensure ID

uniqueness, then as a biometric security and identity measure the patient’s fingerprint will

be scanned, the card will be read, encrypted and then signed cryptographically with the

medical data. After that, the medical data will be written and stored on the patient’s tag.

The patient keeps this tag to ensure that, in a medical emergency, important clinical and

medical information is readily available for medical treatment providers. A provider (D)

is any medical professional (doctor, nurse, EMT, paramedic, etc.) who might require fast

right of entry to a patient’s medical information such as existing conditions and allergies.

The medical provider needs an RFID tag for RFID reader activation to permit decoding of

the patient’s medical information. The record keeper (R) creates an authorisation tag by

confirming the provider’s identity and the provider level of authorisation (to access some

necessary information, not all tag stored data).

The provider will be supplied with a private number (PIN) that is used to encode their card.

The identity of the medical provider and level of authorisation are encrypted and the record

keeper will sign the previous information cryptographically. Then all this information will

be stored with encryption on the provider tag.

To view the medical record, the approved medical provider simply has to check the

patient’s tag by scanning it, as well as scanning the patient’s fingerprint. Providers will

have an encrypted USB drive, their RFID ID card, and a PIN to authenticate.

157

The authentication procedure has a similar process as a debit card transaction (retrieval of

account data by the payment issuer for checking during the check-out process), but requires

less time. Such authentication procedures only take place once a session. Figure 7.2 shows

the details received by each of the entities (Record Keeper (R); Provider (D), Patient (P))

as well as the position of every person’s task. The record keeper (R) will validate the

medical provider (D) and the patient’s (P) medical information (data) and biometrics on

the patient’s RFID tag. The provider (D) must activate the NFSDE using their PIN and

their RFID tag. If the individual (P) has a biometric identification matched, the medical

provider (D) should be able to access the patient’s private medical information using the

NFSDE.

7.3.4 Proposed cryptosystem as solution for eHealth setting

Several realistic applications need efficient encryption for low-power hardware. Cost is

mostly the motivating factor; however, another more critical aspect includes circumstances

where internet quality is inconsistent or non-existent. In such a scenario, sensitive data will

need to be locally stored, safe “at rest” and open to low-power and small devices users.

Encryption is an essential requirement for personal identifying information and

confidential records, such as medical or financial information. In study [258] discuss

implementing personal identifying information for privacy of information, in particular for

eHealth. Notably, once a reasonably stable lightweight encryption has been created, no

more significant advances are required for protection and privacy.

An important concept of “privacy by design” is that secrecy is not a zero-sum game [259].

Technological constraints cannot be a justification for violating privacy.

The new proposed secure framework has three elements of security: secrecy, integrity and

availability, also known as the CIA Triad [260]). The third element, “availability”, is very

critical, because it actually allows vital data to be accessible in cases where the internet

may not be available as this thesis protocol provides. It is also part of “security in Depth”

[261]. Compared to the CIA triad, the suggested program incorporates the three As of data

security: authorisation, authentication and accountability [262].

158

The eHealth example illustrates that technological restrictions do not always have to be a

source of protection limitations. Data protection is critical even when connectivity and/or

electricity is not available, for example in rural areas and in disaster situations, as well as

during network outages or maintenance. Lightweight encryption for secure data storage

strategies can be crucial in these circumstances. This thesis, as an indication of the

implementation of the suggested method, finds a situation in which vital medical details

have to be available and stored on the tag for the patient. The internet and cellular

connectivity are unstable in this situation. Situations may include rural regions lacking

internet connectivity or a crisis scenario where communication equipment has been

affected. For such cases, the battery life of an activated unit, such as an RFID reader, is

likely to be crucial, because the capacity to refresh will be restricted. Workers or security

forces in remote dangerous areas can urgently require medical care. Gaining immediate

access to vital medical details can help save lives. This proposed method and prototype

was developed for circumstances (such as urgent and serious medical emergencies) where

delaying access to critical health data would be extremely undesirable. As a consequence,

a considerable amount of time is expended on the “up front” procedures for processing the

data and executing verification and authorisation. However, when it is essential to access

the data, the processes are designed in such a way as to be fast and reliable. Authentication

and permission only take a few seconds, partly because the keystream generation algorithm

(MICKEY 2.0) is fairly fast and partly because the number of steps required to reach the

reader without losing protection has been reduced. The test method used MICKEY 2.0, but

the method is expected to be true for other lightweight ciphers, such as Trivium and Grain.

Any threat will be ineffective because the keys and the IVs are secured by a functionally

protected tool (USB).

The current protected cryptosystem is very robust. For example, the two key components

of the MICKEY 2.0 encryption cipher implementation and the NFSDE components with

different application modules may be adapted and changed to be acceptable for the desired

applications, allowing users to be connected to a defined protection solution, while

promoting consumer ease of usage and innovation.

159

7.4 Major processes of eHealth scenario setting and practical low-power

ciphers applications

This section explains the main processes in the eHealth scenario, why the eHealth scenario

was chosen, as well as some other potential scenarios where the proposed cryptosystem

can meet security needs.

According to cost or performance considerations, the protection capabilities of certain

RFID based systems are disabled. Several researchers have been able to establish

cryptographic methods and imitate low cost hardware communication protocols [263],

[264]. In [265] refuted the mistaken assumption that security is hard to achieve and that

privacy is too costly which has generated an adverse circumstance that has ultimately

influenced the whole world. The ideas and realistic recommendations outlined here prove

that privacy and protection can be simple, cheap and efficient.

The eSTREAM ENCRYPT project [65] was introduced to resolve the problems alluded to

above. Because protection requires more than just using algorithms, a full framework is

described to demonstrate security, privacy and authentication at low cost for a low power

small device. This thesis suggests a novel prototype device named NFSDE, which does

not need an internet link and enables confidential information to be read and written with

encryption to the RFID tag in a secure way. The new framework in this thesis meets the

existing standard practices for secrecy, integrity and availability [266] with the three As

for data privacy: authorization, authentication and accounting.

The proposed security system is intended for use in circumstances where the internet may

be stopped for security purposes, or the internet is not accessible, such as in disaster or

remote areas. The system concept is a prototype device that requires low power, has

minimal memory requirements, and is lighter than a traditional computation machine. Such

features are useful in cases of emergencies, where a portable system is needed or where

the supply of electricity is not sufficient. Adapting such technologies has culminated in

early adopters neglecting encryption which may harm the online community [266].

Many experiments on lightweight encryption tend to have concentrated on automatic

object detection, for example shipping boxes, cars and robots. In research [224] the

scholars rely on confidential personal data being given and sufficient; this inevitably

increases uncertainty and criticality due to the presence of external human identification

160

methods, including biometric reference identification and the “eyes-on” authentication of

the patient’s identity.

The proposed prototype works as tools and processes allow time to be invested “up front”

to approve and authenticate RFID tags. However, the read time requires just a few seconds

and vital data can be retrieved easily in unfavourable circumstances, as shown by the

device simulator.

Since this is a standard-based tool and does not need to be tied (allowing adapting, altering

and modification of the NFSDE components), hopefully it will encourage users to use it to

apply protection to their own low-power ventures or to embrace these ideas and to improve

them beyond eHealth. They may modify and alter these security features provided by the

proposed secure system to be suitable for many applications.

The eHealth scenario was chosen as it is extremely security vulnerable and demands the

most robust protections due to privacy issues, data criticality and speed of access. The

suggested secure framework addresses the “worst-case” situation for secrecy, integrity and

flexibility without sacrificing the low-power requirements.

7.5 NFSDE device components

This section presents the NFSDE components used by medical providers to allow them to

read medical records quickly and in a secure manner. The most optimal components were

chosen to make the NFSDE perform at full potential. However, these components are an

example to illustrate the concept of the NFSDE device, and users are free to choose

different components as long as they are compatible to work together in NFSDE and

perform the required and defined functionalities. The selection of the NFSDE components

was based on cost and performance including data access speed and an overall high level

of protection. In addition, with advanced technology, NFSDE components can be modified

and improved which prove the prototype is flexible for alteration and adaptation. Figure

7.3 shows the prototype contents.

161

7.5.1 NFSDE device components

The components were chosen to be cost efficient, and to be compatible with each other,

however, they can be replaced with cheaper components as long as they still work as one

unit, as advances in technology will result in more powerful hardware at lower price, so

the flexibility of NFSDE is a goal itself. The security protocol and NFSDE work together

as a secure cryptosystem, and the NFSDE is a flexible prototype to be used as a guide for

implementation based on users’ specific requirements.

Figure 7. 3 Core components of NFSDE

Storage – Secure USB drive

The most challenging aspect of any security protocol is storage and delivery of the secret

keys. A regular storage device usually is not secure as it is possible to access the device

physically or using side channel frequencies analysis which may expose the stored keys.

On the other hand, using external servers for key storage and exchange is insufficient due

to no internet connection. However, the key updates and backup can be optional through

cloud based storage services such as provided by AWS.

The second challenge is tag authorisation and authentication which is a record keeping job.

Thus, it is essential to have lightweight storage and portable devices.

These challenges were overcome in this thesis proposed NFSDE device by using an

encrypted USB device that uses passwords for access, and uses AES 256-bit for encryption

at a low cost of around $10 [267]. It is necessary to have policies that arrange the key

storage in the USB and not stored in the RFID reader if not attached to the USB, and the

162

USB encryption must be updated based on a regular scheduled time. Regularly updating

the keys rotation and the USB encryption will mitigate possible attacks and security issues.

One key recovery will not affect other keys as discussed in the attacks analysis section.

Other storage devices include EEPROM [268]. Assuming EEPROM is internal not

external, it may be used for the keys storage, however, it is not immune from the side-

channel attack [269]. Other possible tools are Physically Unclonable Functions (PUF)

[250], [251]. The PUF is not currently cost efficient, however in the future it can be adapted

within NFSDE.

CPU – Raspberry Pi

The central processing unit (CPU) is the heart of the NFSDE. Raspberry Pi [270] can act

as the computer within the NFSDE. Raspberry Pi is low cost and consumes minimum

power [271]. Thus, it is considered the optimal solution for resource constrained devices,

and it is also used for cryptographic implementation in blockchain [272].

Although small components were chosen for the NFSDE device, the potential

implementation of the secure protocol does not require all the power the Raspberry Pi can

provide, as it only computes the simple bit shift and XORing with few ANDs operations.

NFSDE only needs a single Raspberry Pi and a few NFSDEs are needed by medical

practitioners, which will reduce the overall cost, as most components are the tags which

are very cheap. Every medical provider and patient needs one RFID tag.

Raspberry Pi can handle decryption, and can process the operations needed for the RFID

reader and the fingerprint scanner. A low cost option that has enough power to do the

previous process is Adafruit PiTFT (320×240, 2.8) which can be accompanied by a

touchscreen for manual input [273], [274].

Fingerprint reader – Hamster Pro 10

Hamster Pro 10 is a relatively new portable fingerprint reader device that is able to create

a 500 byte template that is enough for the proposed system, which is a great option for

patient fingerprint reading [275]. Hamster Pro 10 detects if the fingerprint scan matches

the stored reference fingerprint template. While a fingerprint is a type of biometric data,

some adjustment is required.

163

The system setting can be altered for multi-fingerprint scan recognition if the primary

finger is injured, taking into consideration that each finger needs 500 bytes of reference

template stored in the RFID card. Different biometrics may be used instead of a fingerprint,

however, the fingerprint is faster for identification.

RFID reader – MFRC522

The MFRC522 is a very low-cost RFID reader and a very suitable choice for prototype

functionality. It is able to process the write and read operation on the standard tags as well

as MIFARE tags [276].

Tags

MIFARE tags with 4K storage capacity [277] were considered sufficient storage for the

prototype device. The contactless property can be in wristbands or key fobs, which makes

MIFARE suitable for patients, as well as swap cards like ID cards for medical practitioners.

Other forms may be used for specific medical providers or patients. The functionality of

the device can be adapted to support different forms of RFID tags.

In future CRFID tags that use PUF [250] can be used for patients as well as providers,

however the current cost is not feasible, as every patient and provider needs a minimum of

one RFID tag which will impact the overall cost. However, in the future with advances in

technology and cost reduction, CRFID tags could be used in this device, which shows the

flexibility of the proposed system.

7.6 Tag creation and implementation process

This section provides details of the tag formation phase to both the provider and the patient,

also describes the development steps. Figure 7.4 shows the record keeper rules and

provider tag creation.

7.6.1 Creation of the medical provider tag

This section provides a step by step demonstration of the creation of medical provider

processes, illustrating the data flow and process flow, and explaining the authentication,

authorisation and encryption/decryption process.

164

Use of MICKEY 2.0

The MICKEY 2.0 algorithm is used for two separate purposes inside the provider tag. The

first application of MICKEY encoding on the provider tag is to encrypt the “provider

identification” and “authorisation” sectors. The common assumption is that a practitioner

needs only a fraction of the patient’s data to be processed. Once the authorised field is

decrypted by the NFSDE reader, the software on the NFSDE machine is designed to show

only the data that the provider is allowed to access depending on the validity of the

permission area. IVd, which is the IV for the provider, is unique to the provider as well as

the RFID tag and can be calculated by generating the PIN chosen by the provider and the

specific tag ID. In addition, the K0 hidden key is still used. K0 is a variable over time.

MICKEY 2.0, IVd and K0 are used to encrypt the permission and identification data before

being placed on the tag.

Figure 7. 4 Processes for provider tag creation

Once data is authenticated, a 32-bit cyclic redundancy check (CRC) [278] is computed for

use in the next step. While 32 bits are not powerful enough to construct a cryptographically

efficient hash, it can be used to avoid a collision attack [279]. This restriction is solved by

encrypting the (hash) by MICKEY 2.0.

The decryption method with MICKEY 2.0, K0, and IVd first completes the activation of

the RFID reader. The second main work of the MICKEY 2.0 algorithm is to authenticate

it, as integrity is one of the foundations of information protection. This is necessary to

recognise that the details are derived from the intended source and have not been tampered

165

with. As the world is resource-restricted, lightweight signatures must be used without

losing credibility. In order to ensure that the data has not been tampered with, the 32-bit

CRC of the authenticated authorisation information is used. To ensure the validity of the

name, the second 32-bit CRC string “common salt” + IV0 + specific provider ID + KTI

(key time index) is used.

An authorisation is validated using special attributes of all bodies to ensure that the

“relevant object” has been approved by “this record keeper”. The IVrd is IV which is

generated by hashing the hidden IV0 and the generic RFID unique ID. This fourth key is

special to the tag and the record holder. In fact, the K1 hidden key is used. IV0 and K1 differ

over time, as measured by the KTI. The 32-bit CRC of the cryptographic authorisation is

concatenated to a signature composed of a 4-byte (32-bit) CRC of “common salt” + IV0 +

special ID + KTI. This authentication string is protected from intrusion by encrypting a

concatenated string with MICKEY 2.0, IVrd and K1 that has two implications on it. The

first concept is data consistency, where the first CRC ensures the validity of the identity

and authorisation areas, while the second CRC ensures the legitimacy of THIS code and

this record keeper. The record keeper can authenticate the validity of the authorisation

through using two lightweight functions. This signature sequence is placed in a specific

data field on the patient data document, and the two values of the CRC guarantee the

consistency of other essential fields stored on the provider tag, offering low power [222],

[280] yet efficient security against interference. Once the tag is interpreted by the NFSDE

system, the signature is decrypted with IVrd and K1 and then checked for matching with

the predicted value of the CRC (“shared salt” + IV0 + specific ID+KTI). In fact, the CRC

of the authenticated authorisation is determined. The tag is assumed to be true if the

decrypted area fits all CRC calculations.

Creation steps and scenario

Usually, the development of an RFID card to enable the NFSDE system will be part of the

on-board phase when a care practitioner (paramedic, nurse, EMT, physician, etc.) enters

the medical organisation. The “record manager (or keeper)” may be a worker in the HR

section. Figure 7.4 demonstrates the method of developing a healthcare provider tag.

The method of authentication is as follows:

166

1. Engagement between both the provider (D) and the record keeper (R), involving

confirmation of the identification and authority of the provider to access relevant patient

records as shown in Figure 7.4(a).

2. The provider shall insert the PIN as seen in Figure 7.4(b) of the situation. (See stage 4

for usage of the PIN).

3. The special tag ID token is read and accepted by the RFID reader as seen in Figure

7.4(c).

4. The PIN and the special ID on the card are hashed to construct the specific IVd (IVd=

h(PIN, ID)).

5. Verification and authentication are encrypted using the MICKEY 2.0 algorithm, and

using K0 and IVd.

6. The latest KTI is stored on the RFID tag by an RFID reader, as seen in Figure 7.4(d).

7. The encrypted authenticated Identification and Authorisation fields are listed on the

RFID tag as seen in Figure 7.4(e).

8. The CRC hash of the encrypted sector is determined to identify if the information has

been manipulated.

9. The encryption field is authenticated using the two CRC values mentioned above to

ensure both reliability and manipulate resistance.

10. The authentication area is stored on the RFID tag.

7.6.2 Creation of the patient tag

This section describes the patient tag creation process.

Use of MICKEY 2.0

The patient tag includes vital patient health care records that may be helpful while the

patient is in a place where internet communications are not possible, such as a rural

environment or even an emergency scenario. The use of MICKEY 2.0 includes four

different uses under the patient unique tag. The first goal is to ensure that the tag has been

approved by the record keeper by using specific security features of the record keeper and

patient. The IVrp is generated by a secret IV0 and a specific RFID tag ID. Each IVrp is

exclusive to the record keeper and the patient tag. In fact, the hidden key K1 is used. K1

differs every time used. K1 is stored on the USB and indexed by the KTI, which is stored

on the patient tag in the field.

167

The second task of MICKEY 2.0 is to encrypt the fingerprint reference info. The General

Data Protection Regulation (GDPR) allows biometric data to be called privacy identifying

information for protection purposes. When the tag is formed, the reference fingerprint is

scanned and summarised in the 500-byte ISO IEC 19794-fingerprint template [281]. This

prototype is authenticated with MICKEY 2.0, IVrp and K1 and is placed on the RFID tag.

The third rule of MICKEY 2.0 is to encrypt and decrypt medical info. The IVP needs to be

special to the individual (patient) and its unique tag. IVP is computed from an unencrypted

500-byte reference fingerprint prototype and a specific tag. In addition, a hidden key K0 is

used, which differs over time and is indexed to the KTI. MICKEY 2.0, IVP, and K0 are

used to encrypt patient details until the data is placed on the tag. After the medical data is

authenticated, a 32-bit CRC hash is computed for the next phase.

Authentication is the fourth objective of MICKEY 2.0. Two CRC values are calculated:

one for the authenticated medical details and the other for the authentication string (“shared

salt” + IV0 + specific ID + KTI). The two fields are concatenated and authenticated with

MICKEY 2.0, IVrp, and K1 respectively.

After validation of the tag as genuine, IVrp and K1 are used to decode the comparison

fingerprint file. Then IVP hash is determined from the reference fingerprint example and

the special tag UID. The fingerprint scanner matches the reference fingerprint to the freshly

scanned fingerprint. If the fingerprints meet the ISO standard, the medical details will be

decrypted and shown to the provider.

Creation steps and scenario

The steps to build a patient tag explain the operation. It will normally arise when a patient

or clinic visitor signs “out”. The measures available to create and authenticate a patient tag

are shown in Figure 7.5. Appendix 7.1 provides the details for these steps.

168

Figure 7. 5 Processes for patient tag creation

1. The patient is introduced to the registrar (or medical record keeper) to review the patient

Identification (i.e. hospital sign-out), as seen in Figure 7.5(a).

2. After verifying the personal ID, data is retrieved as seen in Figure 7.5(b).

3. As shown in the chart, the patient’s fingerprint is checked as in Figure 7.5(c).

4. The logger scans the biometric identification.

5. When the biometrics are the same as the individual, the signature is summed up in the

signature prototype ISO/IEC 19794-2. It is the fingerprint “template”, as in Figure 7.5(d).

If this biometric does not follow the criteria of the patient registry, it will take necessary

action. See Appendix 7.1 for a comprehensive scheme.

6. The RFID reader checks the single tag ID, and produces IVP (IVP= h(TagID, b) where

b=biometric(fingerprint) (IVP). See Figure 7.5(e).

7. MICKEY 2.0, K0 and IVP are used to encrypt the medical information.

8. For the authenticated medical information, a CRC hash is determined.

9. For GDPR: Practitioner (GDPRP) [282], enforcement test and written on the RFID tag

(IVrp= Hash (Tag ID, IV0)), the code is encrypted with IVrp and K1.

10. For the “Common Salt” string + IV0 + Special ID+KTI a CRC is determined. This is

encrypted and written on the name, as shown in Figure 7.5(f), to the previous CRC.

11. The actual KTI will be saved on the tag.

169

7.7 Key generation, storage and distribution

The NFSDE tool contains two of the IVs and also two keys, with one of them IV0 used to

produce one of these IVs, and the values should be modified on a periodic basis. The pace

of such transition depends on the institutional strategy. Every series of keys and IVs (IV0,

K0, K1) has to be created randomly at a regular time and allocated to the KTI. The

preservation of those three parameters is essential to the security of the system. Once a

new collection of the keys and the IVs is created, then modified values must be saved to

the USB as seen in Table 7.2 as an illustrative example. The “then” KTI is stored on the

tag, also the KTI is for checking for the correct keys and the IV0 at the point of verification

and decryption.

Table 7. 2 Key generation, storage and time index update

Key Time Index (KTI) K0 K1 IV0

Feb 1 OzQjPQQckv mz9YlgUgvB mfE6c2lJrt

Feb 2 fD3Er9NyF7 ZozT7OGzPv fZpM9ZP4tm

The contact between the medical provider and the record holder consists of two parts: 1)

the initial development of the provider’s ID tag, and 2) the frequently scheduled updating

of the USB comprising the latest KTI, the main keys group and IV0. The timing of the keys

update is a policy issue, although for logistics reasons, all USB changes will not take effect

until the latest key sets are required to encrypt patient records.

Interaction between the patient and the record keeper takes place immediately and if the

tag has to be changed. It will be easier and more practical, for logistics considerations, to

give a fresh tag to the individual once the documents are changed. The older tag must be

totally erased in a cryptographically safe manner.

The record keeper needs to perform the following tasks:

1. Create the K0, K1 and IV0.

2. View patient records in plain text format.

3. Confirm the provider’s degree of authorisation.

4. Create and upgrade the stable USB hard drive.

5. Confirm the patient’s ID.

6. Identify assurance of the provider.

170

7. Provide identification of tags (both medical practioner and the patient).

Clinical record holders will allow physical access to the following:

1. Secure USB

2. Tags

3. Tag reader / writer

4. Fingerprint scanner (providing patient tags)

5. PIN pad (providing medical provider tags).

Authorisation to view the patient information log and provider information system will be

given to the medical record keeper.

Key rotation

The simple and main features of NFSDE protection rely on the use of a safe physical USB.

For security purposes, keys will be changed on a daily basis according to a defined

timetable. Key file storage could be based on an authenticated external cloud server (i.e.,

AWS Secrets Management System) and the user can access out-of-band. The certified

medical provider could retrieve a key file from the cloud and then save it on a protected

USB drive.

7.8 Device processes

This section provides an overview of the NFSDE device activation, and the process for the

patient data extraction.

7.8.1 Device activation (unlock)

The NFSDE device must be enabled (unlocked) by an accredited healthcare professional

to display the patient details. Figure 7.6 demonstrates the method of opening the NFSDE

device. The provider has its own special RFID tag, which has been cryptographically

authenticated by the record holder. The provider also brings a secure USB drive with time-

indexed keys and IV0.

The provider will also have its own PIN to access the machine. Figure 7.6 demonstrates

the activation phase. The NFSDE enabling (unlocking) phases will be as follows.

171

1. Provider (D) inserts a password on the protected Flash drive that is attached to the

Raspberry Pi on the NFSDE machine. This input is only needed once for every session.

Please see Figure 7.6(a).

2. Figure 7.6(b) shows that after the provider scans the RFID tag, the device validates

whether the tag belongs to the provider and if it has a correct KTI.

3. The NFSDE machine confirms the authorisation by interpreting K1 and IV0 of the USB.

Provides IVrd (IVrd = h(IV0, provider UID)) and, by using MICKEY, K1 and IVrd, decodes

that signature and verifies the verification code and the CRC.

4. In case the tag is verified, the provider must insert their own PIN as seen in Figure 7.6(c).

The NFSDE evaluates the degree of authorisation by decrypting the identification and

authorisation fields by using MICKEY, IVd (IVd= h(unique ID, PIN)) and K0.

5. The NFSDE is now able to show the data that the provider is allowed to access. (The

real activation process is similar to withdrawing cash from an ATM.)

Figure 7. 6 NFSDE activation and unlocking processes

172

7.8.2 Procedure for reading the patient medical record

Figure 7.7 demonstrates the framework for the procedure of how to use the NFSDE device.

1. As in Figure 7.7(a), the patient RFID tag is checked.

2. Reference fingerprints (IVrp, K1, MICKEY 2.0) are decrypted and issued to the

fingerprint scanner as shown in Figure 7.7(b).

3. After testing the patient’s fingerprint, if the patient's fingerprint matches the reference

fingerprint, the medical information will be decrypted, as seen in Figures 7.7(c) and 7.7(d)

respectively.

4. IVP is calculated as IVP = h (reference fingerprint template, specifice tag ID). It is then

possible to use IVP, K0 and MICKEY 2.0 to decrypt medical information.

5. The NFSDE displays the medical information corresponding to the degree of

authorisation specified during NFSDE activation as seen in Figures 7.7(f) and 7.7(e)

respectively.

Figure 7. 7 Display the patient data process

173

7.9 The emulation processes for NFSDE and testing

7.9.1 The emulation processes for NFSDE

To create a software emulation, a C-language emulator of the NFSDE system was

developed to illustrate the main processes and components, as seen in Figure 7.8. The key

parts are a single card processor, a USB, a fingerprint sensor, a RFID reader and a RFID

writer. Main procedures involve the development (and encryption) of both the provider

and the patient tags, the validation of these identifiers, the activation of the NFSDE by the

provider, the decryption of medical information and showing the medical data by the

provider. Device-level approval is registered (for authentication purposes) in a file called

device-log.txt. If the simulator generates both patient and provider tag recreations, the

process will not be logged as, in reality, that would be performed on different systems,

which are likely to have their own logging procedures.

Figure 7. 8 NFSDE device software emulation

The ISO/IEC fingerprint representation is 500 bytes long. Three files of 500 hex bytes each

were used to mimic the fingerprint scanner. Every file represents the ISO/IEC fingerprint

representation of the user. These values were arbitrary. The number of bytes is an essential

feature of the emulator; thus, the size of the RFID data frame must be accurate and the

calculation of the encryption speed should be precise. Standard file actions (fread, fwrite)

were used to simulate the reader and writer of the RFID tag. Data structures were built to

comply with the 4 K MIFARE requirement. Such data structures have been developed in

order to be interpreted from an ordinary file. Command line software was developed that

contains the following options: (1) build patient tag, (2) build provider tag, (3) trigger

reader, (4) interpret patient tag, (5) unlock accessible drive, and (6) modify key number

(time stamp emulator). Every choice requests input throughout the simulation of the

174

element. The rationale of every procedure followed those steps mentioned above. All of

the functions mentioned above are executed or modelled.

7.9.2 Testing and running the emulator

The simulator is a command line interface that shows a numerical screen. Every menu

element reflects a step in the cycle of construction or validation. Appendix 7.2 presents

step-by-step guidance for how to operate the simulator. Appendix 7.3 has specifications of

the menu. Appendix 7.2 presents step-by-step guidance for how to operate the simulator.

Testing the NFSDE performance is important, as medical providers attending patients need

to be as fast as possible. By using a program to simulate the device speed, the two main

processes are how long it takes to unlock the device, and how much time is needed to read

the patient data.

Time for NFSDE unlock

A software emulator was used to test the whole process for the NFSDE devices. It starts

with NFSDE unlock time, which will occur only one time per session (for example when

the medical provider starts their shift), which is done by scanning the provider ID. Second,

the time needed for NFSDE for key 4-digit manual entry varies from provider to provider,

so it is run multiple times with different people and then the average calculated with a total

time of about 5 seconds as shown in Table 7.3.

Table 7. 3 Time for NFSDE unlock

Event Time

Scan the ID Card (D) 1 second, see [283]

Insert and Unlock the SD 2 seconds

Enter the PIN 2 seconds

Total time to Unlock 5 seconds

Time to read the patient data

To calculate the patient data reading by the NFSDE:

1. Scan the patient ID card, then 2) scan the patient fingerprint; 3) calculate the time

for the decryption for the 4K data on the patient tag. Table 7.4 shows the decryption

175

using MICKEY 2.0 is a very short time in microseconds. The total time is 2.07

seconds to show the encrypted data.

Table 7. 4 Time to read encrypted patient data

Event Time

Scan the ID card (P) 1 second, see [283]

Scan the fingerprint 1 second, see [284]

Decode 4K data 66,291 microseconds

Total time to read the patient data 2 seconds

Other than decryption time which is easily measured, the time spent by people varies, so

by taking the average for multiple entries a relatively good estimation can be made.

However, as seen in Table 7.3 and Table 7.4, the whole process only takes a few seconds

– around 5 seconds or less for NFSDE unlocking, and 2 seconds or less for reading patient

data.

7.10 Attacks analysis

This section explains how the system is resistant against possible attacks to test protocol

security.

In this eHealth scenario, MICKEY 2.0 was used as an example of a possible lightweight

encryption method. MICKEY 2.0 is replaceable, by any lightweight ciphers, as well as the

thesis proposed cipher MICKEY 2.0.85, to encrypt the values (parameters) on the provider

and patient tags.

The parameters can be encrypted as following:

a) Patients’ medical data

b) Patients’ IDs

c) Patients’ fingerprints

d) The record keeper authentication located on the patients’ tags

e) The providers’ authorisation level and identity

f) The record keeper authentication is located on the providers’ tags.

176

These parameters need to be addressed for any kind of cryptanalysis and attack resistance.

To encrypt these parameters IV0, K0 and K1 need to be secreted to ensure the system

security. IV0 value is provided by the record keeper, and the other non-secret IVS (IVP for

patient and IVd for provider) with varying keys. Revealing one of the secret IVS or different

keys will not result in recovering the other values.

IVS calculations:

IVrd used to encrypt and decrypt the provider authentication and

 IVrd = h(IV0, provider’ tag UID), h=hash function

IVrp used to encrypt and decrypt the patient authentication and

 IVrp = h(IV0, patient tag UID), as the fingerprint data in the patient tag

IVd used to encrypt and decrypt the provider level of authorisation and

 IVd = h(PIN, provider tag UID)

IVp used to encrypt and decrypt the patient medical data and

 IVp = h(patient fingerprint reference, Patient Tag UID)

Keys calculation:

K0 used with IVd for encryption and decryption of provider authorisation level and identity,

also K0 used with IVp for encryption and decryption of patient medical information.

K1 used with IVrd for encryption and decryption of provider authentication, and also K1

used with IVrp for encryption and decryption of a patient’s fingerprint and authentication.

7.10.1 Known plaintext attacks

When an attacker gets information about the plaintext (P) (or portion of it) and the

corresponding ciphertext (C) for a given message, this is called a known plaintext attack

[12], [16]. Then the attacker will attempt to reveal the key based on the calculation of the

mapping F between the P and C:

 F:P→C.

In the security protocol and the NFSDE device design it is not feasible for any attacker to

perform this kind of attack, as for example, a patient’s tag containing the biometric

associated with the keystream is unique for every patient, so revealing one patient’s data

will not result in revealing another patient or provider’s keystream. Nevertheless a patient

177

may compute their own IVp. However, using MICKEY 2.0 as the encryption method will

prevent the secret key recovery from known IV/plaintext [168], [248], and that is valid for

all different combinations. In addition, plaintext used for field authentications will not be

known as all parameters are encrypted by MICKEY 2.0 using hash functions, and not the

original values. Furthermore, if the fingerprint data (which uses the ISO standard) for any

two scans is not identical, the fingerprint will not be revealed as it is not possible to recover

keys and IVs by using the known plaintext.

7.10.2 Brute force attack

A brute force attack which is conducted by running extremely large computations in order

to reveal the secret key can be considered feasible if it can be achieved in a reasonable

amount of time [12]. In the NFSDE device and the developed security protocol, this kind

of attack requires implementing a trial and error technique, in order for an attacker to guess

the keys and IVs. For the secret parameters IV0, K0 and K1 already stored in the encrypted

USB, performing this attack needs to mount the USB by computer to simulate the stored

encrypted data. This also assumes having an authorised tag and legitimate scan of the

fingerprint. Having said that, the attacker will be required to produce the 80-bit of (IV0, K0

and K1) parameters correctly, thus is 2240 bits. Assuming this was done successfully (which

is not feasible), it will only reveal a single KTI value. Thus, this kind of attack is not

reasonable from a computational perspective.

7.10.3 Chosen IV attack

The attacker tries to find some flaws in the IV, to gain some information about the secret

key. The complexity of this attack is about how many bits are needed to extract the key

[285]. For the stream cipher the IV is initialised with a secret key in the cipher which works

as a function to generate a pseudo-random keystream. It is not practical to reuse the same

IV with key as it is unsafe practice, and the lightweight stream ciphers may be vulnerable

to such an attack. To avoid this vulnerability, choice of the IV is not allowed. There are

four separate IVs, and all the IVs were computed using the hash functions. IVd and IVp are

the unique values of the ID assigned at the time of the production process by the RFID

manufacturer. On the other hand, the values of IVrp and IVrd as well as the IV0 (secret

value) are all part of the hashing process. Thus it is not possible to select an IV value that

will result in an attack due to using the hash signature as a data integrity tool.

178

7.10.4 Two-time pad/reused key

A two time attack can also be defined as a reused key attack [286]. The attack occurs when

the attacker can get two different ciphertexts which were encrypted using the same key.

Assume C1 and C2 the ciphertexts for m1 and m2(messages), and P1& P2 the plaintexts, then

the attacker calculates C1 XOR m1 = P1 and C2 XOR m2 = P2, and K is the same key used

for both m1 and m2, then K can be obtained by applying analysis of frequency.

The proposed system has four different (keys, IVs) pairs for five different steps. In

addition, by implementing the keys rotation using timed KTI, the two IVs for the patient’s

tag and the two IVs for the provider’s tag, each IV is obtained by two (at least)

authentication factors as following:

1. RFID tag + PIN for the provider

2. RFID tag + Biometric (fingerprint) for the patient.

Additionally, three out of five encrypted parameters cannot be calculated by the frequency

analysis as they were encrypted with hash functions. To be more specific the encrypted

fingerprint on the patient’s tag cannot be subject to frequency analysis, as the reused key

cannot be used for encrypted parameters with a hash function.

7.10.5 Denial-of-service attack

In a denial of service attack the attacker tries to prevent or interrupt the system from doing

the usual task [243], such as by sending a large number of requests to overwhelm the

system and make it freeze or crash. The attacker can make the system slow in response for

authorised users. For this system, the attacker needs to be physically close to the system as

it assumes the internet connection is not present. The attacker could use nearby physical

sources to overwhelm the service by electromagnetic interference, or use any method to

corrupt or damage the device. In denial of service attacks, the system security information

was located on, for example a USB, so it is assumed policies are implemented on use of

the device components.

179

7.10.6 Insider attack

In an insider attack, the attacker is an authorised person who has an access privilege to the

system, and can use the system in unauthorised or malicious activities [287]. Insiders in

the system include the provider and the record keeper. To secure all activities such as login

and authorisation, the login is a timed process and is not reproducible. By applying the

three As of data security, the insiders cannot deny their activities. Tag creation and key

management and distribution tasks rely on the record keeper who has the same non-

reproducible login activities. Furthermore, the key rotation and the key storage update the

USB, and it also uses a cloud external service such as AWS for the key update and storage

to update the USB.

7.10.7 Impersonation attack

An impersonation attack occurs when the attacker successfully guesses the authorised user

authentication which allows the attacker to gain access to confidential information [288].

The proposed system contains an authorisation process for the three entities: record keeper,

provider and patient. Key and tag creation and management is the responsibility of the

record keeper, and there should be a role and policies in place to ensure the security

guidelines provided by the organisation are followed. Thus, multi-factor authentication

procedures assure resistance against this kind of attack, as the provider tag UID and PIN,

and the patient fingerprint with tag UID are authentication elements, and the record keeper

should follow the organisation’s security guidelines.

7.10.8 Man in the middle attack

A man in the middle attack occurs when the attacker can interrupt the message between

the sender and the receiver, and gain some secret information about the encryption keys

[289]. In the system the encrypted USB is a physical object to store the keys. When the

record keeper shares the USB with the provider, the record keeper must follow the

organisation’s administrative procedures, and physical delivery methods such as locks or

robust boxes should be used. The USB storage update provided by a cloud service, with

key delivery in a secure manner, can use AWS secret manager. Furthermore, a man in the

middle attack on the USB is not feasible as it is not connected to other NFSDE physical

components.

180

7.10.9 Side channel attacks

In general, side channel attacks work by capitalising on the flaws in the system hardware

or software features, not on the system encryption method, in order to extract some secret

information [290]. There are two major types of side channel attacks: differential power

analysis and challenge/response attack.

A. A differential power analysis is a popular kind of side channel attack which targets

the embedded system like the NFSDE [291]. The aim is to recover the secret keys

by applying the statistical analysis of the device power. If the keys are stored in the

device, this will make it more vulnerable to DPA attack, therefore, it is possible to

find the key by gaining access to the device memory (or portion of it) which

contains the keys. The NFSDE device needs to be physically close to the resources

of the DPA for a long period of time, and also requires a large sample of data in

order for a DPA attack to be sufficient. This is avoided in NFSDE by using the

external encrypted USB as a secret keys storage tool, as well as updating and

rotating the keys on a regular basis to avoid reusing the same set of keys.

B. Challenge/response side channel attack can be more applicable to RFID-based

systems explained in detail in [292]. It is also a kind of statistical analysis that

measures the correlation of the power analysis in the RFID domain to categories in

the challenge/response protocol in the RFID system. The challenge/response

protocol is not used in the NFSDE device and the security protocol. As the keys

are not shared via RFID tags, rather by a physical device which is attached to the

system, and the hash functions are used in the authentication instead of the

challenge/response method, this kind of attack is not applicable in the proposed

system.

181

7.11 Overall analysis and discussion

Earlier IoT and RFID enthusiasts have discovered that low-power devices have insufficient

security [222]. This chapter suggests a low-cost, standard-based security solution that

remains practical in the worst case situations without internet connectivity to low-power

secure devices.

The approach involves key management and key-update solutions for a protected RFID

reader which is neither based on the internet nor on wireless connectivity, as described

below. Specifically, an example of a real-life framework for patients in locations lacking

secure connectivity (including Wi-Fi, 4G or 5G networks), in emergency circumstances

and in rural regions is suggested and emulated. The service can include access to patient

health information under challenging conditions. The suggested cryptosystem offers a low-

cost, efficient and security protection alternative to the CIA triad usually offered by the

public key infrastructure. By taking a completely new strategy and using applications and

off-the-shelf equipment, a more complex custom-hardware asymmetric solution is avoided

as in [231], [232].

7.11.1 Providing multi-factor authentication without connectivity

The proposed security solution is a mix of “what you do” (i.e., a PIN and an USB

passcode), “what you have” (i.e. an RFID tag and an USB) and “what you are” (i.e.,

biometrics such as fingerprint). For conventional key control, the whole key is placed on

“anything you have” (i.e. a mutual key storage drive) or is “anything you remember”

(password or PIN). Once the keys are reset, the keys must be redirected and kept, or the

password or the PIN must be entered. The key and the PIN must be protected against

interruption. Using NFSDEs without using public-key encryption, this weakness is

minimised by using USB.

The USB will not include the full collection of necessary keys, but rather includes the

parameters which use it to determine the keys. Such criteria are protected by a passcode

that can be exclusive to every USB. It is wise to request healthcare providers to take proper

diligence to secure the USB or to change it on a calendar basis. The modification of the

USB security parameters is a question of routine practices rather than a technological

problem.

182

The USB may be modified by transferring it to a protected location or using a protected

method such as the AWS Secrets Manager. A debit-card similar delivery scheme may be

used where the USB is physically distributed in one box by a courier and the passcode can

be provided remotely through a program such as “One Time Secret passcode” [293].

In any scenario, the administration is no more complicated than any other main delivery

method. When accessing private records, a minimum of six variables must be jointly

authenticated. These three forms of variables are used at least once: anything you have –

the patient’s RFID card, the provider’s RFID card and the USB, anything you know – the

provider's PIN and the USB card password, and anything you are – the patient’s

fingerprint. Decryption keys are not usable until all variables are identified and collectively

validated. Even if the USB is corrupted or exposed, exposure to private data is not feasible

without four external security parameters. Thus, using the USB to store the security

parameters is more reliable than the standard key transfer and no more difficult than using

a debit card with a new PIN.

7.11.2 Providing privacy by design

The fourth theory of “privacy by design” [265] is that secrecy ought to be “fundamental to

the framework, without reducing functionality”. Rapid access to essential data is a practical

necessity in emergency circumstances. Thus, a framework was built and mimicked in

which verification, access and accounting would be no more difficult than the withdrawal

of cash from an ATM. This thesis has been able to minimise or eradicate documented

cryptographic attacks by implementing the concepts of defence in depth [261]. Through

using a lightweight cryptosystem and a low-cost, efficient key delivery method, the

framework proved able to deliver the CIA triad in the worst-case scenario of life and death.

7.11.3 Providing key distribution without connectivity

Public key encryption is a growing method for key distribution. Generally, public key

encryption is being used for security, secrecy and integrity; this includes PKI (usually

communication needed for access to the Certifying Authority) and substantial CPU power.

They are still not needed in this situation. Therefore authentication, anonymity and

integrity are achieved without public key infrastructure by using the MICKEY 2.0 stream

183

encryption, hardware-based protection, and a security protocol with specific procedures.

The innovative solution proposed for this is to measure each of four IVs and keys pairs

using a mix of hardware-secure values, mutual values, and embedded RFID tags.

In standard symmetric cryptography, the sender must build a key and pass it to the

recipient. The number of keys needed is considered to be n(n − 1)/2, where n is the number

of parties that need to be communicated. The possibility of a key being captured by a third

party and the need to establish a specific key for each sender/receiver pair is recognised as

the “key delivery issue” [294].

Take the following scenario. If Alice, Bob, Charlie and Dave decide to share protected

texts, six keys will have to be produced. Every key should be transferred from the sender

to the recipient such that the adversary, say Eve, will not have the ability to replicate or

capture the key. The key-distribution question to be solved is fairly straightforward:

1) How would Alice establish exclusive keys for Bob, Charlie, and Dave?

2) How would she send the keys to Bob, Charlie, and Dave without having adversary Eve

intercept them?

A solution is proposed for the key distribution issue, where separately encrypted off-the-

shelf hardware systems are used to store the security parameters that are used to determine

the mutual symmetric security for each sender/receiver pair [261]. The threat review by

analysing the possible attacks found that the same approach had mitigated specific RFID-

based attacks. As the system is explicitly configured not to be wired or connected to the

internet, it may also be used for out-of-band authentication (and probably authorisation).

The aim of the lightweight cryptosystem including the NFSDE prototype with security

protocol is to encourage innovations in eHealth technology. Therefore, the minimal-power,

strong-quality protection suggested is specifically relevant to RFID protection as well as

security in general.

184

7.11.4 Other applications

This subsection explores several potential possibilities for RFID security applications with

a brief summary of each.

Two-person rule

In high-security contexts, for example, when approving major organisational spending, it

is always important for two workers to approve action [295]. This proposed security system

would facilitate the multi-factor “offline” to implement the two-person law.

Human courier scenario

Because the proposed prototype does not need connection to the internet, it is an optimal

solution to protect data from hackers. This is especially important where several

individuals need to approve access to the asset. Parties needing very safe contact usually

use human couriers rather than, for example, efficient cloud-based sharing of information.

If the parties involved do not want to share confidential data through the internet, the cloud

can also be a secure key exchange tool [294]. NFSDE, with a secure protocol, can be

implemented as out-of-band authentication.

Other possible applications involve multi-factor authentication, such as smart wallets, cold

storage of blockchain keys, master encryption keys, and safe data transfer by military

organisations, where control of physical access to systems and equipment is required.

Other common applications

The most important use of RFID tags is to monitor items in transit and to compile

inventory. Encrypted data can be placed on the monitoring sticker. The proposed secure

system is immune to breaching and side channel breach. No unencrypted data has to be

revealed. RFID tags are common for animal monitoring [296]. The approach can be used

by scientists to easily store the data on tags that are attached to animal bodies for tracking

and monitoring.

185

7.12 Conclusion

The chapter presented a practical application for lightweight encryption with a prototype

device to secure sensitive data when internet connection is absent or not reliable. Previous

chapters identified the importance of practical and efficient lightweight synchronous

stream cipher implementations, that were achieved by introducing tools for security

evaluation, cipher optimisation and practical application in mobile cloud computing and

RFID technology.

Considering advances and expansion of RFID technology, as well as new applications,

security remains a challenging task that needs to be addressed and improved. The proposed

security system including NFSDE device and the security protocol fills the gap in this

important area.

The approach bypasses the current solutions which focus on hardware solutions. However,

the solution can be worked as a framework and software solution, which is flexible in

regard to hardware, software and lightweight encryption, as they can be modified and

tailored according to the user’s needs without compromising the security. The NFSDE

device components can be replaced, and the MICKEY 2.0 cipher can be replaced with

other lightweight ciphers. Using eHealth as a practical example of efficient application,

the lightweight security system solved and tested the tags’ and parties’ identification,

authorisation and confidentiality. The following chapter provides an overall discussion of

the thesis achievements with implications for advancing the field of lightweight

synchronous stream ciphers.

186

Chapter 8: Discussion and Conclusion

8.0 Chapter overview

This chapter presents the discussion and overall analysis of the thesis findings and

contributions, as well as possible future research directions emerging from this work. This

chapter has the following structure. Section introduces the chapter, Section 8.2 reviews the

thesis rationale and summarises outcomes; Section 8.3 discusses the unique window size

and d-monomial tests; Section 8.4 discusses the proposed neural network models; Section

8.5 discusses the proposed MICKEY 2.0.85 cipher; Section 8.6 discusses the proposed

FEATHER lightweight security protocol; Section 8.7 discusses the proposed lightweight

cryptosystem with NFSDE prototype device; Section 8.8 shows how the thesis findings

contribute to the current literature; and Section 8.9 summarises the thesis contributions.

Finally, Section 8.10 presents possible future research directions resulting from this work

to further improve security.

8.1 Introduction

The thesis focuses on lightweight synchronous stream cipher analysis and applications.

Data analysis, including statistical and mathematical analysis, is essential to work as a

cryptanalysis method for lightweight synchronous stream ciphers, using pseudo-

randomness statistical tests such as ANF-based tests, which translate the binary sequence

that comes from the cipher and work as a keystream to translate their algebraic normal

form, and then apply d-monomial based tests. Statistical pseudo-randomness tests, such as

the suite of NIST tests, combine mathematical concepts with statistical analysis to assess

the strength of a cipher. These tests help to optimise existing ciphers and develop new

techniques and security implementations in essential applications. Pseudo-random number

generators are essential for generating a pseudo-random number binary sequence as a

keystream to ensure that a sequence has a pseudo-random appearance and does not cause

any biases that may leave them vulnerable to attacks.

It is important, therefore, to test randomness using multiple different randomness tests,

including ANF-based tests (e.g. d-monomial test), UWS tests, and prediction models such

as multilinear regression predicting model, as well as superior prediction models, such as

187

neural network models. The standard NIST randomness tests provide a standard evaluation

for the sequences generated by pseudo-random number generators. In addition,

cryptanalysis methods apply different known attacks to test the resistance of ciphers to

such attacks. Using different cryptanalysis and pseudo-randomness tests and adapting them

for each particular cipher is not straightforward. The optimisation of lightweight

encryption methods is currently achieved using lightweight synchronous stream ciphers,

by proposing lighter, faster and power-efficient ciphers, which are feasible for lighter

security cryptosystems, including smaller devices. Implementing lightweight encryption

in real-world applications, such as mobile cloud computing, will improve IoT security in

general, and will also be useful in RFID technology. These technologies both have

important applications in areas that require a high level of security, such as eHealth care.

8.2 Discussion of thesis rationale and overview of outcomes

This thesis adapts randomness analysis for chosen lightweight stream ciphers in order to

introduce new cryptanalysis methods, including an optimised version of MICKEY 2.0

called MICKEY 2.0.85 and a secure lightweight protocol for mobile cloud computing

called FEATHER. The thesis also provides a lightweight cryptosystem based on RFID

systems suitable for authentication and security without needing an internet connection.

Research findings were published in [221], [123], [297], [23].

The thesis tests and proves the following hypotheses:

1. Adapting pseudo-randomness tests is possible, regardless of the implementation

effort of adaptation, and the tests can be tailored to specific ciphers.

2. Prediction modelling, especially neural network models, is effective for testing and

measuring the pseudo-randomness of a binary sequence, which is the most

important element of cipher security.

3. Optimising a successful, secure, and popular lightweight stream cipher is possible,

and it is possible to have a secure lighter version.

4. Mobile cloud computing can benefit from lightweight stream ciphers. Lightweight

encryption can provide security, faster performance, and longer battery life.

5. It is possible to provide a lightweight cryptosystem based on RFID technology,

with no internet connection.

188

8.3 Using unique window size and d-monomial tests as randomness tests

The unique window size test (UWS) is based on the maximum order complexity test, as

discussed in Chapter 3. The goal of this test is to determine if the keystream is random

enough for it to be very hard to find a function that can generate a similar keystream binary

sequence. The SG and SSG lightweight synchronous stream ciphers were tested using this

test to determine if they were the proper result of pseudo-random numbers generators. In

this test, the bigger the UWS the better and more secure the cipher. If a cipher has a small

UWS, it means for SG the two LFSRs combinations may need to be modified to have a

larger UWS, and for SSG it implies the LFSR primitive polynomial needs to be changed.

The results of this test provide users with a better choice of the LFSRs to ensure that the

ciphers have sufficient pseudo-randomness properties.

The d-monomial tests are used to detect monomials of a certain degree d. If these

monomials follow a normal distribution, it implies that there are no biases in the keystream.

Another similar test is the maximal monomial test, which finds the highest d in the

keystream. These tests are pseudo-randomness tests. The d-monomial tests on both the SG

and SSG ciphers found that SG was weaker than SSG. A multilinear regression model was

established for SG with degree 20 for UWS prediction. These results will help users to

choose the SG LFSRs combination that results in less predictability.

8.4 Developing proposed novel neural network-based prediction models

The neural network prediction model in Chapter 4 was designed to predict UWS for both

SG and SSG. UWS as a pseudo-randomness tool is an important valid indicator of a

cipher’s security.

For the SG cipher, four neural network prediction UWS models were established for degree

20, 21, 23 and 24, with a learning rate of 0.0001 for degrees 20, 22 and 24, and a learning

rate of 0.001 for degree 21. The learning rate needed to be adjusted for different degrees

of the model to optimise learning for more accurate predictions; accuracy was

approximately 95% and mean squared errors (MSE) of MSE < 0.008 and MSE = 0.0019.

UWS24 has the largest dataset, and hence, the model is better able to learn.

189

For SSG, there were five neural network predictions, with one for each UWS model of

degrees 21, 22, 23, 24 and 25, with a learning rate of 0.0001. The models have four hidden

layers, with 100, 50, 20 and 10 nodes, respectively, with an accuracy of 96.66%, 89.61%,

90.14%, 97.01%, and 97.14%, respectively, and an MSE of 0.0014, 0.016, 0.0046, 0.0098

and 0.0052, respectively. These are low error rates and indicate high model accuracy. In

addition, to show how the model is able to learn with multiple UWS in the same model,

one model was established for degrees 4 to 20 as one dataset, with a learning rate of 0.0001,

and four hidden layers, with 100, 50, 20 and 10 nodes, respectively. For this model, the

MSE = 0.0012, which is very low, and the accuracy was 96.05%.

Although the d-monomial and UWS tests established that the SG is weaker than SSG, the

neural network prediction models showed high predictability for both ciphers, which

introduced a new measurement tool for randomness and nonlinear complexity

measurement. It was also observed that the models were able to learn better with larger

datasets.

8.5 Developing and testing the proposed MICKEY 2.0.85 cipher

MICKEY 2.0.85 was achieved by reduction and testing for pseudo-randomness after

multiple experiments. Thus, the standard pseudo-randomness tests are necessary to ensure

the viability of the new version. The suite of NIST tests is a standard measurement for

randomness and uses a large number of binary sequences generated by MICKEY 2.0.85

for both the keystream and ciphertext. This cipher was compared to MICKEY 2.0 and

MICKEY 1.0 to establish whether it has better pseudo-randomness. As expected,

MICKEY 1.0, the older version, failed 14 of the 15 tests and only passed the linear

complexity test. The stronger version, MICKEY 2.0, appeared to have a good passing rate

on the NIST tests. The lighter version MICKEY 2.0.85 has a slightly better NIST test

passing rate than MICKEY 2.0, as shown in Chapter 5.

MICKEY 2.0.85 was achieved by reduction and testing for pseudo-randomness after

multiple experiments. Thus, the standard pseudo-randomness tests are necessary to ensure

the viability of the new version. The NIST tests suite, as a standard measurement for

randomness, uses a large number of binary sequences, which are generated by MICKEY

2.0.85 for both the keystream and the ciphertext. This cipher was compared to MICKEY

2.0 and MICKEY 1.0 to establish whether it has better pseudo randomness. It has

190

previously been established that this is a weak cipher and the NIST test confirmed this

conclusion. The stronger version, MICKEY 2.0, appeared to have a good pass rate on the

NIST tests, but the lighter version, MICKEY 2.0.85, has a slightly higher NIST test passing

rate, as shown in Chapter 5.

The reduction methods for the MICKEY 2.0 cipher were carried out to maintain the

randomness as much as possible by reducing the internal state bits number to achieve fewer

gate equivalents. MICKEY 2.0.85 had 12.45% fewer gate equivalents than MICKEY 2.0.

The reduction of gate equivalents will improve overall speed performance and reduce

power consumption.

The power consumption estimator XPE, used for MICKEY 2.0.85, MICKEY 2.0, Trivium

and Micro-Trivium, showed that MICKEY 2.0.85 had the lowest power consumption, with

a reduction of 16.202% compared to MICKEY 2.0. The relationship between the number

of gate equivalents and power consumption was described in two equations in Chapter 5.

The MICKEY 2.0.85 encryption speed is about 23% faster than MICKEY 2.0, which is

important for computation in small devices, as more texts can be encrypted in less time

and it consumes less power, which reduces overall costs in applications. The cryptanalysis

in Chapter 5 showed that MICKEY 2.0.85 is slightly more attack resistant than MICKEY

2.0.

8.6 Developing new lightweight encryption method: FEATHER

lightweight security protocol

The FEATHER protocol was designed to be a lightweight encryption method for mobile

cloud computing security. It secures communications between mobile devices, and

between mobiles and a cloud server. It has many security parameters:

1. MICKEY 2.0 cipher – as a lightweight encryption/decryption method

2. Hash function – for securing security parameters

3. Timestamps – for time authentications

4. One time pad password – for mobile users to start the communication and be sent

out of band

5. Secret keys and IVs pairs changed for every time used

6. Token with expiry time – for the server to verify the mobile

191

7. File ID – is unique for every file and used for file verifications

8. Mobile phone unique ID

9. Encrypted keystream – for keystream encryption in the cloud server

10. Username – unique to every user.

FEATHER is particularly secure for mobile users because of its series of steps. The process

for communication by mobile users to request the keystream from the external server

involves highly secure steps:

1. Register: The person registers an account on the external server by sending a

message containing UID, phone ID and timestamp.

2. Update: The external server confirms the validity of the message by recomputing

the signature, and then decrypts and stores the hashed password in the account. The

response is either OK or ERROR.

3. Validate: The external server decodes the hashed password, recomputes the

signature, and responds with OK or ERROR.

4. Generate: The external server generates a random MICKEY 2.0 key (20 bytes of

Key+IV).

5. Upload: The external server stores the file and responds with OK or else ERROR

if something goes wrong.

6. Request: The external server uses the token (or file-ID) to look up the requested

data and sends it back to the mobile device.

Using five mobile devices to check the efficiency of the protocol, the cumulative time for

keystream downloading, decoding and typing to memory was calculated. The FEATHER

downloading is often time-consuming. However, compared to the CLOAK protocol [214],

FEATHER is much faster. For example, for a file size of 8 MB, the total download time is

110 seconds using CLOAK and around 9.8 seconds using FEATHER. If more than two

mobile devices need to interact at the same time, the external server generating the

keystream using the FEATHER protocol is far faster than when using CLOAK. FEATHER

would reduce the overall time because the decoding period is only running XOR operation

on the keystream, which is fairly easy. Smartphone battery life is higher with FEATHER.

This lightweight authentication mechanism can help to maintain anonymity, authorisation

and protection for consumers. It also aims to reduce the power usage of smartphone devices

to boost overall efficiency. The suggested lightweight protocol FEATHER was tested

against possible established attacks and found to be secure and effective for

192

implementation. As MICKEY 2.0 was used as a pseudo-random number generator, the

protocol is adaptable for use in other IV-based lightweight synchronous stream ciphers.

Combined with the new MICKEY 2.0.85, presented in Chapter 5, it would be 23% faster

to produce the secure keystream. This work is a contribution to advance mobile cloud

computer security, technologies, IoT development, and security in general.

8.7 Developing proposed lightweight cryptosystem with NFSDE

prototype device

NFSDE and the secure protocol is a lightweight cryptosystem that proposes a prototype of

a device called near-field secure data extractor, which allows secure RFID

communications using a lightweight communication protocol without requiring stable

internet connectivity. It offers extremely secure data exchange in the absence of the

internet, which makes it useful in places with poor or no internet connectivity, such as

remote and disaster-struck areas. The device demonstrates fast processing as well as

robustness against several forms of attacks. An application of the proposed device and

information exchange system is explained in the context of an eHealth scenario.

The proposed cryptosystem is a significant contribution to the literature because, unlike

conventional solutions, the proposed solution is inexpensive and can be easily customised

to various application scenarios because it uses standard commercially available

components. This is a contribution to improving RFID-based security because it proposes

a simple yet highly efficient solution for the storage and exchange of protected data in a

secure manner without depending on internet connectivity. The proposed device has

applications in multiple scenarios, such as:

• Two-person rule: In strong-security situations, for instance, when authorising

major organisational spending, it is often necessary for two employees to authorise

action.

This new protection framework would make it simpler for the multi-factor “offline” to

enforce the two-person rule.

• Human courier scenario: As the current system will not need to be wired to the

internet, it is an ideal way to secure data from hackers. If the parties involved do

not wish to transmit sensitive data over the internet, the cloud may also be a

protected key exchange tool.

193

Parties needing safe communication typically use human couriers rather than, for example,

effective cloud-based exchange of knowledge.

• Other potential uses include multi-factor authentication, such as smart wallets, cold

storage of blockchain keys, master encryption keys, and protected data sharing by

military agencies where regulation of physical access to systems and facilities is

needed.

• This solution may be used by scientists to conveniently store data on tags connected

to animal bodies for tracking and control.

• An important application of RFID tags is to track products in transit and compile

inventory.

Thus, the proposed cryptosystem implementing NFSDE devices can improve security in

low-power or small-scale projects, where security is often compromised due to technical

limitations or costs.

8.8 Thesis findings and contribution to the literature

The thesis made key findings in four main areas, addressing issues in the existing literature.

It identified flaws in shrinking generator and self-shrinking generator by proposing neural

network-based prediction models for pseudo-randomness, proposed MICKEY 2.0.85 as a

secure and lighter version of MICKEY 2.0, proposed a secure lightweight FEATHER

protocol for mobile cloud computing security and proposed Near Field Secure Data

Extractor (NFSDE) with lightweight secure encryption protocol for RFID security in the

absence of internet connectivity.

Contribution 1: Identified flaws in shrinking generator and self-shrinking generator by

proposing neural network-based prediction models for pseudo-randomness

In a study of randomness tests for binary sequences [298], researchers confirmed that, by

calculating the longest period, the probability of obtaining zeros or ones is equal, but

generalising this to different periods requires more research. This thesis addressed this

issue by presenting a more holistic approach by using prediction models, specifically

neural network models, to predict unique window size, which can be applied to any binary

sequence [123], [297].

194

A study [299] on new statistical tests beyond NIST tests proposed using randomised tests

for binary sequences based on limited patterns and is not comprehensive. The tests in this

thesis provide an effective way to measure randomness to predict unique window size

using neural network models, which is more comprehensive than the methods proposed in

[299].

Previous studies [300] and [301] have focused on tests of whether the Boolean function

was balanced and used a classification of weights with a specific and arranged framework,

which is limited to weights classification. Maximum order complexity is preferred as a

randomness test to an expansion test. These tests have been applied to the Thue–Morse

and Rudin–Shapiro series, and the results confirm that maximum order complexity is a

better test [302]. These results confirm the approach advanced in this thesis where unique

window size is used as a form of maximum order complexity for randomness tests and

neural networks are used for randomness prediction.

In conclusion, the approach advanced in this thesis, of using unique window size and neural

network prediction models, provides accurate measurements with a very tiny error margin,

and the approach can be generalised to any cipher that generates a binary sequence as a

keystream.

Contribution 2: Proposed MICKEY 2.0.85 as a secure and lighter version of MICKEY

2.0

The most efficient and most used cipher is AES; however, it is a heavy encryption method,

as AES requires relatively high power capability and considerable chip size. The thesis

developed the proposed MICKEY 2.0.85 cipher [23] to overcome this problem. In general,

non-lightweight ciphers are slower in performance, speed, and lower in throughput [303],

[304].

RFID technology uses small devices as its components, especially RFID tags and RFID

readers, and applications like sensor networks and IoT technology have small computation

processor units, such as Raspberry Pi and Arduino. It is thus essential to provide security

for these small components [305-307].

195

Lightweight ciphers such as Trivium were targeted to design multiple reduced versions,

such as Micro-Trivium [189]; however, the proposed cipher, MICKEY 2.0.85, is more

power efficient and needs fewer gate equivalents to work. More related optimised versions

of different ciphers were introduced in Chapter 5 and also in [23].

Study [205] investigated using AES in mobile cloud computing and showed that the tiny

RAM, low power supply, and small processors with small speed in mobile cloud

computing meant AES was not feasible. Thus, lightweight encryption was introduced to

handle the heavy tasks, such as file offload/download, with encryption methods based on

pseudo-random permutation based on chaos systems.

Contribution 3: Developed secure lightweight FEATHER protocol for mobile cloud

computing

A short study [308] based on cloud computing and mobile computing debated the

importance of leaving the offloading tasks to be carried out in external applications using

an external server. The authors proposed a mobile cloud computing enterprise that consists

of four elements: mobile devices, wireless core, Wi-Fi access point, and regional

information centres.

Another study [204] showed that mobile devices could save energy by offloading some

tasks to the cloud server, such as battery life and wireless energy, which is used to transfer

the data in some applications; however, some applications are not energy saver efficient

[298]. In addition to the limited computational power in mobile devices, battery

consumption due to heavy computation adds another challenge, which makes mobile cloud

computing a good solution. As mobile devices have limited computation power, it is hard

to address all security cryptosystem requirements.

CLOAK is a lightweight protocol based on the AES cipher, which enables two mobile

devices to communicate with each other while leaving the keystream generation on an

external server (AWS in their implementation) [214]. It can be compromised by fetching

the keystream from an external server and from communication media as well. On the

other hand, it can get the keystream from either trusted or untrusted external servers.

However, the FEATHER protocol is a lightweight security cryptosystem and, as shown in

Chapter 6, is faster and more power efficient.

196

Contribution 4: Developed Near Field Secure Data Extractor (NFSDE) with lightweight

secure encryption protocol for RFID security in the absence of internet connectivity

The low cost of RFID tags means it is desirable for authentication and verification [249].

However, it requires internet connectivity, while the NFSDE cryptosystem published as

part of this thesis does not require a connection to the internet [221].

The possibility of the key being intercepted by a third party and the requirement to establish

a specific key for each sender–receiver pair is regarded as the “key delivery problem”

[294]. In standard symmetric encryption, it is important for the sender to establish and

transfer the key to the recipient. The number of keys needed is considered to be n(n − 1)/2,

where n is the number of entities who have to be informed. Another study [231] favored a

hardware approach to this issue and suggested specialised equipment named Recryptor.

While asymmetric architectures can solve this issue they need more processing power than

is ordinarily available in low-power devices. Another study [232] used a design processor

named Fulmine for IoT near-sensor applications. This thesis proposed a cryptosystem

implementation that includes NFSDE with MICKEY 2.0 to solve key distribution

problems [221].

In situations with poor internet access, attacks by hackers can be much more aggressive

[253] because the current framework has to be updated to resolve communication issues

and to include authentication approaches that are suited to such scenarios. However, Study

[253] offered solutions for open and untrusted networks, while the NFSDE based

cryptosystem in this thesis offers protection where internet access is poor or non-existent

[221].

197

8.9 Conclusion

In summary, the thesis analysis, randomness testing, neural network modelling, optimised

cipher MICKEY 2.0.85, the FEATHER lightweight protocol for securing mobile cloud

computing, and the NFSDE based lightweight cryptosystem all contribute to improved

cryptographic and security analysis and applications. This work can inspire further security

research and related technological developments to provide low-cost security solutions for

small devices and small-scale projects. The main contributions of this thesis can be

summarised as follows:

1. The thesis research identified flaws in the shrinking generator and self-shrinking

generator ciphers. This is useful because it can be adapted for any other ciphers.

2. The thesis research designed a prediction neural network based model for

randomness evaluation. This can be used for pseudo-randomness testing of any

kind of ciphers and hash functions for example.

3. The thesis research proposed a lighter and more secure version of the MICKEY 2.0

cipher, called MICKEY 2.0.85. This is slightly better than the original in various

security aspects and overall performance, and can be used for low scale security

projects.

4. The thesis research tested MICKEY 2.0.85 for efficiency and found that it was 23%

faster in encryption and consumes less power than MICKEY 2.0. This new version

is useful for low-cost encryption methods such as mobile cloud computing and

RFID low scale project. In addition, the testing methods work as a framework for

designing new encryption methods for evaluation and testing.

5. The thesis research proposed the FEATHER security protocol for mobile cloud

computing. This new lightweight cipher can be used for new small devices which

are essential components of mobile cloud computing.

6. The thesis research introduced the non-internet connectivity dependent Near Field

Secure Data Extractor (NFSDE) prototype device with security encryption method

for RFID technology at the absence of internet connectivity. An example of

implementation of this system was provided in an eHealth security context.

However, it can be used in a wide range of applications such as facilitating the

multi-factor “offline” to implement the two-person law, human courier scenario

security and to monitor items in transit and to compile inventory.

198

8.10 Possible future research directions

Based on the thesis findings, there are several future research directions to further improve

cryptosecurity for real-world applications:

1. Rather than applying the UWS test with neural network models to predict the

keystream, it can be applied in internal cipher components, such as LFSR and

NLFSR binary output, which can evaluate the strength of the cipher’s internal

components.

2. Adapting neural network prediction models in different ciphers and hash functions

can test their pseudo-randomness and whether the keystreams are complex enough

to resist possible attacks.

3. Neural network models for image and face recognition can be implemented by

converting the raw data into binary data and then applying the models in Chapter

4, with some modifications. This is an interesting direction, to see how predicted

data can result in accurate recognition.

4. The MICKEY 2.0 internal state size can be further reduced to less than 170-bit, but

larger than 160-bit (the key size is 80-bit, so the internal state as security rule should

be at least 2*80-bit), and then the new version and its parameters can be tested, as

in Chapter 5.

5. Another reduction approach in the internal state size of MICKEY 2.0 is to make

the S (nonlinear register) size more than R (linear register) size, while keeping the

internal state size between 160-bit and 170-bit, and using the evaluation methods

from Chapter 5.

6. For FEATHER, new ciphers other than MICKEY 2.0 can be implemented, then the

overall process time and the power consumption can be calculated.

7. The cryptosystem (NFSDE + security protocol) can be adopted in other healthcare

settings such as home visiting for patients with special needs, where it is difficult

for them to visit hospitals and emergency cases, and other settings.

8. A casing can be designed to contain NFSDE components to make it more practical

to use in a wide range of different environments (as practical application).

9. A holistic unit can be designed that does the NFSDE work while keeping the

functionalities of all internal components.

10. Ciphers other than MICKEY 2.0 can be used in NFSDE for encryption.

199

Appendices

The appendices provide additional results to those included in the thesis chapters. The

following table of appetencies contents:

Appendices for

chapter 3

Appendix 3.1: Additional d-monomial test results

Appendix 3.2: Linear complexity results for SSG

Appendix 3.3: Some statistical analysis for UWS4 to UWS24

Appendix 3.4: Unique Window Size degree vs polynomial weight

Appendix 3.5: Goodness of fit, plots and figures for different

statistical distributions

Appendix 3.6: Importance of variables based on univariate simple

linear regression model R square

Appendices for

chapter 5

Appendix 5.1: Counting GEs method

Appendix 5.2: GE number comparison in MICKEY family

algorithms

Appendix for

chapter 3

Appendix 6: Example of data that represents the communication

operation between mobile device and the cloud server

Appendices for

chapter 7

Appendix 7.1: Detailed flow of the patient tag creation process

Appendix 7.2: NFSDE device emulation

Appendix 7.3: PUF and possibility of use within NFSDE

200

Appendices for Chapter 3

Appendix 3.1: Additional d-monomial test results

First: For SSG

We performed d-monomial tests and applied chi-square tests with a degree of freedom of

non primitive polynomials of degree 5 to 7.

The following summary table shows the results of the d-monomial test and chi-square test

on primitive polynomials from degree 5 to 7. This thesis applied the d-monomial test and

the chi-square test, with a degree of freedom n and confidence level α=1%, 5% and 10%.

(From the null hypothesis, all monomials have normal binomial distribution).

Table 3.1.1 Polynomial for LFSR with degrees from 5 to 7 and their strength

POLY #TTF #TFF #FFF TOTAL

x5+x2+1 0 1 0 1

x5+x3+1 1 0 0 1

x5+x3+x2+x+1 1 0 0 1

x6+x+1 0 1 0 1

x6+x5+1 0 2 0 2

x6+x5+x2+x+1 0 0 1 1

x6+x5+x3+x2+1 0 2 0 2

x7+x+1 0 1 1 2

x7+x3+1 2 0 1 3

x7+x3+x2+x+1 0 0 1 1

x7+x5+x2+x+1 0 0 1 1

x7+x5+x3+x1+1 0 0 1 1

x7+x5+x4+x3+1 1 0 0 1

x7+x6+x4+x2+1 1 0 0 1

x7+x6+x5+x2+1 0 0 1 1

x7+x6+x5+x3+x2+x+1 0 0 1 1

x7+x6+x5+x4+1 1 0 1 2

x7+x6+x5+x4+x2+x+1 1 0 1 2

T=true, F=false, so TFF (For example) shows the number of initial states for which the d-

monomial tests passes at a significant level of 10% and fails at levels of 5% and 1%.

From the above table, we can see that x7+x3+1 is a bad polynomial to use with the LFSR

for SSG.

201

Here another example for degree 12. The study tested 144 primitive polynomials of degree

12. The following table shows, in decreasing order, the worst polynomials for LFSR.

Table 3.1.2: Polynomial for LFSR with degree 12 and their strength

Order Poly #FFF #TFF #TTF Total

1 x12+x10+x2+x+1 6 5 6 17

2 x12+x6+x5+x3+1 4 1 11 16

3 x12+x8+x2+x+1 3 4 8 15

4 x12+x7+x4+x3+1 2 1 10 13

5 x12+x11+x10+x8+x2+x+1 3 2 6 11

6 x12+x9+x7+x6+1 3 1 7 11

7 x12+x7+x6+x4+1 2 2 7 11

8 x12+x11+x10+x2+1 3 1 6 10

9 x12+x8+x7+x2+1 2 1 7 10

Second: For SG results

 By investigating the sg output and applied the d-monomial and chi-square test on the

primitive polynomials, with degrees of freedom of n and n+1.

As our primary result, we investigated primitive polynomials for LFSR1 and LFSR2 of

degree 4 to 7. In this investigation, we used three cases:

1. Fixing LFSR1 and LFSR2.

2. Fixing the LFSR1 and varying the LFSR2.

3. Fixing LFSR2 and varying LFSR1.

From the results of our investigation, sg does not pass our d-monomial tests and chi-square

test.

Our primary observation suggests that LFSR2 (the controlling function) insures the

nonlinearity of outputs. We also found that the greatest possible LFSR2 length is most

useful in order to gain the nonlinear property of SG outputs.

202

Appendix 3.2: Linear complexity results for SSG

An investigation of the association between degree and LC (Linear Complexity)

3.2.1 Introduction

This report investigates the association between degree and LC, and if such an association

exists, we attempt to find a formula relating degree and LC.

3.2.2 Methodology

Firstly the LC data was grouped using the following coding, for both the chucks and profile

data:

Table 3.2.1: Coding of LC values

LC value Code

[0,10] 1

(10,20] 2

(20,30] 3

>30 4

This is required in order to carry out a Chi-square test for association. A Chi-square test

for association is then carried out for both the chunks and profile data, individually. If an

association is found, we will attempt to quantify the relationship between degree and

association using a simple linear regression.

3.2.3 Results

Results for the chunks data

Firstly, examine a contingency table.

Table 3.2.2: Contingency table of degree versus grouped LC value

LC grouped

[0,10] (10,20] (20,30] >30

Degree

4 32 0 0 0

5 288 0 0 0

6 685 83 0 0

7 4165 1149 366 80

8 7032 2441 669 2146

203

The Chi-square test for association is highly significant, =1460.034, p<0.001.

therefore conclude there is an association between degree and LC. From Table 3.1.1, it is

clear that most polynomials have a high degree and low LC (e.g. degree 8 and LC between

0 and 10 inclusive), and very few have low degree and high LC (e.g. degree 4 and LC

above 30).

To determine the nature of the relationship between the variables, we examine the scatter

plot and fit a simple linear regression.

Please note that in general there is a lower known bound on LC, of the form: 𝐿𝐶 ≥ 𝑐. 𝑒(𝜃𝑛),

(c and 𝜃 are positive constants ∈ (0,1)), but this bound is not achieved for all polynomials,

which led us to consider this question. Our goal is to see what bound holds “an average”

for all polynomials.

Figure 3.2.1: Scatter Plot of LC versus degree

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%7B%5Cchi%7D%5E2(12)#0

204

Figure 3.2.2: Scatter Plot of logarithm of LC+1 versus degree

Table 3.2.3: Simple linear regression of degree versus LC+1 value

Estimate Std. Error t p-value

(Intercept) -0.32985 0.072745 -4.534 5.82E-06

degree 0.328899 0.009577 34.342 2.00E-16

Thus the relationship between degree and LC is estimated to be

 𝑙𝑛(𝐿𝐶 + 1) = −0.33 + 0.33 × 𝑑𝑒𝑔𝑟𝑒𝑒

This can be rewritten as

𝐿𝐶 = 0.72𝑒0.33×𝑑𝑒𝑔𝑟𝑒𝑒 − 1

205

Results for the profile data

Firstly, we examine a contingency table.

Table 3.2.4: Contingency table of degree versus grouped LC value

LC grouped

[0,10] (10,20] (20,30] >30

degree

4 16 0 0 0

5 96 0 0 0

6 113 79 0 0

7 357 355 360 80

8 311 330 322 1085

The Chi-square test for association is highly significant, =1460.034, p<0.001.

Therefore that conclude there is an association between degree and LC. From Table 3.2.1,

it is clear that most polynomials have a high degree and high LC (e.g. degree 8 and LC

greater than 30), and very few have low degree and low LC (e.g. degree 4 and LC between

0 and 10 inclusive).

To determine the nature of the relationship between the variables, we examine the scatter

plot and fit a simple linear regression.

http://www.sciweavers.org/tex2img.php?bc=Transparent&fc=Black&im=jpg&fs=100&ff=modern&edit=0&eq=%7B%5Cchi%7D%5E2(12)#0

206

Figure 3.2.4: Scatter Plot of LC versus degree

Figure 3.2.5: Scatter Plot of logarithm of LC+1 versus degree

207

Table 3.2.2: Simple linear regression of degree versus LC+1 value

Estimate Std. Error t p-value

(Intercept) -1.371 0.13074 -10.49 <2e-16

Degree 0.5785 0.01743 33.19 <2e-16

Thus the relationship between degree and LC is estimated to be

 𝑙𝑛(𝐿𝐶 + 1) = −1.37 + 0.58 × 𝑑𝑒𝑔𝑟𝑒𝑒

This can be rewritten as

 𝐿𝐶 = 0.25𝑒0.25×𝑑𝑒𝑔𝑟𝑒𝑒 − 1

The relationship appears to be exponential in nature, so the logarithm of LC+1 is taken

prior to fitting a regression. Note that one needs to be added to LC to avoid taking the

logarithm of zero, which is undefined.

In the following figure it represents linear complexity using chunk bits of self-shrinking

generator output for all primitive polynomials of degrees 4 to 8. To calculate linear

complexity , we took the first 4 chunk bits starting from bit 1, 2, 3…etc. bits of each ssg

output and applied the Berlekamp-Massey algorithm. Then taking 8, chunk bits 16… etc.

208

Appendix 3.3: Some statistical analysis for UWS4 to UWS24

Table 3.3.1: An overall statistical analysis of the UWS for shrinking generator with degrees

from 4 to 24

Degree Weight

mean

UWS

mean

Weight

variance

UWS

variance

Weight

standard

deviation

UWS

standard

deviation

UWS

Weight

Correlation

4 3 4 0 0 0 0 NA

5 4.3333 7.5 1.06666 4.3 1.032795 2.073644 0.747087

6 4.3333 7.6666 1.0666 1.06666 1.032795 1.032795 -0.25

7 5 11.055 1.88235 6.17320 1.37198 2.484593 -0.03451

8 5.5 13.437 0.8 4.12916 0.894427 2.032035 -0.27510

9 6.25 14.9166 1.63829 4.03546 1.27996 2.00884 -0.17377

10 6.533 17.766 2.35480 4.18192 1.53453 2.04497 0.169954

11 7.0227 18.931 2.33090 3.22961 1.52673 1.79711 -0.06191

12 7.3611 21.402 1.82672 4.07439 1.35156 2.01851 -0.0383

13 8.0476 23.325 2.7544 4.1626 1.6596 2.0402 0.0259

14 8.6031 25.284 2.88338 3.43027 1.69805 1.85209 -0.0171

15 8.9422 27.345 3.5986 3.8594 1.8970 1.9645 -0.0009

16 9.5117 29.354 3.5601 3.4237 1.8868 1.8503 0.0046

17 9.9644 31.284 4.0477 3.3906 2.0119 1.8413 -0.013

18 10.525 33.360 4.23499 3.65402 2.05790 1.91155 -0.0064

19 11.011 35.322 4.46157 3.53126 2.11224 1.87916 -0.0100

20 11.502 37.330 4.78885 3.51279 2.18834 1.87424 -0.0008

21 11.992 39.331 4.95370 3.5344 2.22569 1.88002 -0.0040

22 12.505 41.332 5.22508 3.55562 2.28584 1.88563 -0.0018

23 13.002 43.3346 5.51737 3.5444 2.34890 1.88268 0.00074

24 13.503 45.3346 5.7573 3.5067 2.3994 1.8726 0.0018

209

Appendix 3.4: Unique Window Size degree vs polynomial weight

The following table shows all primitive polynomials of degree 9 and 10 with their weight

and unique window size:

Table 3.4.1 weight of poly (degree 9) and Unique Window Size with (frequencies)

Weight Unique Window Size with (frequencies)

3 16(1) 17(1)

5 12(1) 13(4) 14(4) 15(1) 16(2) 18(3) 20(1)

7 12(1) 13(6) 14(10) 15(3) 16(2) 17(3) 18(1) 19(2)

9 13(1) 15(1)

Table 3.4.2 weight of poly (degree 10) and Unique Window Size with (frequencies)

Weight Unique Window Size with (frequencies)

3 15(1) 16(1)

5 15(2) 16(2) 17(9) 18(3) 19(2) 20(1) 23(1)

7 17(8) 18(4) 19(5) 20(2) 22(2) 24(1)

9 15(2) 16(1) 17(1) 18(3) 19(1) 20(1) 23(1)

The following histogram shows the calculations for primitive polynomials of degree 14,

for weight versus unique window.

210

UWS21, weight =5

UWS21 and all weights

211

Appendix 3.5: Goodness of fit, plots and figures for different statistical distributions

This report includes the goodness of fit, as well as plots and figures for different statistical

distributions comparison for SG with UWS2.

Table 3.5.1 Goodness of fit for possible probability distribution for SG with UWS20

Distribution Log-likelihood AIC BIC Ranking

Poisson -207633.1 415268.3 415277.4 5

Negative

Binomial

-207633.1 415270.3 415288.6 6

Geometric -332299.8 664601.7 664610.8 7

Normal -194858.1 389720.1 389738.4 3

Weibull -207206.1 414416.3 414434.3 4

Gamma -192544.2 385092.4 385110.7 2

Log normal -191560.4 383124.7 383143 1

*highest log likelihood, lowest AIC and BIC

Table 3.5.2 Test for randomness

Test Statistic P value Decision

Bartels rank test -83.926 <0.001 Non-Random

Cox sturt test 8957 <0.001 Non-Random

Mann Kendal rank test -139.68 <0.001 Non-Random

212

Based on UWS20 variable for SG

Observed and empirical distributions:

First: Continuous distributions:

Normal plots:

Weibull plots:

213

Gamma plots:

Log normal plots:

214

Second: Discrete distributions:

Poisson:

Negative Binomial:

Geometric:

215

Third: Comparisons between continuous distributions

Weibull and gamma lines are on top of each other, hence only one red line visible.

Fourth: Comparison between discrete distributions

Poisson and negative binomial lines are on top of each other, hence only one red line is

visible.

216

Fifth: Comparison between all (candidate) distributions

217

Appendix 3.6: Importance of variables based on univariate simple linear regression

model R square

Variable R Square

Input polynomial term of order 17 0.18

Input degree 0.127

Control degree 0.127

Control weight 0.10

Input weight 0.09

Input polynomial term of order 13 0.09

Input polynomial term of order 12 0.08

Input polynomial of order 14 0.08

Input polynomial term of order 15 0.08

Input polynomial term of order 16 0.08

Control polynomial term of order 9 0.078

Control polynomial term of order 11 0.068

Control polynomial term of order 8 0.057

Control polynomial term of order 13 0.054

Control polynomial term of order 10 0.041

Input polynomial term of order 10 0.04

Control polynomial term of order 4 0.038

Control polynomial term of order 5 0.036

Control polynomial term of order 6 0.036

Control polynomial term of order 3 0.032

Input polynomial term of order 11 0.018

Control polynomial term of order 12 0.018

Control polynomial term of order 7 0.015

Input polynomial term of order 8 0.014

Input polynomial term of order 7 0.008

Input polynomial term of order 9 0.002

Control polynomial term of order 17 0.001

Control polynomial term of order 14 0.0006

Input polynomial term of order 4 0.0005

Control polynomial term of order 16 0.0005

Control polynomial term of order 15 0.0004

Input polynomial term of order 2 0.00009

Control polynomial term of order 1 0.00009

Input polynomial term of order 1 0.00006

Input polynomial term of order 3 0.00006

Input polynomial term of order 6 0.00006

218

Appendices for Chapter 5

These appendices include explanations for the counting method of GEs as in Chapter 5,

and comparison of GEs number in the MICKEY family algorithms.

Appendix 5.1: Counting GEs method

The way to count the Gate Equivalents (GEs), which is the measurement unit to measure

the electronic circuit complexity, is based on the operation used for computation as

following:

Table 5.1. Number of GEs for a given logical gate; see [310].

Gate Number of Gate Equivalents

NOT 1

AND 2

OR 2

XOR 3

NAND 1

NOR 1

XNOR 3

MUX 3

One of the objectives of this algorithm was to reduce the number of GEs. The following

points summarise how the reduction was accomplished with a focus on those algorithm

features used for reduction and indicates the kind of gate it represents. This enabled us to

count the number of GEs.

The following part were published as a part of this thesis in [23]

CLOCK_R: 1: Initialization of the Internal Register (Single XOR)

CLOCK_R 2: Loop (Conditional) Feedback Bit Logically Assigns Linear Register Bit

(Within Loop)

MICKEY 2.0: for i = 0 to 99

MICKEY 2.0.85: for i = 0 to 84

CLOCK_R 3: Linear (R_MASK) Logic to Invert Bit (Single XOR) (Within Loop)

MICKEY 2.0: for i = 0 to 99

MICKEY 2.0.85: for i = 0 to 84

219

CLOCK_R 4: Multiple Related Operation (Single MUX)—Conditionally executed based

on control bit.

CLOCK_R 5: Multiple Related Operation (Single MUX)—Conditionally executed based

on feedback bit.

CLOCK_S: 1 Initialization of Internal (Nonlinear) Register (Single XOR)

MICKEY 2.0: For i = 0 to 99:

MICKEY 2.0.85: For i = 0 to 84

CLOCK_S: 2, CLOCK_S: 3: Bitwise operations on internal structures 3 XORs and One

AND (gates)

CLOCK_S: 4: Conditional Logic on Feedback and Control Bit (Single MUX)

MICKEY 2.0: For i = 0 to 99:

MICKEY 2.0.85: For i = 0 to 84

CLOCK_S: 5: Change Nonlinear Register (Single XOR)

CLOCK_KG: 1–5: Simple Initializations: (4 XOR, 1 AND)

The IV and key were used along with the internal masks to initialize the registers in the

function ECRYPT_keysetup, ECRYPT_ivsetup. The idea is that, by arbitrarily mixing the

bits of the key and the IV, the initial state of both the linear and nonlinear registers will be

unpredictable.

MICKEY 2.0: IV_i 1: For i = 0 to 79: Initialize on IV (Single MUX)

MICKEY 2.0: IV 2: For i = 0 to 80: Initialize on Key (Single MUX)

Therefore, the MICKEY Algorithm works as follows:

MICKEY 2.0: Process (Single MUX to represent Logic):

1. Initialize the internal state using: IV, key, and CLOCK_KG (which uses

CLOCK_R and CLOCK_S) to mix in the IV and KEY bits based on the internal driver

structures

(R_MASK and COMP0, COMP1, FB0, FB1)

2. For each bit in the message invoke CLOCK_KG

 a. CLOCK_KG invokes CLOCK_R, which advances the linear bit and masks it with

R_MASK to determine its final value.

b. CLOCK_KG also invokes CLOCK_S, which may or may not advance the

nonlinear bit depending on the linear position and the values of (COMP0, COMP1, FB0,

and FB1)

c. CLOCK_KG determines the keystream bit by XORing the current linear and

nonlinear registers and ANDs them with 1.

220

d. Ciphertext Generation: The current plaintext message bit is XORed with the current

Keystream bit, which becomes the ciphertext output.

221

Appendix 5.2: GE number comparison in MICKEY family algorithms

The following part was published as a part of this thesis in [23]

The following table counts the number of GEs for both MICKEY 2.0 and MICKEY 2.0.85,

considering the logical gates XOR, AND and MUX count. And that for internal state parts

CLOCK_R, CLOCK_S,CLOCK_KG,ECRYPT_IVs setup and Encrypt_process

functions.

Table 5.2. GE Comparison between MICKEY Family Algorithms.

Function Operation
GE

Multiplier

MICKEY 2.0

Count

MICKEY 2.0.85

Count

Number GE Number GE

CLOCK_R XOR 3 401 1203 341 1023

 MUX 3 2 6 2 6

CLOCK_S XOR 3 400 1200 340 1020

 AND 2 100 200 85 170

 MUX 3 2 6 2 6

CLOCK_KG XOR 3 4 12 4 12

ECRYPT_IVs

setup
MUX 3 160 480 160 480

Encrypt_process MUX 3 8 24 8 24

Total GE 3131 2741

222

Appendix for Chapter 6

Appendix 6: Example of data that represents the communication operation between

mobile device and the cloud server

Register

action=register&uid=431a53a9b877c8e7a1d00e485c4fbfa4&phone=%2B14165551212

×tamp=1581955729&x=sig

s=OK&d=6178ebbcd400a83336c827e45c2d0ae3b8e96f1fc6daf2b5fe3b0b03cac9762b42

61e8166190499758717cb49e86985670077636e168ebdfa4f6e26ebf589a01&t=15819557

29

onetimepad =

6178ebbcd400a83336c827e45c2d0ae3b8e96f1fc6daf2b5fe3b0b03cac9762b4261e81661

90499758717cb49e86985670077636e168ebdfa4f6e26ebf589a01

Update

action=update&uid=431a53a9b877c8e7a1d00e485c4fbfa4&data=06c219e5bc8378f3a8a

3f83b4b7e4649×tamp=1581955729&x=sig

s=OK&d=d8fafca7c6611a58e4e63894e99acdc606d43480639c8cfcc25bb3f8729b8b5996

7565f014af18d03600c497b6f9d0b1cca4f057086d40fac195c2700a450a88&t=158195572

9&x=f2053690b839f7f0bdfb6208f682fae0

sharedkeystream =

b982171b1261b26bd22e1f70b5b7c725be3d5b9fa5467e493c60b8fbb852fd72d4148de67

53f51476e71b823287f48e7bca38661e905ab256563201eb51d9089

Validate

action=validate&uid=431a53a9b877c8e7a1d00e485c4fbfa4&data=06c219e5bc8378f3a8

a3f83b4b7e4649×tamp=1581955729&x=sig

s=OK&t=1581955729

Generate

action=generate&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=63158a3230a6ff1383c

8ef9f4790ca56&number=262144&expire=1581955759×tamp=1581955729&x=sig

s=OK&t=1581955730

Request

223

(download keystream)

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=63158a3230a6ff1383c8

ef9f4790ca56×tamp=1581955730&x=sig

s=OK&d=c2b51d7e6ada70cb58b84de530350ca28a839ebb83ee5092f034c7e2e07ca5a1b

276b53868c42fefffa085357b76d5607bc02d8ce2df63f24b2bd098c354ca551210acd29f58

c375d880

…………………………….

keystream_encrypted =

c2b51d7e6ada70cb58b84de530350ca28a839ebb83ee5092f034c7e2e07ca5a1b276b53868

c42fefffa085357b76d5607bc02d8ce2df63f24b2bd098c354ca551210acd29…………...

keystream =

7b370a6578bbc2a08a9652958582cb8734bec52426a82edbcc547f19582e58d3666238de1

dfb7ea891d13d1653099d87c763abed0bdac8d72e48f08676495adcab92bbc98d…..

Upload

(upload encrypted file)

action=upload&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=cfb57d776aed4b34e3d0

f35440a925a4&data=4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a6

9a263c21a0fab….

s=OK&t=1581955734

file_contents = Shhh! Don't tell anyone. This is the secret message I am trying to send

to my friend.

file_inflated =

536868682120446f6e27742074656c6c20616e796f6e652e2054686973206973207468652

0736563726574206d657373616765204920616d20747279696e6720746f2073656e64207

46f206d7920667269656e642e

file_encrypted =

f3b6e95c7074ec4f3abd2e5bd4bbed587135c6593bf43f55808ae95d2274c15374ee321e80

ade4572331dc0039ff2908c1b9e4141874c94d74ee2802c9b0e614253b885331f43e5bd4b1

a1592874ce523dff341f8e

224

file_encrypted_sk =

4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a0fabff8f59

2b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f4823958c30069f

be299dc3097783c26f802b

Upload

(upload magic file)

action=upload&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=d4e3707271&data=b98

2171c1261b26fd22e1f8fc380ad49c6b1a2c094b8926dc97e5a7a62c5605bf6d3c09e24d9a

1a89c56b550&expire=1581955764×tamp=1581955734&x=sig

s=OK&t=1581955734

magic_filename = magic

magic_filename_inflated = 6d61676963

magic_filename_encrypted = d4e370727

Request

(download magic file)

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=d4e3707271×tam

p=1581955734&x=sig

s=OK&d=b982171c1261b26fd22e1f8fc380ad49c6b1a2c094b8926dc97e5a7a62c5605bf6

d3c09e24d9a1a89c56b550&t=1581955734&x=04b4e10845b57dc9b4fbf5bb02d19bd4

R0 = 7

R1 = 4

RN = 255

filename_hashed = 76376a6c788cf95f31feec24f51ee281

token_hashed = da979d2922c74d7851e6f0eff2270d73

225

Request

(download encrypted file)

action=request&uid=431a53a9b877c8e7a1d00e485c4fbfa4&file=cfb57d776aed4b34e3d

0f35440a925a4×tamp=1581955734&x=sig

s=OK&d=4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a

0fabff8f592b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f48239

58c30069fbe299dc3097783c26f802b&t=1581955734&x=59a2859ad8dc9e68c4493fd94

1c7180f

file_encrypted_sk =

4a34fe4762155e24e893312b610c2a7dcf089dc69eb2411cbcea51a69a263c21a0fabff8f59

2b5104d406423118061ef7d1a6275f1716268118d081c7cad769d9cb99f4823958c30069f

be299dc3097783c26f802b

file_encrypted =

f3b6e95c7074ec4f3abd2e5bd4bbed587135c6593bf43f55808ae95d2274c15374ee321e80

ade4572331dc0039ff2908c1b9e4141874c94d74ee2802c9b0e614253b885331f43e5bd4b1

a1592874ce523dff341f8e

file_inflated =

536868682120446f6e27742074656c6c20616e796f6e652e2054686973206973207468652

0736563726574206d657373616765204920616d20747279696e6720746f2073656e64207

46f206d7920667269656e642e

file_contents = Shhh! Don't tell anyone. This is the secret message I am trying to send

to my friend.

226

Appendices for Chapter 7

These appendices include the chart for patient tage creation with full details, NFSDE

device emulation and PUF and possibility of use within NFSDE.

Appendix 7.1: Detailed flow of the patient tag creation process

227

Appendix 7.2: NFSDE device emulation

The emulator functions as a command line program that displays a menu with the following

options.

These are the main options suggested for display on the user interface and can be modelled

according to user preferences.

MAIN MENU:

1. Create Patient Tag

2. Create Provider Tag

3. Activate Reader

4. Read Patient Tag

5. Unlock the USB

6. Change Key Number (Time stamp emulator)

7. Exit

B. TEST RUN USING THE EMULATOR

1. To unlock the USB drive by using option 5, which makes the key available, the

password is hard coded and displayed for convenience within the simulator. If the USB

device is not unlocked, K1, K0, and IV0 are not available to the simulator, and error

messages are displayed. If the SD card is not “unlocked,” no creation, read, or activation

can be performed.

2. Option 6 allows the simulation of a KTI rotation. For demonstration purposes, only

two key sets were provided. This proves it is possible to encrypt the provider with one set

of keys and the patient with another.

3. Creating a provider tag by using option 2 prompts the following process.

a. The provider’s identification, PIN, and authorization are entered.

b. A 7-byte unique ID is generated randomly.

c. Encryption is performed, and authentication code (as described above) is

generated.

d. A file of the form “[uniqueid].enc” is used to simulate the tag (in this case, the

provider tag.) This includes an unencrypted value of “2” in the tag type field to ensure that

subsequent scans “know” this is a provider tag rather than a patient tag.

e. A plaintext file of the form “[uniqueid].txt” is also created for checking the

accuracy of the decryption process.

4. Option 1 for creating a patient tag has two major features:

228

a. Emulation of the reference fingerprint scan, which is performed by simply

specifying one of the three hex files provided to serve as the reference fingerprint (we used

three to enable us to emulate incorrect or failed scans).

b. Emulation of reading and encrypting the identity and “medical data.” We used a

random name generator and a random string generator to emulate the patient identity and

medical data.

c. A file of the form “[uniqueid].enc” is used to simulate the tag (in this case, the

patient tag). This includes the unencrypted value of “1” in the tag type field to enable

subsequent scans to “know” this is a patient tag rather than a provider tag.

d. A plaintext file of the form “[uniqueid].txt” is also created to verify the accuracy

of the decryption process.

5. Option 3 (reader activation) begins by prompting the provider tag to be scanned.

This scan is emulated by entering the filename of a provider tag that has already been

created (“[uniqueid].enc”). If the file contains 2 (provider) in the tag type field, the

authentication signature is decrypted and checked (including CRC). If the signature

matches all acceptance criteria and it is assured that the data have not been tampered with,

the device is “activated” and the authorization level of the provider is stored in the device

memory.

6. Option 4 reads the patient tag. If the device has not been activated (Option 3),

Option 4 fails immediately, prompting for activation. The RFID card is “scanned” by

entering the filename of a previously created patient tag (“[uniqueid].enc”). If the file

contains the patient value of 1 in the tag type field, the authentication signature is decrypted

and checked (including CRC). Further, if the signature matches all acceptance criteria and

it is assured that the data have not been tampered with, fingerprint scanning is performed

in the next step. Fingerprint scanning is emulated by entering one of the fingerprint file

numbers. A “good scan” is emulated by entering the same number as in the reference

fingerprint template, whereas a “bad scan” is emulated by entering one of the other

numbers. If the fingerprint matches, the medical data will be decrypted and displayed

(based on the authorization level at activation.)

229

Appendix 7.3: PUF and possibility of use within NFSDE

Physically Unclonable Functions (PUFs) have two major functional benefits: key

generation and lightweight authentication [250], [251]. We do not need PUFs for key

generation but could use them for lightweight authentication.

When an environmentally stable PUF becomes readily available for emergency use, the

protocol we have developed should dove-tail into this technology. The emulator functions

can be modified to use the protocol.

In a scenario that requires less frequent key rotation and in which potential problems

caused by the environment are not life-threatening, off-the-shelf components could be

replaced by commercially available special order CRFID tags. These tags, for providers

only, could serve the same function as the SD. IV0, K1 and K0 could be encrypted and

stored on the providers' CRFID cards and decrypted when his or her PIN is authenticated.

To pursue this line of inquiry, the software-based components of the emulator could be

adopted to experiment on the best way to implement the protocol to guide the designer for

specific hardware implementations without limiting designer creativity [309]. Adding a

fuzzy extractor [251] to the emulator would definitely give us some better insights on

implementation details necessary for PUFs.

For example, the RFID tag simulator component might be replaced by a CRFID with a

PUF simulator component. The USB component may, for example, be used for storing

expected responses to registered challenges or may be replaced or removed entirely.

230

References

[1] Fagbemi DD, Wheeler DM, Wheeler JC. The IoT Architect's Guide to Attainable

Security and Privacy. CRC Press; 2019 Oct 8.

[2] Le D-N, Bhatt C, Madhukar M. Security Designs for the Cloud, IoT, and Social

Networking. John Wiley & Sons; 2019.

[3] Jouini M, Rabai LB. A Computational Approach for Secure Cloud Computing

Environments. InModern Principles, Practices, and Algorithms for Cloud Security 2020

(pp. 129-144). IGI Global.

[4] Poudel M, Shrestha S, Sarode RP, Chu W, Bhalla S. Query Languages for

Polystore Databases for Large Scientific Data Archives [Internet]. 2019 9th International

Conference on Cloud Computing, Data Science & Engineering (Confluence). 2019.

Available from: http://dx.doi.org/10.1109/confluence.2019.8776972

[5] Mo J, Hu Z, Chen H, Shen W. An efficient and provably secure anonymous user

authentication and key agreement for mobile cloud computing. Wireless Communications

and Mobile Computing. 2019;2019.

[6] Zhao R, Wang D, Zhang Q, Chen H, Huang A. CRH: A Contactless Respiration

and Heartbeat Monitoring System with COTS RFID Tags. In2018 15th Annual IEEE

International Conference on Sensing, Communication, and Networking (SECON) 2018

Jun 11 (pp. 1-9). IEEE.

[7] He Y, Wang G, Li W, Ren Y. Improved Cube Attacks on Some Authenticated

Encryption Ciphers and Stream Ciphers in the Internet of Things. IEEE Access. 2020 Jan

17;8:20920-30.

[8] Pasqualini L, Parton M. Pseudo Random Number Generation: a Reinforcement

Learning approach. Procedia Computer Science. 2020 Jan 1;170:1122-7.

[9] Dinh HT, Lee C, Niyato D, Wang P. A survey of mobile cloud computing: architecture,

applications, and approaches. Wireless communications and mobile computing. 2013 Dec

25;13(18):1587-611.

[10] Want R. An introduction to RFID technology. IEEE pervasive computing. 2006

Feb 13;5(1):25-33.

[11] Juels A. RFID security and privacy: A research survey. IEEE journal on selected

areas in communications. 2006 Feb 6;24(2):381-94.

[12] Van Tilborg HC, Jajodia S, editors. Encyclopedia of cryptography and security.

Springer Science & Business Media; 2014 Jul 8.

231

[13] Reactive.IO - Better Software, Faster [Internet]. [cited 2020 Apr 30]. Available

from: https://reactive.io/

[14] Hong J, Sarkar P. New applications of time memory data tradeoffs. InInternational

Conference on the Theory and Application of Cryptology and Information Security 2005

Dec 4 (pp. 353-372). Springer, Berlin, Heidelberg.

[15] Hong J, Sarkar P. Rediscovery of Time Memory Tradeoffs. IACR Cryptology

ePrint Archive. 2005 Mar;2005:90.

[16] Menezes AJ, van Oorschot PC, Vanstone SA. Handbook of Applied Cryptography

[Internet]. 2018. Available from: http://dx.doi.org/10.1201/9780429466335

[17] Paar C, Pelzl J. Understanding cryptography: a textbook for students and practitioners.

Springer Science & Business Media; 2009 Nov 27.

[18] Buchanan WJ, Li S, Asif R. Lightweight cryptography methods. Journal of Cyber

Security Technology. 2017 Oct 1;1(3-4):187-201.

[19] Klein A. The eStream Project [Internet]. Stream Ciphers. 2013. p. 229–39.

Available from: http://dx.doi.org/10.1007/978-1-4471-5079-4_10

[20] Omrani T, Rhouma R, Becheikh R. LICID: a lightweight image cryptosystem for

IoT devices. Cryptologia. 2019 Jul 4;43(4):313-43.

[21] Al_Janabi S, Hussein NY. The reality and future of the secure mobile cloud computing

(SMCC): survey. InInternational Conference on Big Data and Networks Technologies

2019 Apr 29 (pp. 231-261). Springer, Cham.

[22] Website [Internet]. [cited 2020 Apr 25]. Available from: Amazon Web Services,

Inc. (2020). Amazon EC2. [online] Available at: https://aws.amazon.com/ec2/

[23] Alamer A, Soh B, Brumbaugh DE. MICKEY 2.0. 85: A Secure and Lighter

MICKEY 2.0 Cipher Variant with Improved Power Consumption for Smaller Devices in

the IoT. Symmetry. 2020 Jan;12(1):32.

[24] Coppersmith D, Krawczyk H, Mansour Y. The shrinking generator. InAnnual

International Cryptology Conference 1993 Aug 22 (pp. 22-39). Springer, Berlin,

Heidelberg.

[25] Meier W, Staffelbach O. The self-shrinking generator. InCommunications and

Cryptography 1994 (pp. 287-295). Springer, Boston, MA.

[26] Gupta BB, Sheng QZ, editors. Machine Learning for Computer and Cyber

Security: Principle, Algorithms, and Practices. CRC Press; 2019 Feb 5.

[27] Rukhin A, Soto J, Nechvatal J, Smid M, Barker E. A statistical test suite for random

and pseudorandom number generators for cryptographic applications. Booz-allen and

hamilton inc mclean va; 2001 May 15.

232

[28] He D, Zeadally S. An analysis of RFID authentication schemes for internet of

things in healthcare environment using elliptic curve cryptography. IEEE internet of things

journal. 2014 Sep 23;2(1):72-83.

[29] Cohen EA. The Code Book: The Evolution of Secrecy from Mary, Queen of Scots

to Quantum Cryptography. Foreign Affairs. 1999 Nov 1;78(6):148.

[30] Rosenblatt AL. The code book: the evolution of secrecy from Mary Queen of Scots

to quantum cryptography [Books]. IEEE Spectrum. 2000 Oct;37(10):10-4.

[31] Singh S. The code book: the science of secrecy from ancient Egypt to quantum

cryptography. Anchor; 2000.

[32] Karzig T, Knapp C, Lutchyn RM, Bonderson P, Hastings MB, Nayak C, Alicea J,

Flensberg K, Plugge S, Oreg Y, Marcus CM. Scalable designs for quasiparticle-poisoning-

protected topological quantum computation with Majorana zero modes. Physical Review

B. 2017 Jun 21;95(23):235305.

[33] Chabaud F, Stern J. The cryptographic security of the syndrome decoding problem

for rank distance codes. InInternational Conference on the Theory and Application of

Cryptology and Information Security 1996 Nov 3 (pp. 368-381). Springer, Berlin,

Heidelberg.

[34] Englund H, Johansson T, Turan MS. A framework for chosen IV statistical analysis

of stream ciphers. InInternational Conference on Cryptology in India 2007 Dec 9 (pp. 268-

281). Springer, Berlin, Heidelberg.

[35] Bellare M, Paterson KG, Rogaway P. Security of symmetric encryption against

mass surveillance. InAnnual Cryptology Conference 2014 Aug 17 (pp. 1-19). Springer,

Berlin, Heidelberg.

[36] Boyd C, Mathuria A, Stebila D. Authentication and key transport using public key

cryptography. InProtocols for Authentication and Key Establishment 2020 (pp. 135-164).

Springer, Berlin, Heidelberg.

[37] Avoine G, Canard S, Ferreira L. Symmetric-key authenticated key exchange

(SAKE) with perfect forward secrecy. InCryptographers’ Track at the RSA Conference

2020 Feb 24 (pp. 199-224). Springer, Cham.

[38] Chen CM, Huang Y, Wang KH, Kumari S, Wu ME. A secure authenticated and

key exchange scheme for fog computing. Enterprise Information Systems. 2020 Jan 12:1-

6.

[39] Salehi SA. Low-Cost Stochastic Number Generators for Stochastic Computing.

Vol. 28, IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 2020. p.

992–1001.

233

[40] James F, Moneta L. Review of High-Quality Random Number Generators. Vol. 4,

Computing and Software for Big Science. 2020.

[41] Courtois NT. Fast algebraic attacks on stream ciphers with linear feedback.

InAnnual International Cryptology Conference 2003 Aug 17 (pp. 176-194). Springer,

Berlin, Heidelberg.

[42] Burman S, Mukhopadhyay D, Veezhinathan K. LFSR based stream ciphers are

vulnerable to power attacks. InInternational Conference on Cryptology in India 2007 Dec

9 (pp. 384-392). Springer, Berlin, Heidelberg.

[43] Feng GL, Tzeng KK. A generalization of the Berlekamp-Massey algorithm for

multisequence shift-register synthesis with applications to decoding cyclic codes. IEEE

Transactions on Information Theory. 1991 Sep;37(5):1274-87.

[44] Lihua D, Yupu H. Weak generalized self-shrinking generators. Journal of Systems

Engineering and Electronics. 2007 Jun;18(2):407-11.

[45] Hu Y, Xiao G. Generalized self-shrinking generator. IEEE Transactions on

Information Theory. 2004 Mar 30;50(4):714-9.

[46] Mogos G. Quantum random number generator vs. random number generator.

In2016 International Conference on Communications (COMM) 2016 Jun 9 (pp. 423-426).

IEEE.

[47] Wang Y, Xiang S, Wang B, Cao X, Wen A, Hao Y. Time-delay signature

concealment and physical random bits generation in mutually coupled semiconductor

lasers with FBG filtered injection. Optics express. 2019 Mar 18;27(6):8446-55.

[48] Irfan M, Ali A, Khan MA, Ehatisham-ul-Haq M, Mehmood Shah SN, Saboor A,

Ahmad W. Pseudorandom Number Generator (PRNG) Design Using Hyper-Chaotic

Modified Robust Logistic Map (HC-MRLM). Electronics. 2020 Jan;9(1):104.

[49] Moggia E. Generalized Quasi-Random Lattice model for electrolyte solutions:

Apparent and partial molal heat capacities. Fluid Phase Equilibria. 2020 Feb

1;505:112358.

[50] Rezk AA, Madian AH, Radwan AG, Soliman AM. Reconfigurable chaotic pseudo

random number generator based on FPGA. AEU-International Journal of Electronics and

Communications. 2019 Jan 1;98:174-80.

[51] Peetermans A, Rozic V, Verbauwhede I. A highly-portable true random number

generator based on coherent sampling. In2019 29th International Conference on Field

Programmable Logic and Applications (FPL) 2019 Sep 8 (pp. 218-224). IEEE.

234

[52] Schepers D, Ranganathan A, Vanhoef M. Practical Side-Channel Attacks against

WPA-TKIP. InProceedings of the 2019 ACM Asia Conference on Computer and

Communications Security 2019 Jul 2 (pp. 415-426).

[53] Hinek MJ. Cryptanalysis of RSA and its variants. CRC press; 2009 Jul 21.

[54] Erguler I, Anarim E. A new cryptanalytic time-memory trade-off for stream

ciphers. InInternational Symposium on Computer and Information Sciences 2005 Oct 26

(pp. 215-223). Springer, Berlin, Heidelberg.

[55] Jean J, Nikolić I, Peyrin T, Wang L, Wu S. Security analysis of PRINCE.

InInternational Workshop on Fast Software Encryption 2013 Mar 11 (pp. 92-111).

Springer, Berlin, Heidelberg.

[56] Babbage SH. Improved “exhaustive search” attacks on stream ciphers. 1995 Jan

1;161–6.

[57] Golić JD. Cryptanalysis of alleged A5 stream cipher. InInternational Conference

on the Theory and Applications of Cryptographic Techniques 1997 May 11 (pp. 239-255).

Springer, Berlin, Heidelberg.

[58] Turan MS, Çalık Ç, Saran NB, Doğanaksoy A. New distinguishers based on

random mappings against stream ciphers. InInternational Conference on Sequences and

Their Applications 2008 Sep 14 (pp. 30-41). Springer, Berlin, Heidelberg.

[59] Rueppel RA. Analysis and design of stream ciphers. Springer Science & Business

Media; 2012 Dec 6.

[60] Berbain C, Gilbert H. On the security of IV dependent stream ciphers.

InInternational Workshop on Fast Software Encryption 2007 Mar 26 (pp. 254-273).

Springer, Berlin, Heidelberg.

[61] Pareschi F, Rovatti R, Setti G. Second-level NIST randomness tests for improving

test reliability. In2007 IEEE International Symposium on Circuits and Systems 2007 May

27 (pp. 1437-1440). IEEE.

[62] Sýs M, Říha Z. Faster randomness testing with the NIST statistical test suite.

InInternational Conference on Security, Privacy, and Applied Cryptography Engineering

2014 Oct 18 (pp. 272-284). Springer, Cham.

[63] List JA, Shaikh AM, Xu Y. Multiple hypothesis testing in experimental economics.

Experimental Economics. 2019 Dec 1;22(4):773-93.

[64] Alekseychuk AN, Konyushok SN. On the Efficiency of the Probabilistic Neutral

Bits Method in Statistical Cryptanalysis of Synchronous Stream Ciphers. Cybernetics and

Systems Analysis. 2016 Jul 1;52(4):503-8.

235

[65] The eSTREAM portfolio page [Internet]. [cited 2019 Aug 6]. Available from:

http://www.ecrypt.eu.org/stream

[66] Liu H, Wang B. Mitigating File-Injection Attacks with Natural Language

Processing. InProceedings of the Sixth International Workshop on Security and Privacy

Analytics 2020 Mar 16 (pp. 3-13).

[67] Ghafari VA, Hu H. A new chosen IV statistical distinguishing framework to attack

symmetric ciphers, and its application to ACORN-v3 and Grain-128a. Journal of Ambient

Intelligence and Humanized Computing. 2019 Jun 1;10(6):2393-400.

[68] Sibleyras F. Generic Attack on Iterated Tweakable FX Constructions. InCT-RSA

2020-The Cryptographers' Track at the RSA Conference 2020 2020 Feb 24.

[69] Amine FM, Abdelkader G. Hybrid Approach of Modified AES. InCryptography:

Breakthroughs in Research and Practice 2020 (pp. 129-141). IGI Global.

[70] Maimut D, Ouafi K. Lightweight cryptography for RFID tags. IEEE Security &

Privacy. 2012 Apr 3;10(2):76-9.

[71] Sangariand S, Manickam L. A light-weight cryptography analysis for wireless

based healthcare applications. J Comput Sci. 2014;10(10):2088-94.

[72] Griotti M, Gandino F, Rebaudengo M. Transitory Master Key Transport Layer

Security for WSNs. IEEE Access. 2020 Jan 23;8:20304-12.

[73] Reggiani A, Romanelli R, Tritapepe T, Nijkamp P. NEURAL NETWORKS: AN

OVERVIEW AND APPLICATIONS IN THE SPACE ECONOMY. IN: NEURAL

NETWORKS IN TRANSPORT APPLICATIONS. Atmospheric Environment. 1998.

[74] Chen D, Li S, Liao L. A recurrent neural network applied to optimal motion control

of mobile robots with physical constraints. Applied Soft Computing. 2019 Dec

1;85:105880.

[75] Li H, Huang Z, Fu J, Li Y, Zeng N, Zhang J, Ye C, Jin L. Modified weights-and-

structure-determination neural network for pattern classification of flatfoot. IEEE Access.

2019 May 10;7:63146-54.

[76] Yu B, Wang Z, Zhu R, Feng X, Qi M, Li J, Zhao R, Huang L, Xin R, Li F, Zhou

F. The Transverse Ultrasonogram of Thyroid Papillary Carcinoma Has a Better Prediction

Accuracy Than the Longitudinal One. IEEE Access. 2019 Jul 2;7:100763-70.

[77] Fasoli D, Panzeri S. Mathematical studies of the dynamics of finite-size binary

neural networks: A review of recent progress. Math Biosci Eng. 2019 Sep 4;16(6):8025–

59.

236

[78] Raghu S, Sriraam N, Hegde AS, Kubben PL. A novel approach for classification

of epileptic seizures using matrix determinant. Expert Systems with Applications. 2019

Aug 1;127:323-41.

[79] Raghu S, Sriraam N, Temel Y, Rao SV, Hegde AS, Kubben PL. Performance

evaluation of DWT based sigmoid entropy in time and frequency domains for automated

detection of epileptic seizures using SVM classifier. Computers in biology and medicine.

2019 Jul 1;110:127-43.

[80] Raghu S, Sriraam N, Rao SV, Hegde AS, Kubben PL. Automated detection of

epileptic seizures using successive decomposition index and support vector machine

classifier in long-term EEG. Neural Computing and Applications. 2019 Jul 31:1-20.

[81] Kimmel J, Brack A, Marshall W. Deep convolutional and recurrent neural

networks for cell motility discrimination and prediction. IEEE/ACM Trans Comput Biol

Bioinform.2019 Jun 27.

[82] Duong BP, Khan SA, Shon D, Im K, Park J, Lim DS, Jang B, Kim JM. A Reliable

Health Indicator for Fault Prognosis of Bearings. Sensors. 2018 Nov;18(11):3740.

[83] Basu S, Karuppiah M, Nasipuri M, Halder AK, Radhakrishnan N. Bio-inspired

cryptosystem with DNA cryptography and neural networks. Journal of Systems

Architecture. 2019 Mar 1;94:24-31.

[84] Shaikh JR, Beniwal R, Iliev G. Cryptography and optimization-driven support

vector neural network to mitigate DoS attacks in E-commerce. InApplications of

computing, automation and wireless systems in electrical engineering 2019 (pp. 551-561).

Springer, Singapore.

[85] Mell PM, Grance T. SP 800-145. The NIST Definition of Cloud Computing,

National Institute of Standards & Technology, Gaithersburg, MD. 2011 Sep.

[86] Qi Q, Tao F. A Smart Manufacturing Service System Based on Edge Computing,

Fog Computing, and Cloud Computing. IEEE Access. 2019 Jun 19;7:86769-77.

[87] Gulabani S. Amazon Web Services Bootcamp: Develop a scalable, reliable, and

highly available cloud environment with AWS. Packt Publishing Ltd; 2018 Mar 30.

[88] Soh J, Copeland M, Puca A, Harris M. Microsoft Azure: Managing the Intelligent

Cloud. Apress; 2020.

[89] Krishnan SP, Gonzalez JL. Building your next big thing with google cloud

platform: A guide for developers and enterprise architects. Apress; 2015 May 22.

[90] Chaka JG, Marimuthu M. Curtailing the Threats to Cloud Computing in the Fourth

Industrial Revolution. InCloud Security: Concepts, Methodologies, Tools, and

Applications 2019 (pp. 1-30). IGI Global.

237

[91] Jouini M, Rabai LB. A security framework for secure cloud computing

environments. InCloud security: Concepts, methodologies, tools, and applications 2019

(pp. 249-263). IGI Global.

[92] Thota C, Sundarasekar R, Manogaran G, Varatharajan R, Priyan MK. Centralized

fog computing security platform for IoT and cloud in healthcare system. InFog Computing:

Breakthroughs in Research and Practice 2018 (pp. 365-378). IGI global.

[93] Vijayakumar V, Priyan MK, Ushadevi G, Varatharajan R, Manogaran G, Tarare

PV. E-health cloud security using timing enabled proxy re-encryption. Mobile Networks

and Applications. 2019 Jun 15;24(3):1034-45.

[94] Mohanty SP, Yanambaka VP, Kougianos E, Puthal D. PUFchain: A Hardware-

Assisted Blockchain for Sustainable Simultaneous Device and Data Security in the Internet

of Everything (IoE). IEEE Consumer Electronics Magazine. 2020 Feb 3;9(2):8-16.

[95] Chaudhry SA, Kim IL, Rho S, Farash MS, Shon T. An improved anonymous

authentication scheme for distributed mobile cloud computing services. Cluster

Computing. 2019 Jan 16;22(1):1595-609.

[96] Smith S. “Internet of Things” Connected Devices to Almost Triple to Over 38

Billion Units by 2020 [Internet]. [cited 2020 Apr 25]. Available from:

https://www.juniperresearch.com/press/press-releases/iot-connected-devices-to-triple-to-

38-bn-by-2020

[97] Atre H, Razdan K, Sagar RK. Offloading Computation for Efficient Mobile Cloud

Computing. Indian Journal of Science and Technology. 2016 Jun;9(22):1-6.

[98] Seok B, Sicato JC, Erzhena T, Xuan C, Pan Y, Park JH. Secure D2D

Communication for 5G IoT Network Based on Lightweight Cryptography. Applied

Sciences. 2020 Jan;10(1):217.

[99] Sarode RP, Bhalla S. Data Security in Mobile Cloud Computing. Available at

SSRN 3352362. 2019 Mar 14.

[100] Dey S, Ye Q, Sampalli S. A machine learning based intrusion detection scheme for

data fusion in mobile clouds involving heterogeneous client networks. Information Fusion.

2019 Sep 1;49:205-15.

[101] Sarkar A, Dey J, Bhowmik A, Mandal JK, Karforma S. Computational Intelligence

Based Neural Session Key Generation on E-Health System for Ischemic Heart Disease

Information Sharing. InContemporary Advances in Innovative and Applicable Information

Technology 2019 (pp. 23-30). Springer, Singapore.

[102] Matolcsy B, Zolomy A. Designing an Efficient Ultra Small Form Factor On-Chip

Antenna for UHF RFID Application. Radioengineering. 2019 Jun 1;29(2).

238

[103] Ali Z, Perret E, Barbot N, Siragusa R, Hély D, Bernier M, Garet F. Detection of

Natural Randomness by Chipless RFID Approach and Its Application to Authentication.

IEEE Transactions on Microwave Theory and Techniques. 2019 May 16;67(9):3867-81.

[104] Singh P, Acharya B, Chaurasiya RK. A comparative survey on lightweight block

ciphers for resource constrained applications. International Journal of High Performance

Systems Architecture. 2019;8(4):250-70.

[105] Carstensen-Opitz C, Fine B, Moldenhauer A, Rosenberger G. Abstract Algebra:

Applications to Galois Theory, Algebraic Geometry, Representation Theory and

Cryptography. Walter de Gruyter GmbH & Co KG; 2019.

[106] Pieprzyk J, Wang H, Zhang XM. Möbius transforms, coincident Boolean functions

and non-coincidence property of Boolean functions. International Journal of Computer

Mathematics. 2011 May 1;88(7):1398-416.

[107] Verma JP, Abdel-Salam AS. Testing statistical assumptions in research. John

Wiley & Sons; 2019 Mar 4.

[108] Pace L. Beginning R: An introduction to statistical programming. Apress; 2012

Nov 28.

[109] Benjamini I, Schramm O, Wilson DB. Balanced boolean functions that can be

evaluated so that every input bit is unlikely to be read. In: Proceedings of the thirty-seventh

annual ACM symposium on Theory of computing. New York, NY, USA: Association for

Computing Machinery; 2005. p. 244–50. (STOC ’05).

[110] KB S, Aithal G. Generation of pseudo random number sequence from discrete

oscillating samples of equally spread objects and application for stream cipher system.

Concurrency and Computation: Practice and Experience. 2020 Jan 10;32(1):e5181.

[111] Golomb SW. Shift register sequences. Aegean Park Press; 1967.

[112] Burdakov O. Ioannis C. Demetriou and Panos M. Pardalos (eds): Approximation

and Optimization: Algorithms, Complexity and Applications. InSN Operations Research

Forum 2020 Mar (Vol. 1, No. 1, pp. 1-5). Springer International Publishing.

[113] Jansen CJ. The maximum order complexity of sequence ensembles. InWorkshop

on the Theory and Application of Cryptographic Techniques 1991 Apr 8 (pp. 153-159).

Springer, Berlin, Heidelberg.

[114] Erdmann D, Murphy S. An approximate distribution for the maximum order

complexity. Designs, Codes and Cryptography. 1997 Mar 1;10(3):325-39.

[115] Fontaine C. Synchronous Stream Cipher. Encyclopedia of Cryptography and

Security. p. 603–603. Available from: http://dx.doi.org/10.1007/0-387-23483-7_423

239

[116] De Cannière C. Trivium: A stream cipher construction inspired by block cipher

design principles. InInternational Conference on Information Security 2006 Aug 30 (pp.

171-186). Springer, Berlin, Heidelberg.

[117] Hell M, Johansson T, Meier W. Grain: a stream cipher for constrained

environments. IJWMC. 2007 May 1;2(1):86-93.

[118] Yifang W, Rong Z, Yi C. A self-synchronous stream cipher based on composite

discrete chaos. In2009 8th IEEE International Conference on Cognitive Informatics 2009

Jun 15 (pp. 210-214). IEEE.

[119] Jiang S, Gong G. On edit distance attack to alternating step generator.

InMathematical Properties of Sequences and Other Combinatorial Structures 2003 (pp. 85-

92). Springer, Boston, MA.

[120] Jiang H, Li C, Fan J. Research on Pseudo-Random Characteristics of New Random

Components. In2019 International Conference on Artificial Intelligence and Advanced

Manufacturing (AIAM) 2019 Oct 16 (pp. 163-167). IEEE.

[121] Filiol E. A new statistical testing for symmetric ciphers and hash functions.

InInternational Conference on Information and Communications Security 2002 Dec 9 (pp.

342-353). Springer, Berlin, Heidelberg.

[122] Saarinen M-JO. Chosen-IV Statistical Attacks on eStream Ciphers. In: SECRYPT.

2006. p. 260–6.

[123] Alamer A, Soh B. Design and Implementation of a Statistical Testing Framework

for a Lightweight Stream Cipher. Engineering, Technology & Applied Science Research.

2020 Feb 3;10(1):5132-41.

[124] Golić JD. Correlation analysis of the shrinking generator. InAnnual International

Cryptology Conference 2001 Aug 19 (pp. 440-457). Springer, Berlin, Heidelberg.

[125] Zhang B, Wu H, Feng D, Bao F. A fast correlation attack on the shrinking generator.

InCryptographers’ Track at the RSA Conference 2005 Feb 14 (pp. 72-86). Springer,

Berlin, Heidelberg.

[126] Golic JD, Menicocci R. Statistical distinguishers for irregularly decimated linear

recurring sequences. IEEE transactions on information theory. 2006 Mar 6;52(3):1153-9.

[127] Ekdahl P, Meier W, Johansson T. Predicting the shrinking generator with fixed

connections. InInternational Conference on the Theory and Applications of Cryptographic

Techniques 2003 May 4 (pp. 330-344). Springer, Berlin, Heidelberg.

[128] Boztaş S, Alamer A. Statistical dependencies in the self-shrinking generator.

In2015 Seventh International Workshop on Signal Design and its Applications in

Communications (IWSDA) 2015 Sep 14 (pp. 42-46). IEEE.

240

[129] Zenner E, Krause M, Lucks S. Improved cryptanalysis of the self-shrinking

generator. InAustralasian Conference on Information Security and Privacy 2001 Jul 11

(pp. 21-35). Springer, Berlin, Heidelberg.

[130] Debraize B, Goubin L. Guess-and-determine algebraic attack on the self-shrinking

generator. InInternational Workshop on Fast Software Encryption 2008 Feb 10 (pp. 235-

252). Springer, Berlin, Heidelberg.

[131] Website [Internet]. [cited 2020 Apr 26]. Available from: ">Technologies, M.,

2020. Easyfit - Distribution Fitting Software. [online] Mathwave.com. Available at:

<http://www.mathwave.com/>

[132] Website [Internet]. [cited 2020 Apr 26]. Available from: ">Cran.r-project.org.

2020. [online] Available at: <https://cran.r-

project.org/web/packages/fitdistrplus/fitdistrplus.pdf>

[133] Massey J. Shift-register synthesis and BCH decoding. IEEE transactions on

Information Theory. 1969 Jan;15(1):122-7.

[134] Akriotou M, Mesaritakis C, Grivas E, Chaintoutis C, Fragkos A, Syvridis D.

Random number generation from a secure photonic physical unclonable hardware module.

InInternational ISCIS Security Workshop 2018 Feb 26 (pp. 28-37). Springer, Cham.

[135] Hagan M, Demuth H, Beale M, De Jesus O. Neural Network Design, Boston.

[136] Park DC, El-Sharkawi MA, Marks RJ, Atlas LE, Damborg MJ. Electric load

forecasting using an artificial neural network. IEEE transactions on Power Systems. 1991

May;6(2):442-9.

[137] Patel J, Shah S, Thakkar P, Kotecha K. Predicting stock market index using fusion

of machine learning techniques. Expert Systems with Applications. 2015 Mar

1;42(4):2162-72.

[138] Xiao Y, Wu J, Lin Z, Zhao X. A deep learning-based multi-model ensemble

method for cancer prediction. Comput Methods Programs Biomed. 2018 Jan;153:1–9.

[139] Zoph B, Vasudevan V, Shlens J, Le QV. Learning transferable architectures for

scalable image recognition. InProceedings of the IEEE conference on computer vision and

pattern recognition 2018 (pp. 8697-8710).

[140] Hertz J, Krogh A, Palmer RG, Horner H. Introduction to the theory of neural

computation. Physics Today. 1991;44:70.

[141] Nugraha AA, Liutkus A, Vincent E. Deep neural network based multichannel audio

source separation. InAudio Source Separation 2018 (pp. 157-185). Springer, Cham.

241

[142] Coutinho M, de Oliveira Albuquerque R, Borges F, Garcia Villalba LJ, Kim TH.

Learning perfectly secure cryptography to protect communications with adversarial neural

cryptography. Sensors. 2018 May;18(5):1306.

[143] Arvandi M, Wu S, Sadeghian A. On the use of recurrent neural networks to design

symmetric ciphers. IEEE computational intelligence magazine. 2008 Apr 18;3(2):42-53.

[144] Diffie W, Hellman M. New directions in cryptography. IEEE transactions on

Information Theory. 1976 Nov;22(6):644-54.

[145] Kinzel W, Kanter I. Interacting neural networks and cryptography. InAdvances in

solid state physics 2002 (pp. 383-391). Springer, Berlin, Heidelberg.

[146] Godhavari T, Alamelu NR, Soundararajan R. Cryptography using neural network.

In2005 Annual IEEE India Conference-Indicon 2005 Dec 11 (pp. 258-261). IEEE.

[147] Ruttor A, Kinzel W, Kanter I. Neural cryptography with queries. Journal of

Statistical Mechanics: Theory and Experiment. 2005 Jan 24;2005(01):P01009.

[148] Yu W, Cao J. Cryptography based on delayed chaotic neural networks. Physics

Letters A. 2006 Aug 14;356(4-5):333-8.

[149] Guo, D., Cheng, L. & Cheng, L. A New Symmetric Probabilistic Encryption

Scheme Based on Chaotic Attractors of Neural Networks. Applied Intelligence 10, 71–84

(1999). https://doi.org/10.1023/A:1008337631906

[150] Huan J. Deep-Learning: Investigating feed-forward deep Neural Networks for

modeling high throughput chemical bioactivity data. In2016 IEEE International

Conference on Bioinformatics and Biomedicine (BIBM) 2016 Dec 15 (pp. 5-5). IEEE.

[151] Singh A. Aarti nandal,“Neural Cryptography for Secret Key Exchange and

Encryption with AES.” International Journal of Advanced Research in Computer Science

and Software Engineering. 2013;3(5):376–81.

[152] Thabtah F, Mohammad RM, McCluskey L. A dynamic self-structuring neural

network model to combat phishing. In2016 International Joint Conference on Neural

Networks (IJCNN) 2016 Jul 24 (pp. 4221-4226). IEEE.

[153] Özkaynak F. Cryptographically secure random number generator with chaotic

additional input. Nonlinear Dynamics. 2014 Nov 1;78(3):2015-20.

[154] Dubrova E, Hell M. Espresso: A stream cipher for 5G wireless communication

systems. Cryptography and Communications. 2017 Mar 1;9(2):273-89.

[155] Turan MS. On the nonlinearity of maximum-length NFSR feedbacks.

Cryptography and Communications. 2012 Dec 1;4(3-4):233-43.

[156] Brandstätter N, Winterhof A. Linear complexity profile of binary sequences with

small correlation measure. Periodica Mathematica Hungarica. 2006 Jun 1;52(2):1-8.

242

[157] Mérai L, Winterhof A. On the pseudorandomness of automatic sequences.

Cryptography and Communications. 2018 Nov 1;10(6):1013-22.

[158] Mérai L, Niederreiter H, Winterhof A. Expansion complexity and linear

complexity of sequences over finite fields. Cryptography and Communications. 2017 Jul

1;9(4):501-9.

[159] Johansson T. Reduced complexity correlation attacks on two clock-controlled

generators. InInternational Conference on the Theory and Application of Cryptology and

Information Security 1998 Oct 18 (pp. 342-356). Springer, Berlin, Heidelberg.

[160] Dittmer S, Emily J, Maass P. Singular values for relu layers. IEEE transactions on

neural networks and learning systems. 2019 Nov 5.

[161] Imamverdiyev Y, Sukhostat L. Lithological facies classification using deep

convolutional neural network. Journal of Petroleum Science and Engineering. 2019 Mar

1;174:216-28.

[162] Géron A. Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:

Concepts, Tools, and Techniques to Build Intelligent Systems. O'Reilly Media; 2019 Sep

5.

[163] Website [Internet]. [cited 2020 Apr 26]. Available from: TensorFlow. (n.d.).

Retrieved January 1, 1019, from https://www.tensorflow.org

[164] Website [Internet]. [cited 2020 Apr 26]. Available from: Python.org. (n.d.).

Welcome to Python.org. [online] Available at: https://www.python.org

[165]. Website [Internet]. [cited 2020 Apr 26]. Available from: Filezilla-project.org.

(n.d.). FileZilla - The free FTP solution. [online] Available at: https://filezilla-project.org/

[166] Website [Internet]. [cited 2020 Apr 26]. Available from: www.amazon ec2

[167] Lydia A, Francis S. Adagrad-An Optimizer for Stochastic Gradient Descent

[Internet]. INTERNATIONAL JOURNAL OF INFORMATION AND COMPUTING

SCIENCE. May; 2019. Available from: http://ijics.com/gallery/92-may-1260.pdf

[168] Banik S, Maitra S, Sarkar S. Improved differential fault attack on MICKEY 2.0.

Journal of Cryptographic Engineering. 2015 Apr 1;5(1):13-29.

[169] Lara E, Aguilar L, García JA, Sanchez MA. A Lightweight Cipher Based on Salsa20

for Resource-Constrained IoT Devices. Sensors. 2018 Oct;18(10):3326.

[170] Li S, Song H, Iqbal M. Privacy and Security for Resource-Constrained IoT Devices

and Networks: Research Challenges and Opportunities. Sensors [Internet]. 2019 Apr

25;19(8). Available from: http://dx.doi.org/10.3390/s19081935

[171 Ertaul L, Woodall A. IoT security: Performance evaluation of grain, mickey, and

trivium-lightweight stream ciphers. In: Proceedings of the International Conference on

243

Security and Management (SAM). The Steering Committee of The World Congress in

Computer Science, Computer …; 2017. p. 32–8.

[172] Gurdur D. ARCHITECTURAL ENERGY-DELAY ASSESSMENT OF ABACUS

MULTIPLIER WITH RESPECT TO OTHER MULTIPLIERS. Middle East Technical

University Northern Cyprus Campus, Mersin-10 Turkey [Internet]. 2013; Available from:

http://etd.lib.metu.edu.tr/upload/12616231/index.pdf

[173] Bui DH, Puschini D, Bacles-Min S, Beigné E, Tran XT. Ultra low-power and low-

energy 32-bit datapath AES architecture for IoT applications. In2016 International

Conference on IC Design and Technology (ICICDT) 2016 Jun 27 (pp. 1-4). IEEE.

[174] Bogdanov A, Knudsen LR, Leander G, Paar C, Poschmann A, Robshaw MJ, Seurin

Y, Vikkelsoe C. PRESENT: An ultra-lightweight block cipher. InInternational Workshop

on Cryptographic Hardware and Embedded Systems 2007 Sep 10 (pp. 450-466). Springer,

Berlin, Heidelberg.

[175] Wang K, Wang H, Wang Z, Yin Y, Mao L, Zhang Y. Method for pigment spectral

matching identification based on adaptive levenshtein distance. Optik. 2019 Feb 1;178:74-

82.

[176] Dutta IK, Ghosh B, Bayoumi M. Lightweight Cryptography for Internet of Insecure

Things: A Survey. In2019 IEEE 9th Annual Computing and Communication Workshop

and Conference (CCWC) 2019 Jan 7 (pp. 0475-0481). IEEE.

[177] Xilinx Power Estimator (XPE) [Internet]. Xilinx. [cited 2020 May 1]. Available

from: https://www.xilinx.com/products/technology/power/xpe.html

[178] Simion E, Burciu P. A Note On the Correlations Between NIST Cryptographic

Statistical Tests Suite. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC

BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS. 2019;81(1):209–

18.

[179] Dutta IK, Ghosh B, Bayoumi M. Lightweight Cryptography for Internet of Insecure

Things: A Survey. In2019 IEEE 9th Annual Computing and Communication Workshop

and Conference (CCWC) 2019 Jan 7 (pp. 0475-0481). IEEE.

[180] Ding L, Liu C, Zhang Y, Ding Q. A new lightweight stream cipher based on chaos.

Symmetry. 2019 Jul;11(7):853.

[181] McGinthy JM, Michaels AJ. Lightweight internet of things encryption using Galois

extension field arithmetic. In2018 IEEE International Conference on Internet of Things

(iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber,

Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData) 2018 Jul 30

(pp. 74-80). IEEE.

244

[182] Qasaimeh M, Al-Qassas RS, Tedmori S. Software randomness analysis and

evaluation of lightweight ciphers: the prospective for IoT security. Multimedia Tools and

Applications. 2018 Jul 1;77(14):18415-49.

[183] Verma G, Khare V, Kumar M. More precise FPGA power estimation and

validation tool (FPEV_tool) for low power applications. Wireless Personal

Communications. 2019 Jun 30;106(4):2237-46.

[184] Website [Internet]. [cited 2020 Apr 26]. Available from: S. Babbage and M. Dodd.

The stream cipher MICKEY (version 1). eSTREAM, ECRYPT Stream Cipher Project,

Report 2005/015, 2005. http://www.ecrypt.eu.org/stream.

[185] Hong J, Kim WH. Tmd-tradeoff and state entropy loss considerations of

streamcipher mickey. InInternational Conference on Cryptology in India 2005 Dec 10 (pp.

169-182). Springer, Berlin, Heidelberg.

[186] Website [Internet]. [cited 2020 Apr 26]. Available from: Babbage, S.; Dodd, M.

The stream cipher MICKEY 2.0, ECRYPTStream Cipher, EU ECRYPT Netw., Denmark,

U.K., Tech. Rep., 2006. Available: https://www.ecrypt.eu.org/stream/index.html

[187] Koppula V, Waters B. Realizing chosen ciphertext security generically in attribute-

based encryption and predicate encryption. InAnnual International Cryptology Conference

2019 Aug 18 (pp. 671-700). Springer, Cham.

[188] Hofheinz D, Kamath A, Koppula V, Waters B. Adaptively secure constrained

pseudorandom functions. InInternational Conference on Financial Cryptography and Data

Security 2019 Feb 18 (pp. 357-376). Springer, Cham.

[189] Zhang S, Chen G. Micro-Trivium: A lightweight algorithm designed for radio

frequency identification systems. International Journal of Distributed Sensor Networks.

2017 Feb;13(2):1550147717694171.

[190] Liu D, Chen X, Peng D. Some cosine similarity measures and distance measures

between q‐rung orthopair fuzzy sets. International Journal of Intelligent Systems. 2019

Jul;34(7):1572-87.

[191] Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, Lee G, Patterson

D, Rabkin A, Stoica I, Zaharia M. A view of cloud computing. Communications of the

ACM. 2010 Apr 1;53(4):50-8.

[192] Fernando N, Loke SW, Rahayu W. Mobile cloud computing: A survey. Future

generation computer systems. 2013 Jan 1;29(1):84-106.

[193] Number of mobile phone users worldwide 2015-2020 | Statista [Internet]. Statista.

[cited 2020 Apr 26]. Available from: https://www.statista.com/statistics/274774/forecast-

of-mobile-phone-users-worldwide/

245

[194] Desolda G, Ardito C, Jetter HC, Lanzilotti R. Exploring spatially-aware cross-

device interaction techniques for mobile collaborative sensemaking. International Journal

of Human-Computer Studies. 2019 Feb 1;122:1-20.

[195] Buyya R, Yeo CS, Venugopal S. Market-Oriented Cloud Computing: Vision,

Hype, and Reality for Delivering IT Services as Computing Utilities. In: 2008 10th IEEE

International Conference on High Performance Computing and Communications. 2008. p.

5–13.

[196] Subramanian N, Jeyaraj A. Recent security challenges in cloud computing.

Computers & Electrical Engineering. 2018 Oct 1;71:28-42.

[197] Singh G. A study of encryption algorithms (RSA, DES, 3DES and AES) for

information security. International Journal of Computer Applications. 2013 Jan 1;67(19).

[198] Bogdanov A, Mendel F, Regazzoni F, Rijmen V, Tischhauser E. ALE: AES-based

lightweight authenticated encryption. InInternational Workshop on Fast Software

Encryption 2013 Mar 11 (pp. 447-466). Springer, Berlin, Heidelberg.

[199] Doukas C, Maglogiannis I. Bringing IoT and cloud computing towards pervasive

healthcare. In2012 Sixth International Conference on Innovative Mobile and Internet

Services in Ubiquitous Computing 2012 Jul 4 (pp. 922-926). IEEE.

[200] Eisenbarth T, Kumar S, Paar C, Poschmann A, Uhsadel L. A survey of lightweight-

cryptography implementations. IEEE Design & Test of Computers. 2007 Dec 6;24(6):522-

33.

[201] Kitsos P, Sklavos N, Provelengios G, Skodras AN. FPGA-based performance

analysis of stream ciphers ZUC, Snow3g, Grain V1, Mickey V2, Trivium and E0.

Microprocessors and Microsystems. 2013 Mar 1;37(2):235-45.

[202] Manifavas C, Hatzivasilis G, Fysarakis K, Papaefstathiou Y. A survey of

lightweight stream ciphers for embedded systems. Security and Communication Networks.

2016 Jul 10;9(10):1226-46.

[203] Bahl P, Han RY, Li LE, Satyanarayanan M. Advancing the state of mobile cloud

computing. InProceedings of the third ACM workshop on Mobile cloud computing and

services 2012 Jun 25 (pp. 21-28).

[204] Kumar K, Lu YH. Cloud computing for mobile users: Can offloading computation

save energy?. Computer. 2010 Apr 8;43(4):51-6.

[205] Bahrami M, Singhal M. A light-weight permutation based method for data privacy

in mobile cloud computing. In2015 3rd IEEE International Conference on Mobile Cloud

Computing, Services, and Engineering 2015 Mar 30 (pp. 189-198). IEEE.

246

[206] Daemen J, Rijmen V. The design of Rijndael: AES-the advanced encryption

standard. Springer Science & Business Media; 2013 Mar 9.

[207] Osvik DA, Bos JW, Stefan D, Canright D. Fast software AES encryption.

InInternational Workshop on Fast Software Encryption 2010 Feb 7 (pp. 75-93). Springer,

Berlin, Heidelberg.

[208] Yoshikawa M, Goto H. Security Verification Simulator for Fault Analysis Attacks.

Int. J. Soft Comput. Softw. Eng.[JSCSE]. 2013 Mar;3(3).

[209] Buchmann J. Introduction to cryptography. Springer Science & Business Media;

2013 Dec 1.

[210] Robshaw M, Billet O, editors. New stream cipher designs: the eSTREAM finalists.

Springer; 2008 Jun 19.

[211] Kardas S, Çelik S, Bingöl MA, Levi A. A new security and privacy framework for

RFID in cloud computing. In2013 IEEE 5th International Conference on Cloud Computing

Technology and Science 2013 Dec 2 (Vol. 1, pp. 171-176). IEEE.

[212] Canteaut A, Carpov S, Fontaine C, Fournier J, Lac B, Naya-Plasencia M, Sirdey

R, Tria A. End-to-end data security for IoT: from a cloud of encryptions to encryption in

the cloud. InProc. IEEE Conf.(Cesar) 2017 Nov (pp. 1-21).

[213] Diedrich L, Jattke P, Murati L, Senker M, Wiesmaier A. Comparison of

Lightweight Stream Ciphers: MICKEY 2.0, WG-8, Grain and Trivium [Internet].

Unpublished; 2016. Available from:

https://pdfs.semanticscholar.org/e95a/63046ccda05182e17be584a37bd87350c6f8.pdf

[214] Banerjee A, Hasan M, Rahman MA, Chapagain R. Cloak: A stream cipher based

encryption protocol for mobile cloud computing. IEEE Access. 2017 Aug 25;5:17678-91.

[215] Babbage S, Dodd M. The stream cipher MICKEY 2.0. ECRYPT Stream Cipher.

2006 Jun.

[216] Turan MS, Doganaksoy A, Calik C. Statistical analysis of synchronous stream

ciphers. SASC 2006: Stream Ciphers Revisited. 2006 Feb 2.

[217] Al Hinai S, Batten LM, Colbert B. Mutually clock-controlled feedback shift

registers provide resistance to algebraic attacks. InInternational Conference on Information

Security and Cryptology 2007 Aug 31 (pp. 201-215). Springer, Berlin, Heidelberg.

[218] Kazmi AR, Afzal M, Amjad MF, Abbas H, Yang X. Algebraic side channel attack

on trivium and grain ciphers. IEEE Access. 2017 Oct 25;5:23958-68.

[219] Anand S, Perumal V. EECDH to prevent MITM attack in cloud computing. Digital

Communications and Networks. 2019 Nov 1;5(4):276-87.

247

[220] Labs G. GSam Battery Monitor - Apps on Google Play [Internet]. [cited 2020 Apr

27]. Available from:

https://play.google.com/store/apps/details?id=com.gsamlabs.bbm&hl=en

[221] Alamer A, Soh B, Alahmadi AH, Brumbaugh DE. Prototype Device With

Lightweight Protocol for Secure RFID Communication Without Reliable Connectivity.

IEEE Access. 2019 Nov 19;7:168337-56.

[222] Kim J, Cho J, Park D. Low-power command protection using SHA-CRC inversion-

based scrambling technique for CAN-integrated automotive controllers. In2018 IEEE

Conference on Dependable and Secure Computing (DSC) 2018 Dec 10 (pp. 1-2). IEEE.

[223] BBC News. Fridge sends spam emails. BBC [Internet]. 2014 Jan 17 [cited 2020

Apr 27]; Available from: https://www.bbc.com/news/technology-25780908

[224] Kaur M, Sandhu M, Mohan N, Sandhu PS. RFID technology principles,

advantages, limitations & its applications. International Journal of Computer and Electrical

Engineering. 2011 Feb 1;3(1):151.

[225] Xiao Y, Shen X, Sun BO, Cai L. Security and privacy in RFID and applications in

telemedicine. IEEE communications magazine. 2006 May 15;44(4):64-72.

[226] Wang P, Chaudhry S, Li L, Li S, Tryfonas T, Li H. The Internet of Things: a

security point of view. Internet Research. 2016 Apr 4.

[227] Alaba FA, Othman M, Hashem IA, Alotaibi F. Internet of Things security: A

survey. Journal of Network and Computer Applications. 2017 Jun 15;88:10-28.

[228] Chamekh M, Hamdi M, El Asmi S, Kim TH. Security of RFID based Internet of

Things applications: Requirements and open issues. In2018 15th International Multi-

Conference on Systems, Signals & Devices (SSD) 2018 Mar 19 (pp. 699-703). IEEE.

[229] Stapleton JJ. Security without obscurity: A guide to confidentiality, authentication,

and integrity. CRC Press; 2014 May 2.

[230] Galbraith SD. Authenticated key exchange for SIDH. IACR Cryptology ePrint

Archive. 2018 Mar 13;2018:266.

[231] Zhang Y, Xu L, Dong Q, Wang J, Blaauw D, Sylvester D. Recryptor: A

Reconfigurable Cryptographic Cortex-M0 Processor With In-Memory and Near-Memory

Computing for IoT Security. IEEE J Solid-State Circuits. 2018 Apr;53(4):995–1005.

[232] Conti F, Schilling R, Schiavone PD, Pullini A, Rossi D, Gürkaynak FK,

Muehlberghuber M, Gautschi M, Loi I, Haugou G, Mangard S. An IoT endpoint system-

on-chip for secure and energy-efficient near-sensor analytics. IEEE Transactions on

Circuits and Systems I: Regular Papers. 2017 May 13;64(9):2481-94.

248

[233] Babbage S, Dodd M. The MICKEY Stream Ciphers [Internet]. Lecture Notes in

Computer Science. p. 191–209. Available from: http://dx.doi.org/10.1007/978-3-540-

68351-3_15

[234] Banik S. Some studies on selected stream cipher, analysis, fault attack & related

results [Internet]. Indian Statistical Institute, Kolkata; 2015. Available from:

http://library.isical.ac.in:8080/jspui/bitstream/123456789/6639/1/TH434.pdf

[235] Banik S, Maitra S. A differential fault attack on MICKEY 2.0. InInternational

Workshop on Cryptographic Hardware and Embedded Systems 2013 Aug 20 (pp. 215-

232). Springer, Berlin, Heidelberg.

[236] Su Y, Gao Y, Kavehei O, Ranasinghe DC. Hash functions and benchmarks for

resource constrained passive devices: A preliminary study. In2019 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops) 2019 Mar 11 (pp. 1020-1025). IEEE.

[237] Pawłowicz B, Salach M, Trybus B. Infrastructure of RFID-based smart city traffic

control system. InConference on Automation 2019 Mar 27 (pp. 186-198). Springer, Cham.

[238] Missalot SK, Salama R, Liyanapathirana R. Dual-Band RFID Antenna Design for

Infrastructure Health Monitoring. In: 2019 International Conference on Electrical

Engineering Research Practice (ICEERP). 2019. p. 1–6.

[239] Newton GD. A Billion Little Pieces: RFID and Infrastructures of Identification:

Frith, J.(2019). A Billion Little Pieces: RFID and Infrastructures of Identification.

Cambridge, MA: The MIT Press. 321 pages.

[240] Chawla K, McFarland C, Robins G, Thomason W. An accurate real-time RFID-

based location system. International Journal of Radio Frequency Identification Technology

and Applications. 2018;5(1):48-76.

[241] Lee JY, Lin WC, Huang YH. A lightweight authentication protocol for internet of

things. In2014 International Symposium on Next-Generation Electronics (ISNE) 2014

May 7 (pp. 1-2). IEEE.

[242] Biryukov A, Perrin LP. State of the art in lightweight symmetric cryptography.

[243] Billet O, Etrog J, Gilbert H. Lightweight privacy preserving authentication for

RFID using a stream cipher. InInternational Workshop on Fast Software Encryption 2010

Feb 7 (pp. 55-74). Springer, Berlin, Heidelberg.

[244] Wu W, Zhang L. LBlock: a lightweight block cipher. InInternational Conference

on Applied Cryptography and Network Security 2011 Jun 7 (pp. 327-344). Springer,

Berlin, Heidelberg.

249

[245] Karakoç F, Demirci H, Harmancı AE. Impossible differential cryptanalysis of

reduced-round LBlock. InIFIP International Workshop on Information Security Theory

and Practice 2012 Jun 20 (pp. 179-188). Springer, Berlin, Heidelberg.

[246] Ahson SA, Ilyas M. RFID handbook: applications, technology, security, and

privacy. CRC press; 2017 Dec 19.

[247] "eStream 2019 Foreword," 2019 Open Conference of Electrical, Electronic and

Information Sciences (eStream), Vilnius, Lithuania, 2019, pp. i-v. Available from:

http://dx.doi.org/10.1109/estream.2019.8732147

[248] Mikhalev V, Armknecht F, Müller C. On ciphers that continuously access the non-

volatile key. IACR Transactions on Symmetric Cryptology. 2016:52-79.

[249] Bendavid Y, Bagheri N, Safkhani M, Rostampour S. IoT Device Security:

Challenging “A Lightweight RFID Mutual Authentication Protocol Based on Physical

Unclonable Function”. Sensors. 2018 Dec;18(12):4444.

[250] Gao Y, Su Y, Yang W, Chen S, Nepal S, Ranasinghe DC. Building secure SRAM

PUF key generators on resource constrained devices. In2019 IEEE International

Conference on Pervasive Computing and Communications Workshops (PerCom

Workshops) 2019 Mar 11 (pp. 912-917). IEEE.

[251] Gao Y, Su Y, Xu L, Ranasinghe DC. Lightweight (reverse) fuzzy extractor with

multiple reference puf responses. IEEE Transactions on Information Forensics and

Security. 2018 Dec 13;14(7):1887-901.

[252] Takpor T, Atayero AA. Integrating Internet of Things and EHealth solutions for

students’ healthcare. InProceedings of the World Congress on Engineering 2015 (Vol. 1).

World Congress on Engineering, London, UK.

[253] Hiller J, Pennekamp J, Dahlmanns M, Henze M, Panchenko A, Wehrle K.

Tailoring onion routing to the Internet of Things: Security and privacy in untrusted

environments. In2019 IEEE 27th International Conference on Network Protocols (ICNP)

2019 Oct 8 (pp. 1-12). IEEE.

[254] Rodrigues JJ, Segundo DB, Junqueira HA, Sabino MH, Prince RM, Al-Muhtadi J,

De Albuquerque VH. Enabling technologies for the internet of health things. Ieee Access.

2018 Jan 4;6:13129-41.

[255] Ma Y, Wu Y, Ge J, Jun LI. An architecture for accountable anonymous access in

the Internet-of-Things network. IEEE Access. 2018 Feb 15;6:14451-61.

[256] Mocrii D, Chen Y, Musilek P. IoT-based smart homes: A review of system

architecture, software, communications, privacy and security. Internet of Things. 2018 Sep

1;1:81-98.

250

[257] Ammar M, Russello G, Crispo B. Internet of Things: A survey on the security of

IoT frameworks. Journal of Information Security and Applications. 2018 Feb 1;38:8-27.

[258] Sweeney L. Replacing personally-identifying information in medical records, the

Scrub system. InProceedings of the AMIA annual fall symposium 1996 (p. 333). American

Medical Informatics Association.

[259] Cavoukian A. Privacy by design... Take the challenge. Information and Privacy

Commissioner of Ontario.

[260] Perrin C. The CIA triad. Dostopno na. 2008 Jun 30.

[261] Sourour M, Adel B, Tarek A. Ensuring security in depth based on heterogeneous

network security technologies. International Journal of Information Security. 2009 Aug

1;8(4):233-46.

[262] Sah SK, Shakya S, Dhungana H. A security management for cloud based

applications and services with diameter-AAA. In2014 International Conference on Issues

and Challenges in Intelligent Computing Techniques (ICICT) 2014 Feb 7 (pp. 6-11). IEEE.

[263] Alrawi O, Lever C, Antonakakis M, Monrose F. Sok: Security evaluation of home-

based iot deployments. In2019 IEEE Symposium on Security and Privacy (SP) 2019 May

19 (pp. 1362-1380). IEEE.

[264] Fernández-Caramés TM, Fraga-Lamas P, Suárez-Albela M, Castedo L. Reverse

engineering and security evaluation of commercial tags for RFID-based IoT applications.

Sensors. 2017 Jan;17(1):28.

[265] Cavoukian A. Privacy by design: The 7 foundational principles. Information and

privacy commissioner of Ontario, Canada. 2009 Aug;5.

[266] Metz C. AAA protocols: authentication, authorization, and accounting for the

Internet. IEEE Internet Computing. 1999 Nov;3(6):75-9.

[267] Integral 16GB Secure 360 Encrypted USB3.0 Flash Drive (256-bit AES

Encryption) [Internet]. Available from: https://www.amazon.com/Integral-Secure-

Encrypted-256-bit-

Encryption/%20dp/B00TUBOTEI/ref=sr_1_6?qid=1561614555&refinements=p_n_featu

re_keywords_browse-bin%3A6813186011&s=pc&sr=1-6

[268] Harari E, Norman RD, Mehrotra S. Flash eeprom system [Internet]. US Patent.

5297148, 1994 [cited 2020 Apr 28]. Available from:

https://patentimages.storage.googleapis.com/fc/19/cb/1d06a1fcccaae8/US5297148.pdf

[269] Chen L, Cong K, Sultana S, inventors. Side-channel attack detection using

hardware performance counters. United States patent application US 16/234,085. 2019

May 2.

251

[270] Upton E, Halfacree G. Raspberry Pi® User Guide [Internet]. 2016. Available from:

http://dx.doi.org/10.1002/9781119415572

[271] Sforzin, A., Mármol, F.G., Conti, M. and Bohli, J.M., 2016, July. RPiDS: Raspberry

Pi IDS—A fruitful intrusion detection system for IoT. In 2016 Intl IEEE Conferences on

Ubiquitous Intelligence & Computing, Advanced and Trusted Computing, Scalable

Computing and Communications, Cloud and Big Data Computing, Internet of People, and

Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld) (pp. 440-448).

IEEE.

[272] Puthal D, Mohanty SP, Nanda P, Kougianos E, Das G. Proof-of-Authentication for

Scalable Blockchain in Resource-Constrained Distributed Systems. In: 2019 IEEE

International Conference on Consumer Electronics (ICCE). 2019. p. 1–5.

[273] Wayland M, Landgraf M. A cartesian coordinate robot for dispensing fruit fly food.

2018; Available from: https://www.repository.cam.ac.uk/handle/1810/285008

[274] Adafruit Industries. Adafruit PiTFT - 320x240 2.8" TFT+Touchscreen for

Raspberry Pi [Internet]. [cited 2020 Apr 28]. Available from:

https://www.adafruit.com/product/1601

[275] Guides [Internet]. SecuGen. [cited 2020 Apr 28]. Available from:

https://secugen.com/guides/

[276] Semiconductors NXP. MFRC522 Standard performance MIFARE and NTAG

frontend. Eindhoven: NXP Semiconductors. 2016;

[277] MIFARE Classic® 4K Contactless Smart Card [Internet]. [cited 2020 Apr 28].

Available from: http://www.stronglink-rfid.com/en/rfid-cards/mifare-4k.html/

[278] Xiong Z, Wu Y, Ye C, Zhang X, Xu F. Color image chaos encryption algorithm

combining CRC and nine palace map. Multimed Tools Appl. 2019 Nov 1;78(22):31035–

55.

[279] Fuhr T, Leurent G, Suder V. Collision attacks against CAESAR candidates.

InInternational Conference on the Theory and Application of Cryptology and Information

Security 2015 Nov 29 (pp. 510-532). Springer, Berlin, Heidelberg.

[280] Farrell S, Toutain L, Yegin A, Ratilainen A, Anaya JC, Ponsard B, Crowcroft J,

Gomez C, Heile B, Minaburo A, Paradells J. Low-power wide area network (lpwan)

overview.

[281] Chen TP, Yau WY, Jiang X. ISO/IEC standards for on-card biometric comparison.

International Journal of Biometrics. 2013 Jan 1;5(1):30-52.

252

[282] De Hert P, Papakonstantinou V. The new General Data Protection Regulation: Still

a sound system for the protection of individuals?. Computer law & security review. 2016

Apr 1;32(2):179-94.

[283] Hamster Pro 10 [Internet]. SecuGen. [cited 2020 Apr 28]. Available from:

https://secugen.com/products/hamster-pro-10/

[284] Standard performance MIFARE® and NTAG® frontend | NXP [Internet]. [cited

2020 Apr 28]. Available from: https://www.nxp.com/products/rfid-nfc/nfc-hf/nfc-

readers/standard-performance-mifare-and-ntag-frontend:MFRC52202HN1

[285] Maitra S. Chosen IV cryptanalysis on reduced round ChaCha and Salsa. Discrete

Applied Mathematics. 2016 Jul 31;208:88-97.

[286] Fluhrer SR. Cryptanalysis of ring-LWE based key exchange with key share reuse.

IACR Cryptology ePrint Archive. 2016 Jan 30;2016:85.

[287] Yang X, Xu C, Li C. A privacy model for RFID tag ownership transfer. Security

and Communication Networks. 2017;2017.

[288] Munilla J, Burmester M, Peinado A. Attacks on ownership transfer scheme for

multi-tag multi-owner passive RFID environments. Computer Communications. 2016 Aug

15;88:84-8.

[289] Brooks M, Yang B. A Man-in-the-Middle attack against OpenDayLight SDN

controller. InProceedings of the 4th Annual ACM Conference on Research in Information

Technology 2015 Sep 29 (pp. 45-49).

[290] Zhang T, Zhang Y, Lee RB. Cloudradar: A real-time side-channel attack detection

system in clouds. InInternational Symposium on Research in Attacks, Intrusions, and

Defenses 2016 Sep 19 (pp. 118-140). Springer, Cham.

[291] Chen C, Eisenbarth T, Von Maurich I, Steinwandt R. Differential power analysis of

a McEliece cryptosystem. InInternational Conference on Applied Cryptography and

Network Security 2015 Jun 2 (pp. 538-556). Springer, Cham.

[292] Kasper T, Oswald D, Paar C. New methods for cost-effective side-channel attacks

on cryptographic RFIDs. InWorkshop on RFID Security 2009 Jun.

[293] Share a secret - One Time [Internet]. [cited 2020 Apr 28]. Available from:

https://onetimesecret.com/

[294] Singh A. Centralized key distribution using quantum cryptography. Int. J. Comput.

Sci. Mobile Comput.. 2017 Jul;6(7):208-13.

[295] Kuppusamy TK, DeLong LA, Cappos J. Uptane: Security and customizability of

software updates for vehicles. ieee vehicular technology magazine. 2018 Feb 1;13(1):66-

73.

253

[296] Krull CR, McMillan LF, Fewster RM, van der Ree R, Pech R, Dennis T, Stanley

MC. Testing the feasibility of wireless sensor networks and the use of radio signal strength

indicator to track the movements of wild animals. Wildlife research. 2019 Jan

15;45(8):659-67.

[297] Alamer A, Soh B. A new neural-network-based model for measuring the strength

of a pseudorandom binary sequence. Int J Adv Eng Sci Appl Math. 2020 Apr;7(4):29–38.

[298] Uğuz M, Doğanaksoy A, Sulak F, Koçak O. R-2 composition tests: a family of

statistical randomness tests for a collection of binary sequences. Cryptography and

Communications. 2019 Sep 15;11(5):921-49.

[299] Wang Y, Nicol T. On statistical distance based testing of pseudo random sequences

and experiments with PHP and Debian OpenSSL. Computers & Security. 2015 Sep

1;53:44-64.

[300] Liu J, Mesnager S. Weightwise perfectly balanced functions with high weightwise

nonlinearity profile. Designs, Codes and Cryptography. 2019 Aug 15;87(8):1797-813.

[301] Tang D, Liu J. A family of weightwise (almost) perfectly balanced boolean

functions with optimal algebraic immunity. Cryptography and Communications. 2019 Nov

1;11(6):1185-97.

[302] Sun Z, Winterhof A. On the maximum order complexity of the Thue-Morse and

Rudin-Shapiro sequence. arXiv preprint arXiv:1910.13723. 2019 Oct 30.

[303] Biryukov A. The design of a stream cipher LEX. InInternational Workshop on

Selected Areas in Cryptography 2006 Aug 17 (pp. 67-75). Springer, Berlin, Heidelberg.

[304] Maitra S, Yelamarthi K. Rapidly Deployable IoT Architecture with Data Security:

Implementation and Experimental Evaluation. Sensors. 2019 Jan;19(11):2484.

[305] Rangra A, Sehgal VK, Shukla S. A Novel Approach of Cloud Based Scheduling

Using Deep-Learning Approach in E-Commerce Domain. International Journal of

Information System Modeling and Design (IJISMD). 2019 Jul 1;10(3):59-75.

[306] Chakraborty RS, Mathew J, Vasilakos A, editors. Security and fault tolerance in

internet of things. Springer; 2019.

[307] Randhawa RH, Hameed A, Mian AN. Energy efficient cross-layer approach for

object security of CoAP for IoT devices. Ad Hoc Networks. 2019 Sep 1;92:101761.

[308] Noor TH, Zeadally S, Alfazi A, Sheng QZ. Mobile cloud computing: Challenges

and future research directions. Journal of Network and Computer Applications. 2018 Aug

1;115:70-85.

254

[309] Oberg JK, Valamehr J, Kastner R, Sherwood T, inventors; Tortuga Logic Inc,

assignee. Generating hardware security logic. United States patent US 10,289,873. 2019

May 14.

[310] Kaeslin H. Digital integrated circuit design: from VLSI architectures to CMOS

fabrication. Cambridge University Press; 2008 Apr 28.

