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Abstract 

 

Plasmonic excitation involves the coupling of electromagnetic wave and oscillation of 

surface charge carriers, which is promising for the application in optical communication, 

bio-sensing, lab-on-chip, etc. The plasmonic excitation has been realized on a variety of 

two-dimensional materials such as graphene and some transition metal dichalcogenide 

monolayers (TMDC) materials, but it still remains unknown whether the 

quasi-two-dimensional (Q2D) hole gas formed on the hydrogen terminated diamond can 

support propagating plasmons. In this thesis to investigate such problems in relating to the 

dielectric function, I introduced triangular well instead of the commonly used square 

potential for a model Q2D system, representing a more realistic description of the surface 

confining potential. We found that plasmon energy is proportional to the square root of 

wavenumber when it is small, and proportional to the square of wavenumber when it 

exceeds 
9 -110  m . The plasmon frequency needed for excitation for the Q2D system of hole 

gas on hydrogen-terminated diamond was subsequently predicted to be around 2 GHz. The 

theoretical framework developed in this work in obtaining the dielectric function for a Q2D 

system with a non-square confining potential will not only guide future experimental work 

in this field but also lay a foundation to model the realistic dielectric functions in other types 

of promising 2D or Q2D materials. 

 

The preliminary measurements of photocurrent and ellipsometry were also conducted on 

diamond, which shows that the wavelength relevant to photoconductivity occurs in 500 nm 

visible light regime, and there is slight difference between the dielectric functions of 

hydrogen and oxygen terminated diamond. Future directions can include verifying whether 

plasmonic response of the diamond by terahertz or far-infrared light can be coupled to the 

photocurrent effect, and whether the higher signal to noise ratio generated by forming 2D 

hole gas on a much thinner diamond substrate would give us a different result in 

ellipsometry. 
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Introduction 
 
Plasmonics refers to a discipline for utilizing the resonant interaction between 

electromagnetic radiation (light) and free charge carriers at the interface between a metal 

and a dielectric material (e.g. air or glass). It serves as the technique to merge photonics and 

electronics at nanoscale dimensions, thus the strengths of these two areas can be combined 

for the application in optical communication, bio-sensing, lab-on-chip, etc. (Fig (1.1)). The 

development of plasmonics has led to remarkable fundamental insights into the interaction 

between light and matter at the nanoscale, which allow the diffraction limit [1] to be crossed 

and novel imaging techniques to be created like the scanning near-field optical microscopy 

(SNOM) [2], and paves the way to enable two-dimensional (2D) materials with 

extraordinary optical properties that don’t often exist in the nature.  

 

 

Figure 1.1 Application of plasmonics: Bio-communication, lab-on-chip and molecular 
sensing.  
 
In exploring the plasmonic effect, dielectric function is the key parameter in determining 

optoelectronic properties. In macroscopic scale, it relates an electric field E to the induced 
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dielectric polarization density P, and in general is a 3×3 Cartesian tensor unless the 

dielectric is homogenous. Whereas in the microscopic scale, the derivation is based on how 

the system reacts to an external electric force. Since the response is dependent on frequency 

and wave vector, dielectric function is also a function of frequency and wave vector. Bulk 

plasmon dispersion relation, which is essentially the relation between plasmon frequency 

and its wave vector, is obtained after setting the dielectric function to be zero. Whereas 

surface plasmon is more depending on the relation of dielectric function of the interface 

separating metal and dielectric material. 2D/quasi-2D (Q2D) plasmon can be viewed as the 

bulk plasmon in the lower dimension, which exhibits lots of fascinating properties, such as 

tunability via modulating the gate voltage, and integrability to all kinds of electronic devices 

[3].  

 

Most of the studies of 2D or surface plasmonics focus on the couping of free electrons to 

light in metals or 2D materials like graphene, less attention has been devoted to the 2D hole 

system. Hydrogen terminated diamond stands out due to its being transparent in the visible 

wavelength range, high thermal conductivity, and extremely high hardness. A 2D hole gas 

layer can be formed on the bulk diamond after pristine diamond being exposed to high 

temperature hydrogen plasmon [4], therefore the dielectric-conductive layer structure makes 

it a perfect candidate for plasmonic excitation. The main work of this thesis is the derivation 

of dielectric function and plasmonic dispersion relation of 2D hole gas on the hydrogen 

terminated diamond surface. The main work of this thesis is the derivation of dielectric 

function and plasmonic dispersion relation of the 2D hole gas on the hydrogen terminated 

diamond surface. 

 

The thesis is organised as follows:  

 

In Chapter 2 the plasmonic effect and the methods to derive the dielectric function of 

2D/Q2D materials are reviewed. First the history of studies into surface plasmon polariton 

are given, which is followed by the discussion of the 2D plasmon. Afterwards 

self-consistent approach to obtain dielectric function in Q2D system are reviewed in detail, 

which prepares for the extension into the case of hydrogen terminated diamond surface. 

Then experimental techniques to investigate the optical properties are introduced, such as 

ellipsometry and scanning near-field optical microscopy (SNOM).  
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Chapter 3 gives the main results utilising a self-consistent field approach on hydrogen 

terminated diamond with a triangular confining potential representing the band profile at the 

surface. Derivations of its dielectric and plasmonic properties are demonstrated, which 

include the dielectric function, the plasmonic dispersion relation and static dielectric 

function.  

 

In the fourth chapter, future work on the optoelectronic properties of hydrogen terminated 

diamond are explored, including its photoconductivity and ellipsometry measurement. 

These early explorations can provide directions towards plasmonic excitation on the 

hydrogen terminated diamond surface. 

 

In the final chapter, a summary of the whole thesis is given with indications of potential 

applications of this work. 
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2 

 

Literature review 
 

2.1  Fundamentals of plasmonics 
 

In this literature review, fundamentals of plasmonics are firstly. Afterwards the comparison 

between the surface plasmon polariton and two-dimensional (2D) plasmon are introduced. 

To get the dispersion relation of plasmon, one needs to know the dielectric function of 

certain material. Therefore the theoretical model of deriving dielectric function in 

2D/quasi-2D is discussed in second section. In last section, various experimental methods to 

investigate the plasmonic effect, including ellipsometry and scanning near-field microscopy 

(SNOM), are reviewed.  

 

2.1.1  History of studies into surface plasmon polariton 

 
Surface plasmon polaritons are often referred to under the topic of plasmonics. To obtain an 

overview of surface plasmon polariton and to clarify the meaning and the origin of different 

related terms such as plasmons and polaritons, the evolution of the term surface plasmon 

polariton (SPP) will be introduced in the following chronological order. 

 

The study of surface plasmon polariton started more than one century ago when Zenneck 

.?et al . [5] in year 1907 and Sommerfeld .?et al . [6] in year 1909 firstly reported that when 

emitting electromagnetic waves impinge onto a planar or spherical boundary interface 

between two media with different dielectric function, the surface electromagnetic waves 

propagate parallel to the interface, and decay exponentially vertical to it. 

 

Later on K.B. Tolpygo [7] in 1950 and K. Huang [8] in 1951 discussed the coupling of 

electromagnetic waves and phonons in ionic crystals, and the coupling was called polariton 

by John Hopfield [9] afterwards. Furthermore, D. Bohm .?et al . [10] in 1953 explained the 

energy losses of fast electrons passing through metal foil by oscillation of electrons in a 
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metallic solid, and they called this phenomena excitation plasmons. 

 

Whereafter H Frohlich .牋et al . [11] in 1955 showed that there existed longitudinal electric 

plasma oscillations in silver films when dielectric function equals zero, and the plasma 

oscillation is accepted by the scientific community as the name of plasmons nowadays. In 

1957 Ritchie [12] first proposed the prediction that new lowered loss of energy compared to 

the loss caused by bulk plasmons is due to the boundary effect, and he called the surface 

collective oscillations surface plasmons in his paper. SPP came into realization in 1968 by 

A. Otto [13] utilising the method of frustrated total reflection, in which the surface plasma 

wave is coupled with photon thus forming a new kind of propagating wave. 

 

Overall plasmon reflects the intrinsic collective properties of the material (normally metal or 

semi-conductor), while polariton is the coupling of plasmon with propagating 

electromagnetic waves [14]. 

 

2.1.2  Overview of surface plasmon plasmon 

 
Plasmonics is the study of the interactions between an electromagnetic field and the free 

charge carriers (usually electrons) in a conductive medium. The wave-like movement of 

free electrons can have a well-defined wavelength, which is related to their momentum 

 p k [14]. In the case of plasmons within conductive materials, namely bulk plasmons, 

electrons are shifted in the presence of an external force caused by an electric field. 

However, when electrons are displaced, positive charges are left behind, which exert an 

attractive force on the displaced particles pulling them back to their original positions. This 

Coulombic restoring force makes the electrons oscillate back and forth like a simple 

harmonic oscillator. 

 

 

The bulk plasmon frequency can be expressed by Eq. 2.1 solving the simple harmonic 

motion equation. In this expression, the terms n , e , 
effm , 0  and 

p  represent: 

conduction electron density, electron charge, effective mass of the electron, dielectric 

function in free space, and plasmon frequency, respectively [14] 
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2

0

p

eff

ne

m



           (2.1) 

 

The plasmonic oscillations can also occur at the interface between a metal and a dielectric 

material. These oscillations at the interface are referred to as surface plasmons (SPs), which 

are essentially two-dimensional (2D) electron oscillations along the interface of the two 

materials [14], and the strong coupling of electromagnetic (EM) waves with surface 

plasmons is referred to as SPP. While for Localized Surface Plasmon Resonance (LSPR), 

another branch of plasmonics, it can be seen as the non-propagating version of SPP. LSPR 

happens in the interfaces of noble metal particles and dielectric, here the size of noble metal 

particles is comparable to or smaller than the wavelength of incident light. Thus the 

plasmon effect is confined to the particle surface and is highly sensitive to the refractive 

index of the dielectric. 

 

One way to obtain the dispersion relation is to solve the Maxwell Equations providing the 

boundary conditions [14], while the other is utilizing the Fresnel reflection coefficient 

which is repeated in detail here [15].  
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Figure 2.1: Schematic illustration of electromagnetic wave and surface charges at the 
interface between the metal and the dielectric material.  

 

Using a dielectric whose dielectric function and magnetic permeability are 1 1 and    

respectively, with the interface in the x y  plane (metal ( 2 2,  )), we obtain the formula 

for the absolute value of the reflection coefficient of the p -polarized wave (also called 

transverse magnetic wave) using  

 
2 1 ,2 ,1

2 1 ,2 ,1

/ /

/ /

z z

p

z z

q q
r

q q

 

 





 (2.2) 

and the corresponding one for the s -polarized wave (also called transverse electric wave)   

 
2 1 ,2 ,1

2 1 ,2 ,1

/ /

/ /

z z

s

z z

q q
r

q q

 

 





 (2.3) 

in which the z-component of the wavevectors are defined zq  as  
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2

2

,1 1 1z xq q
c


 

 
  

 
 (2.4) 

  

 

2

2

,2 2 2牋z xq q
c


 

 
  

 
 (2.5) 

 

Notice that for p -polarized wave, it’s the electric component that propagates alone the 

interface while it is the magnetic component for s -polarized wave (which would be called 

magnetic plasmon polariton).  

 

With these formulas at our disposal, we are about to embark on the dispersion relations for 

different occasions. Firstly, 
pr  diverges (namely denominator equals zero) for 

 
2 1 ,2 ,1/ / 0z zq q     (2.6) 

Then we acquire the dispersion relation for electric surface plasmons after substituting 

equations (4), (5) into (6), which can be written as  

 

2 3 3
2 1 1 2 2

2 2

1 2

xq
c

   

 

 
  

 
 (2.7) 

It can be reduced to a more familiar form for non-magnetic dielectric  

 1 2

1 2

xq
c

 

 



 (2.8) 

Providing the Drude model   2 21 /p      in which 
24

p

ne

m


  , and 1 1   when 

the dielectric is vaccum, the dispersion relation (one can find it in Fig. (2.2)) for SPP can be 

obtained as  

 

2

2

2

2

1

2

p

x

p

q
c



 










 (2.9) 
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Figure 2.2: Dispersion relations for light wave, bulk plasmons, surface plasmons, surface 
plasmon polariton and 2D plasmons. Reprinted figure from H. Yoon [16].  

 

Surface plasmon frequency is defined as the asymptotic limit after setting xq  in Eq. 2.9 to 

be infinite,  

 
21

p

sp








 (2.10) 

 

From Eq. (2.10) one can conclude that when the sum of the dielectric function of the 

dieletric (vacuum in this case) and the metal (surrounding the interface) equals zero, surface 

plasmon effect would happen. 

 

https://en.wikipedia.org/wiki/Asymptotic_limit
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Figure 2.3: Two ways to excite plasmon. (a)Grating pattern, (b) Prism on the surface of 
metal (Kretschmann configuration). Here yellow material is the conductive layer, gray 
triangular object is the prism, and red lines denote the light beam. 
 

The wavenumber of light is lower than that of plasmons given the same frequency, which 

indicates that it’s impossible to excite surface plasmon wave directly using photon, thus 

there are two main methods adopted by experimentalists to eliminate the momentum 

mismatch between photon and surface plasmon wave. The first method involves introducing 

features onto the surface of the conductive material, such as surface roughness or a grating 

pattern (Fig. 2.3 (a)). 

 

This method is based on the diffraction effects by a diffraction grating or a surface feature. 

When the light incident on the grating is at an angle   from the normal direction and has 

wavenumber q , extra momentum can be added to the light from the grating structure, then 

if the following condition is met, the SPP effect can be excited.  

,k sin g     (2.25) 

in which   is corresponding SPP wavevector, 2π /g a  where a  is the lattice constant 

and 1,2,3,...  . 

 

During the process of excitation, the diffracted EM wave from the periodically corrugated 

metal-dielectric interface have larger wave-vectors than those of the incident EM wave, and 

as a result, the diffraction of light by the metal grating will be coupled to the plasmons.  

 

The second method involves using a dielectric material of refractive index ( 1n  ) to 
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increase the momentum of the incoming light by increasing the wavenumber ( 1 2k n k  ). T 

qwo configurations can be used for this momentum matching method. As shown in Fig. 

2.3(b), in Kretschmann configuration [17], the in-plane component of the EM wave in the 

prism coincides with the SPP wave-vector on an air-metal interface, which gives rise to the 

light tunnelling through the metal film, and as a result, the light is coupled to the plasmons. 

 

2.1.3  Two-dimensional material nanophotonics 

 
Plasmons supported by 2D materials don’t suffer significant propagating loss as typical 

plasmons do, thus is advantageous beyond typical SPP in terms of its long propagating 

distance and tunability [16]. Two-dimensional materials, also referred to as single layer 

materials or van der Waals materials [18], are ultrathin crystalline materials composed of 

one or a few layers of atoms, and these types of layered crystalline structures give rise to the 

unique properties of 2D materials making them a promising platform for building electronic 

devices [3], optoelectronic devices and also application in the catalysis and energy fields. 

The family of 2D materials are mainly categorized into five classes, which are respectively 

graphene and other single-element two-dimensional materials [19], hexagonal boron nitride 

(hBN) [20], transitional metal dichalcogenides (TMDC) [21], main-group metal 

chalcogenides [22] and alloy involved heterostructures [23] respectively. 

 

The plasmon effect within two-dimensional (2D) materials has also been arousing 

tremendous research interest recently due to its fascinating properties in nanophotonics. V. I. 

Fal’ko .?et al . [24] detailed the procedure of deducing the dispersion relation. Considering a 

2D layer with conductivity   (the property links the current density to the electric field 

for general frequencies) which is parallel to the plane and perpendicular to the z direction. 

The complete set of Maxwell Equations for the vector  , , 牋x y zA A A A and scalar potential 

  is proposed [24]   

 
2

2

2 2

41

4 /
z

j cc t A

 




    
     

    
                    (2.11) 

1
0A

c t


   


                           (2.12) 
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1 A
j

c t
 
 

    
 

                          (2.13) 

 

 

Starting from the assumption that natural oscillations are propagating along the 2D layer in 

the form of a wave  exp iq r i t   and localized near the layer. The vector and scalar 

potentials are therefore proportional to  exp z , here 
2

2

2
q

c


   , Re( ) 0   and 

Im( ) 0   if it is a complex number. Due to the fact that charge carriers are confined 

within 2D layer, j  is also parallel to the 2D plane which would cause 牋zA to be zero. 

Thus the vector potential A  only has elements in the 2D layer plane, which can be further 

rewritten as    / zA q q A q I A   . 

 

Solving the set of Maxwell Equations for TM mode, namely 
1

0E A
c



 

 
   

 
 or 

0A  , then 

1
0 ( ) 0

                          

A iq A i
c t

q A


 





      



 

 

Therefore  

1

   =

A
j iq A

c t c

q A

c

i

i
iq A







   



   
         

   

 
  





 

 

And from Eq. (2.11) we can get  

 
2

2

2 2

1 4

4
2 ( 0)

j
A z

c t c

j
A z

c







 
  

 

   
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Then the dispersion relation is obtained as [24]  

2

2

2
1 0

z

i q
c

 


                    (2.14) 

 

In the non-retarded regime牋( /q c ), the relation can be rewritten as [24]  

2
TM

i
q




         (2.15) 

 

For TE mode which is not applicable in the 3D SPP case, 0zE E  , thus the dispersion 

relation can be written as [24]  

2
2

2

2
0q i

c c c

  
                   (2.16) 

which in the non-retarded regime reduces to 

2

2
TE

i
q

c


                         (2.17) 

 

With the specific example of graphene, M. Jablan . .et al  [25] gave two approaches to 

calculate the dispersion relation, one is the classical approach using Drude like expression  

 
2

2 1

Fe E i

i
 

   



            (2.18) 

where F FE n   , 610 /F m s   is the Fermi velocity of graphene,   the 

relaxation-time, and n  the charge carrier density. When damping rate   is extremely 

high, one can get the dispersion relation (one can find it in Fig. (2.2)) after substituting Eq. 

(2.18) to Eq. (2.15)  

F

e
E q               (2.19) 

 

Another is the quantum mechanical approach which directly uses the dielectric function 

obtained from the self-consistent field approach [26], and let the dielectric function to be 

zero, then one can get the similar dispersion relation 
1/2q   as in the classical model. 

More details can be found in Sec. 2.2. 
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To better understand the proper scenarios of applying SPP and 2D plasmons, the 

connections and the differences between them will be discussed. The properties of SPP in 

metals are decided by the material properties like the surface geometry or charge carrier 

density. When the metal film is sufficiently thin, SPP at both interfaces can be coupled in 

symmetric and antisymmetric combinations. The symmetric mode, or short-range SPP has 

the electric field confined in the film as long as the film thickness is smaller than the skin 

depth. While 2D plasmon-polaritons (PP) can be seen as the extension of short-range SPP as 

the thickness approaches a certain limit, the difference between them is that SPP can only 

propagate much shorter distance than 2D plasmon polaritons do. 

 

To show the relationship between 2D plasmon and SPP in a pedagogical way [27], the 

dispersion relation of 2D plasmons can be derived in a similar way to SPP. In our case the 

2D material is embedded between medium 1 and medium 2, therefore the electromagnetic 

fields of TM surface wave are given as follows 

1(1)

1

(1) (1)

1

(1) (1)1

12

ziqx

x

z z

y x

E E e e

iq
E E

i
H E














 

                    (2.20) 

This is the relation for the fields in medium 1. 

2(2)

2

(2) (2)

1

(2) (2)2
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
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

 



                      (2.21) 

This is the relation for the fields in medium 2, where 2 2 2/i iq c    . 

And the boundary condition is  

(1) (2)

(1) (2) (2)( )

x x

y y x

E E

H H J E 



    
                  (2.22) 

Then dispersion relation can be written as 
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1 2
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2 ( )
0

i    

  
                        (2.23) 

In the nonretarded regime ( /q c ), it can be further simplified to 

1 2

2 ( , )

i
q

q

  

  


                      (2.24) 

     

The dispersion relations of SPP and 2D plasmons are depicted in Fig. (2.2). The SPP 

dispersion has two asymptotes [16] at low frequencies and at frequencies approaching the 

surface plasmon frequency as one can get from Eq. (2.9). And one can find the frequency is 

proportional to the square root of wavenumber in the 2D plasmonic dispersion relation in 

the Eq. (2.19). At low frequencies, the metal nearly does not influence the surface wave, 

which propagate mostly in the dielectric. As the frequency rises, the interaction between the 

electromagnetic wave and the 3D bulk plasmonic oscillation dominates, causing another 

asymptote when wavenumbers approach infinite.  

 

From Eq. (2.19) one can find the dispersion relation of 2D plasmonic waves deviates from 

the light dispersion at all frequencies, and does not show an asymptotic behavior to a 

particular frequency. So from the dispersion of these two kinds of plasmons, one can find 

that it’s harder to excite 2D plasmons within the visible spectrum due to the larger 

momentum mismatch with light. And in the experiment scientists normally use the terahertz 

or far-infrared laser source to induce the plasmon effect within 2D materials [28]. 

 

2.2  Theoretical models of plasmons in quasi-two-dimensional 

systems 
 
Following the previous contents, the properties of plasmons underlie the significance of 

dielectric function of plasmonic materials. In this section the well-established theoretical 

framework to get the dielectric function in three dimensions will be introduced, and it can 

be applied to any homogeneous multi-dimensional system. And on the base of the 

framework the way to get the dielectric function in quasi-two-dimensional (Q2D) system is 

also discussed in detail, for the sake of the application on a hydrogen terminated diamond 

surface as our targeted sample.  

 



16 
 

 

 

2.2.1  Self-consistent approach to obtain dielectric function 

 

H. Ehrenreich .牋et al . [29] did pioneering work in deriving the dielectric function in the 

system with energy split in the z direction with the self-consistent field method. The essence 

of the self-consistent treatment is that external perturbation redistributes the charge within 

the system. Afterwards the redistributed charge creates an induced potential which acts to 

screen the original external potential. The total self-consistent potential is composed of the 

original external potential ext  plus the induced screening potential ind . The result of the 

distribution of the charge must be consistent with the total potential. 

 

First he started with Liouville equation of motion for the density operator,  

,        
op

opi H
t





                   

   (2.27)
 

and the single-particle Hamiltonian is  

 0 ,H H V r t                        (2.28) 

where 
2

2

0
2

H
m

    is the Hamiltonian for single free electron satisfying Schrodinger 

equation 0 kH k k . The eigen states for the free electron system are  

 
1

2Ωk exp k r


             (2.29) 

  

Now the density operator is rewritten as 
0 1

op op op     Where 
0

op  means the density 

operator for the unperturbed system, and 
1

op  the perturbed term. 

 

Fourier expanding the total perturbing potential energy  

 

                         
'

, ‍ , ,
q

V r t V q t e x p i q r                   (2.30) 
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Then Eq. (2.27) becomes  

     0 1 0 1

0

'

‍ ', ' ,op op op op

q

i H V q t exp iq r
t
   

 
      

 
  

         (2.31) 

 

After taking matrix between states k  and k q , and only considering the first-order 

perturbation, we therefore obtain  

       1 1牋 牋 ,op opk q k k k q
i k q k k q k f f V q t

t
     

 

          
 

(2.32) 

Here  k
f   is the distribution function for charge carriers, in particular the Fermi-Dirac 

distribution function for electrons. 

 

Assuming that the external perturbation is proportional to 
i t te   

 in which   is the 

adiabatic item which can be set to be infinitely small after our derivation, thus the induced 

potential, the total potential, and the density fluctuations all have the similar dependence 

i t te   
 as the external potential is exerted on the system. Thus Eq. (2.32) yields  

   

 
 1 牋 ,

k q k
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f f
k q k V q t
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 


   






 

  
            (2.33) 

 

Now we are seeking to find the connection between  ,indV q t  and the term 

1 牋opk q k . The induced screening potential energy  ,indV q t  is related to the induced 

electron density n  by Poisson’s equation:  

 

 2 2, 4 牋indV q t e n                       (2.34) 

 

The charge density equals the trace of the density operator operating on the electron position 

operator,  

     1 1

,

Ω op

k q

n k q k exp iq r                 (2.35) 
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Combining Eq. (2.34) and Eq. (2.35), we get  
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, 牋

Ω
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e
V q t k q k

q


                 (2.36) 

From Eq. (2.32) and Eq. (2.36), the dielectric function is obtained as  
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          (2.37) 

 

When the dielectric function equals zero in the solid, the solid does not react with the 

electric field as one can see from Maxwell Equations. Then the free electrons inside start to 

oscillate the same way as a sound wave. Their force is in the same direction with their 

amplitude. They move backwards and forwards as the amplitude aligns in that direction. In 

another word, there is a non-vanishing response even to vanishing external fields, thus 

forming a collective oscillation. So we can get the dispersion relation after setting the 

dielectric function to be 0 . 

 

When this approach is applied to a 2D case, for the long-wavelength limit ( /Fk q c ) 

the plasmon dispersion relation can be obtained after setting the dielectric function to be 0   

 

2
2

02 ,

s
L

p

N e q

q m


  
                   (2.38) 

Here sN  is the surface charge density, q  the plasmon wave vector,  ,q   the 

effective permittivity, and 
pm  the plasmon mass. 

 

For the detailed derivation process, readers are referred to Chapter 7 in [30]. 

 

2.2.2  Calculation of the dielectric function within quasi-2D system 

 

When the charge carriers are confined within a thin layer, there would be a quantum energy 

level split in the confining direction, i.e. z  axis in our context. It is called a 

quasi-two-dimensional system. J. Lee .牋et al . [31] first proposed the application of a 
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self-consistent approach in the quasi-2D case. In J. Lee .牋et al .’s case they used the infinite 

square well as the confining potential, and N. Q. Khanh [32] followed their example but 

utilized explicit expression for dielectric function [33] rather than the Thomas-Fermi 

approximation in J. Lee .牋et al .’s work [31], and K. H. Aharonyan [34] extended the work 

to the finite square well, proving that whether in infinite or finite square well the dispersion 

relation in large q  regime exhibit a different curve instead of relation q  . 

 

To start with the derivation the energy eigenvalues for the Q2D system can be written as  

2 2

, *2
k n n

e

k
E E

m m
 


                 (2.39) 

Here k=( ,x yk k ) is the 2D wave vector of the charge carrier, *m  the relative in-plane 

effective mass which is non-unit, em  the mass of electron, and n  the subband number for 

z  direction. Therefore the wave function for the hole system can be treated as  

   1

1
Ψ ,

ikr

k r z e z
A

                      (2.40) 

in which l  is the wavefunction of quantized state in z  direction with quantum number 

to be l , and A  the area of the x y  plane. 

 

The induced electron density can be obtained utilizing the Ehrenreich-Cohen self-consistent 

field prescription [29]  

     ' *

,牋' '

,牋'

' , 2 ‍ Ψ , Ψ ,k k k k
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r z r z r z                (2.41) 

here the density fluctuation  
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  
           (2.42) 

the ket k  means the whole wavefunction  Ψ ,k r z . 

 

The induced charge density  ' , 牋n r z can be related to the induced potential 
sV  via 

Poisson equation  
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                        (2.43) 

By taking the 2D Fourier transform  
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we obtain  
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Since the conducting medium is bordered by vacuum to the upside, the boundary conditions 

which the potential 
sV  has to satisfy are  

   
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The relation between induced potentials and total potentials is as follows  
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here l  stands for the wave function in z direction with subband number l . 

And the polarization terms are given by  
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     ' ' '‍ ‍‍ ‍‍s

k kl l q l lR dz V z z z                   (2.49) 

 

Then we can get the dielectric function as  
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Then it’s straightforward to get the dispersion relation from the dielectric function after 

setting it to be zero. Here we revisit the self-consistent approach to obtain dielectric function 

for Q2D systems, which takes into consideration the energy split which stems from the z 
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direction confinement. For inversion layer in semiconductors, which would involve the 

triangular potential well in the z direction, the improved precision will help us get better 

evaluation of the screening effect and the scattering rate. 

  

2.3  Optical explorations for plasmonic dielectric functions on 

two-dimensional materials 
 
After reviewing the fundamental theories of plasmonics, we are now seeking to 

experimentally realize the plasmonic excitations. Ellipsometry is the common experimental 

method to obtain the dielectric functions, which would help us verify the theoretical results. 

And scanning near-field optical microscopy (SNOM) combines optical microscopy and 

atomic force microscopy, which offers us a versatile platform to probe plasmonic excitation. 

 

2.3.1  Ellipsometry measurement 

 

Other than the theoretical derivation of dielectric function, we are also seeking to measure it 

directly by the means of ellipsometry, thus we will be able to verify the theoretical results.  

 

 

Figure 2.4: Schematic setup of an ellipsometry experiment. Reprinted from JA Woollam 
Ellipsometry manual [35].  

  

 

Consider the reflection of polarized light from a sample when light is obliquely reflected 
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from a sample. The incident and reflected beams define a plane of incidence, and the 

incidence light with its electric field vector oscillating in the plane of incidence is called p  

polarized light, while light with its electric field vector oscillating perpendicular to the plane 

is called s  polarized light. The enabling principle of ellipsometry is that p  and s  

polarized light reflects differently. The angle of incidence is chosen close to the Brewster 

angle of the sample to ensure a maximal difference. Ellipsometry measures the complex 

reflectivity ratio of p  and s  polarized light and typically reports the results in terms of 

the amplitude ratio Ψ  upon reflection, and Δ  is the phase shift.  

  Δ                                     tan Ψ
p i

s

r
e

r
        (2.51) 

 

With the experimental results at our disposal, we still need to find a proper model to inverse 

the dielectric function from these data. The simplest model is to deal with a single interface 

between two homogeneous and isotropic media with infinite thickness, 0 and 1, the 

reflection coefficients are given by the Fresnel formulas [1]  

 

   01 1 0 0 1 1 0 0 1/                    pr S S S S            (2.52) 

 

   01 0 1 0 1/                       sr S S S S           (2.53) 

 

in which i  is the dielectric function of the i th medium, and  
??? ?

2

0sini iS     with 

  being the angle of incidence in medium 0. 

 

Then dielectric function is given by  

    22 2 2

1 0 sin sin tan 1 / 1                    (2.54) 

 

For light incident from a medium of known 0 , Eq. (2.54) determines the complex 

dielectric function 1  of the reflecting second medium in terms of the measured   and 

the angle of incidence  .  
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2.3.2  Scanning near-field optical microscopy 

  

 

 
Figure 2.5: Different types of scanning near-field optical microscopes [2]: (a) Transmission 
mode for aperture SNOM, (b) collection mode for aperture SNOM, (c) apertureless SNOM.  

 

Due to the restriction of the Rayleigh diffraction limit, optical microscopes can hardly 

achieve resolutions above half the wavelength of the light source used [1]. Thus scientists 

resort to the methods which reduces the wavelength of the beam source, like the scanning 

electron microscopy (SEM) [36] and the transmission electron microscopy (TEM) [37], or 

they take advantage of the quantum tunneling of electrons between the surface and the tip, 

like scanning tunneling microscopy (STM) [38]. These new types of microscope have 

brought fabulous gains in resolution up to the atomic level. 

 

However these gains in resolution come at the expense of the spectroscopic capabilities, 

high temporal resolution, and polarization properties which are more accessible and 

informative in most applications. Furthermore, most of these high resolution techniques 

require conductivity and vacuum compatibility, which are hardly applicable for most 

biological specimens. The emergence of scanning near-field optical microscopy (SNOM) 

makes it possible to take advantage of the spectroscopic properties to achieve superior 

resolutions. 
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In SNOM, the laser beam is focused through an aperture with a diameter smaller than the 

excitation wavelength, resulting in a near field on the far side of the aperture. When the 

sample is mapped at a small distance below the aperture, the optical resolution is limited 

only by the diameter of the aperture. Nowadays the lateral resolution of 20 nm and vertical 

resolution of 200 nm have been demonstrated with the aperture diameter being 500 nm [2].  

 

 

Figure 2.6: Functional schematics of the SNOM measuring head. Reprinted from NTEGRA 
Solaris Probe NanoLaborator Instruction Manual [39]. 

 
 

Currently, two types of SNOM are in use [2]: aperture SNOM and scattering SNOM (also 

called apertureless SNOM). Aperture SNOM uses a sub-wavelength aperture for the light 

confinement. The resolution typically reaches a value of about 50 to 100 nm. While 

Scattering SNOM is based upon the interaction of the optical near-field of a sharp metal or 

the dielectric tip with the sample. Basically, a laser spot is focused (limited by diffraction) 

onto the tip and excites it to coupled optical/electronic oscillations. The corresponding field 
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concentration at the tip apex is similar to the lightning rod effect in electrostatics. 

 

As one can tell from Fig. (2.5 c), a relatively larger area of the sample around the tip is 

exposed to the laser light, resulting in low signal-noise ratio. Our lab works with the 

aperture SNOM produced by NTEGRA Solaris Probe NanoLaboratory to work on 2D 

materials and biological samples. 

 

As depicted in Fig. (2.6), a tuning fork is mounted alongside the tip and made to oscillate at 

its resonance frequency. The amplitude is closely related to the tip-surface distance, and 

thus used as a feedback mechanism. Movements of the scanner in the XY plane are 

controlled by means of the capacitance sensors. A piezo vibrator is located at the place 

where the probe is fixed to the scanner. It oscillates at the resonance frequency of the 

system consisting of the probe, quartz resonator and probe holder. The signal is read from 

the contacts of the quartz resonator. It is proportional to the oscillation amplitude of the 

resonator. During the approach of the probe to the sample surface, the resonance frequency 

of the system changes due to the influence of the atomic interactions between the probe tip 

and the surface. 

 

Graphene is a typical 2D material which is easy to fabricate and superior in optoelectric 

properties for the realization of plasmonic excitation. Two groups [40,41] nearly 

simultaneously managed to probe propagating plasmon polariton within graphene in 2012. 

In this experimental method (Fig. (2.7)), an IR beam is used to shine on a metallic AFM tip, 

which allows the tip to “emit” radiation over a large range of momentum space that can be 

used to locally launch SPP in graphene. If the wavelength of the incident light is kept at a 

constant level ( 0 9.7 m  ), the formed SPP can propagate along with the rationally 

defined graphene structures. The edge-reflected SPP waves interfere with incoming SPP 

waves and form localised standing waves which can be probed by collecting the emitting 

light, which is decoupled from the polariton in the near field from the surface.  
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Figure 2.7: Schematic of SNOM measurement for probing plasmon on graphene, where the 
probe tip is excited with a laser source, launching plasmons radially from the tip, with the 
scattered plasmons also collected by the tip Reprinted figure from Z. Fei .牋et al . [41].  
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3 

 

Dielectric function and plasmon dispersion relation 

of a quasi-two-dimensional hole gas on hydrogen 

terminated diamond surface 
 

3.1  Introduction 
 

The development of plasmonics has led to remarkable fundamental insights into the 

interaction between light and matter at the nanoscale [42], allowing the diffraction limit to 

be circumvented and novel imaging/sensing techniques to be created. This enables the 

development of nano-optics, which takes the advantage of nanostructured materials 

possessing extraordinary optical properties not found in their macroscopic counterparts. The 

recent realization of plasmonic excitation in different 2D van der Waals materials [43] gives 

researchers new impetus to look for new plasmonic effects in 2D or Quasi-2D (Q2D) 

electron systems. Van der Waals type 2D materials, which are intrinsically 2D in nature, are 

usually synthesied through chemical vapor deposition (CVD), molecular beam epitaxy 

(MBE) or isolated from bulk crystals by mechanical exfoliation. In contrast, Q2D electron 

systems are commonly realized through quantum-wells, heterojunction or superlattices with 

semiconducting components [44]. 

 

The dielectric function is an important property to infer plasmonic properties; for this reason, 

significant research efforts have been devoted to theoretical studies of the dielectric function 

of 2D and/or Q2D electronic systems. Stern [26] did the pioneering work in deriving the 

dielectric function with the polarizability given by self-consistent-field treatment. 

Afterwards Alexander Fetter and V. A. Volkov et. al. obtained the exact analytic form of the 

dielectric function by using the hydrodynamic method [45,46] and Maxwell’s equation with 

boundary conditions [47]. Ehrenreich et. al. [29] first applied the self- consistent field 

approach to get the dielectric function when there is energy split in the z direction, which 

then is extended by Lee et. al. and Backes et. al. on Q2D materials to include intra and 

inter-subband interaction separately [31], and simultaneously [48]. Nguyen [32] revisited 
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the result of Lee when confinement in the z  direction is characterized by an infinite 

potential well and obtained the dispersion relation of plasmons. Recently, the finite potential 

well [34],   - potential [49], triangular potential [50], and time dependent self-consistently 

screened triangular potential [51] were also investigated, highlighting the considerable 

difference in properties between Q2D and pure 2D systems.  

 

An experimental realization of a Q2D charge carrier system is the surface transfer doping of 

hydrogen terminated diamond [4], which allows the diamond surface to support a p-type 

surface conductivity with an underlying sub-surface Q2D hole accumulation confined by an 

upward band bending [52]. The robustness of the hole gas in diamond and the transparency 

of diamond over a wide range of the electromagnetic spectrum makes it a promising 

opto-electronic material for bio-sensing applications. 

 

Figure 3.1: Schematic picture of the hydrogenated diamond surface doped by water. 
Bottom: Evolution of band bending at the diamond-water interface. Reprinted from [52]. 
 
Meanwhile there has been no established approach to evaluate the plasmon properties of the 

2D hole gas on hydrogen terminated diamond, so the main purpose of this chapter is to 

determine the dielectric function for a Q2D hole gas confined in a triangular potential well,  
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following the method developed by Lee el. al. [31]. The plasmon dispersion relationship in 

the Q2D system will be analyzed with the confining potential being a triangular one, which 

has not been presented before, providing significant insights into the future development of 

potential hole plasmonic devices. We first derive a numerical method to calculate the 

induced potential in the 2D Fourier space, and then obtain the dispersion relation for 

different effective electric field strengths. It will be shown that when the effective electric 

field strength becomes large, the dielectric function of the Q2D system reduces to that of the 

2D system. We also calculate the static dielectric function to assess the screening effect in 

both the 2D and Q2D cases. 

 

3.2  Model of a confined hole gas 
 

The wave function of a hole in a 2DHG can be written as the product of the in-plane (x,y) 

free hole gas wave function and the wave function perpendicular to the 2D surface  

   
1

Ψ ,
ikr

kl lr z e z
A

                     (3.1) 

where k  is the wave number of in-plane  ,x y , r  (x,y), and A  is the area of the 

hydrogenated surface. The holes are confined by a potential well arising from charge 

separation between accumulated holes on diamond and electrons on surface acceptors [53], 

thus the carriers are put in the linear electric field, and can be approximately characterized 

by a triangular well, according to the observation of quantized energy level in the vertical 

direction [54]. In the z  direction, the wave function obeys the following Schrodinger 

equation,   

     
2 2

* 22
l l l l

e

d
z eFz z E z

m m dz
  



  


           (3.2) 

where em  is the electron mass, and 
0

1
F n e

 
 


 is the electric field strength. Using 

typical values for diamond (  = 5.5 , density 
13 210n cm  and relative effective mass in 

the z  direction * 0.5365m   [4]) yields 
8牋3.287 10 /F V m  . 

 

Therefore one can write the solution to the Schrodinger equation as   
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             (3.3) 

where Ai  is the Airy function, and C  is a proportionality constant which can be 

determined by normalization. The eigenvalues lE  are obtained from   

1
2/32 3

*

3 1
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e
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E l

m m





    
       

    
             (3.4) 

 

The Fermi energy is far below the ground state dispersion curve of the light hole band, and 

the conducting surface layer is so thin ( 5nm ) [4] that the energy differences between 

different subbands are very large as in the Fig. (3.2). Thus only the ground state of heavy 

holes is considered. 

 

Figure 3.2: Two dimensional hole dispersion relation in a triangular well for carriers whose 

density is 13 -210  cm . 
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3.3  Calculation of dielectric function of Q2D hole gas  
  

The energy eigenvalues for the system can be written as   

2 2

*2
kl l

e

k
E E

m m
 


                   (3.5) 

Here *m  is the in-plane effective mass. 

 

The induced electron density can be obtained utilizing the Ehrenreich-Cohen self-consistent 

field prescription [29]   
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in which the factor 2 arises from spin degeneracy, and the density fluctuation is given 

by   
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where the ket kl  means the whole wavefunction  Ψ ,kl r z . 

 

Moreover, to find the ratio between the induced and total potential, the induced charge 

density  ' , 牋n r z can be related to the induced potential 
sV  via the Poisson equation   

 
2

2

0

,s e
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                (3.8) 

 

By taking the 2D Fourier transform of Eq.(3.8)using the following relationship   
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we obtain   
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Since the conducting medium is sandwiched by vacuum and bulk diamond, the potential 

sV  has to satisfy the boundary conditions  

   
   0 0

0 0 ,

s s

q qs s

q q

dV dV
V V

dz dz


 

                (3.11) 

 

Notice here we only consider the 2DHG-vacuum interface; the bottom interface between the 

2DHG and the bulk diamond substrate is neglected, as the hole gas is normally embedded in 

the diamond substrate, and the wavefunction of the hole gas decays quickly at around 5 nm  

below the top of the hole gas layer, we called it the effective thickness 
effd . Therefore the 

hole gas can be viewed as being confined in the effective thickness layer, and the dielectric 

constant can be seen as the same at the proximity of the effective boundary. 

 

3.3.1  Solving to obtain induced potential 

 

We used the finite-difference approximation [55] to discretize Eq. (3.10) in the form of a 

sparse matrix, which was solved using mixed boundary conditions. Two matrices were 

employed on each side of the interface. Mixed boundary conditions were applied to both 

sides, and a random value dif  assigned to be the gradient of the left side; then the gradient 

of the right one would be 5.5  times of the random value. The solution was found when the 

value at the interface given by both equations agreed. 

 

On the left side of the interface:  
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 On the right side of the interface:  
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where step  is the step length we adopted for discretizing the space. 

 

Once the induced potential is obtained, the dielectric function is at our disposal for the 

derivation of the dispersion relation. 

 

The relationship between induced potential and total potential is  
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where l  is the wave function in z  direction with subband number l . 

The polarization term is given by  
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Since the total potential is the sum of the induced potential sV  and the external potential 

0V , the expectation value of 0V  is  

 

 

0 0

'' ' ''' ' ''' ''

'',牋'''

' ' '

                   = ''' ''

q

ll l l l ll l q

l l k

k l V kl l V z l

l V z l  



 
  

 
 

         (3.16) 

The quantity in the bracket of Eq. (3.16) is the dielectric function  
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3.3.2  Dispersion relation of the collective excitation of a Q2D system 

 

The intra-band term within ground state can be written as  

   2

1111 1‍ ‍‍R dz I z z                   (3.18) 

 

Therefore the dielectric function reduces to  
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Given the explicit expression for 2D permittivity and the zeros of the dielectric function 

[33], one can get the dispersion relation for the Q2D case  
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where牋 2fq n  is the Fermi wave number, and 
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Figure 3.3: Plasmon dispersion relation for 2D and Q2D systems of different effective 
electric strength. Line 1 is the dispersion relation of Q2D system without external electric 
field, 2 and 3 are the dispersion relation of a Q2D system with effective electric strength 
equal to 10F and 100F. Line 4 is the dispersion relation of a 2D system. 

  

 

The plasmon dispersion relation  E q  of 2D and Q2D system is plotted in Fig. (3.3). The 

energy E  is proportional to the square root of the wavenumber for small wavenumbers, 

the square of wavenumber for 
9 110q m . This gives insight to locate the appropriate 

wavelength range to excite plasmons in the Q2D system. Applying an external electric field 

to the system ‘squeezes‘ the conducting layer; for sufficiently high fields the system can be 

viewed as the pure 2D case. In Fig. (3.3), the effective electric field strength is modulated 

from 10F  to 100F , one can find that the plasmon dispersion relation is getting closer to 

that of pure 2D case, which validates that pure 2D case can be viewed as one particular 

condition of our Q2D method when effective electric field strength becomes infinitely large. 

For the low wavenumber limit, there is little variation in the dispersion relation with applied 
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fields, and the 2D and Q2D cases nearly coincide. 

 

The appropriate wavelength of light to excite plasmons in the Q2D can be obtained by 

locating the point at which the plasmon and photon dispersion relations are equal. This is 

done in Fig. (3.4). The crossing point is 
150 q m , corresponding to radio waves of a 

wavelength of 12.6 cm  or frequency of 2.4 GHz . 

 

 

Figure 3.4: Dispersion relation for photon and Q2D system without external electric field. 
Line 1 is the dispersion relation of a photon, line 2 is the plasmon dispersion relation of a 
Q2D system. 
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3.3.3  Comparison of static dielectric function between Q2D and 2D 

system 

 

For the general case, by denoting form factor     1 1 /q qR q    , we can write the 

dielectric function in the form   

    2

11,11 01 Dq Q q    (3.21) 

 

where  2

0

DQ q  is the polarizability of a two-dimensional non-interacting electron gas 

given by   
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Figure 3.5: Form factor   and 1111F  as a function of q  for the case where the 

surrounding media is vacuum. 
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Figure 3.6: Static dielectric function is shown as a function for Q2D and 2D systems and 
also for Thomas-Fermi approximation. 

 

Mori et. al. [56] use 
ijklF  to denote the difference between 2D and Q2D systems, where the 

subscript labels the subband number along the z  direction. It can be considered as the 

special case to our method that the conductive layer is embedded in the dielectric medium 

with the same dielectric constant as the conductive layer. Then the solution to the equation 

in the Sec. 3.1 can be written as   

    ' 2
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q z z
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q


 
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Then the form factor for the intra-subband transition in the ground state is written as   

    '2 2
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As one can easily tell from Fig. (3.5), the difference with and without continuity condition is 

not negligible. Also, one can find that   and 1111F  reduces to unity while q  approaches 
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0, and the dielectric function for a Q2D system reduces to that for a 2D system as expected. 

  drops sharply when q  increases, showing that there is a significant difference between 

a 2D and a Q2D system in terms of dielectric function. To examine the deviation of the 

static dielectric function between Q2D and 2D system, we use an analytic form [57] for it 

when the hole gas is completely degenerated and obtain:  
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where 
* 2 * 2/ba m e  is the effective Bohr radius. These are plotted in Fig. (3.6), and 

there is a noticeable difference between the dielectric function in the 2D and Q2D cases. 

This indicates that using the 2D case overestimates the screening effect of the charge 

carriers. The sharp drop when 2 fq q  is called the Kohn effect [57], and arises from the 

singularity of the dielectric function. The 2D dielectric function using the Thomas-Fermi 

approximation is plotted in Fig. (3.5) as well, and we see that it is only valid for 2 fq q .  

 

3.3.4  Conclusions 

 
In deriving the dielectric function of a Q2D material, we have constructed the relationship 

between induced and total potential by means of a Poisson equation [31], which naturally 

introduces the continuity conditions, making it an overall more accurate model. We also 

considered the triangular potential for a more realistic representation of a Q2D system in the 

2DHG confined on the hydrogen terminated diamond. We have found that in the dispersion 

relation of a Q2D system, plasmon energy is proportional to the square root of the 

wavenumber for small wavenumber ( q ), and is proportional to the square of the 

wavenumber when the wavenumber ( q ) exceeds 9 110 m . The appropriate frequency of a 

photon able to excite longitudinal plasmon is around 2.4 GHz , which is around 3 

magnitudes lower than that of graphene plasmon [40,41]. By applying an external electric 
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field to the Q2D system, it is shown that the plasmon dispersion can be tuned to be close to 

that of the 2D case. We also compared the static function of Q2D system with the pure 2D 

one and found that the 2D results would overestimate the screening effect, making the Kohn 

effect less prominent in the Q2D case. We hope that our results will be useful in giving an 

insight into the exciting potential of light-carrier interactions in 2DHG supported by the 

hydrogen-terminated diamond, which may then be useful in exploring diamond-based 

plasmonic optoelectronic devices. 
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4 

 

Future work 
 

4.1 Introduction 
 
The main result of a theoretical model has been completed in the previous chapter to obtain 

the dielectric function with triangular potential well in the z direction of a Q2D system. The 

following pilot studies have been done to probe more into the practical aspects of obtaining 

the dielectric function of hydrogen terminated diamond. These include photocurrent and 

ellipsometry measurements. These results are not conclusive but will constitute as future 

work given more time and resources. 

   

4.2 Measurement of photoconductivity of hydrogen-terminated 

diamond 
 
The interaction of photon and charge carriers in an electronic system is not limited to SPP. 

Another pathway is the photoconductivity in the condensed matter system. Photocurrent 

occurs in a semicondcutor when the photon energy of incident light is equal or higher than 

the band gap, leading to the creation of photo-induced charge carriers in the conduction 

band and valence band [58]. Hydrogen-terminated Diamond is known to exhibit 

photoconductivity in the ultraviolet regime (Eg=5.47 eV) however there have been 

emerging reports on the sub-band-gap excitation induced photoconductivity. The 

mechanism behind it still remains controversial, for example whether this property comes 

from the bulk diamond (with defects) or the 2D hole conducting layer [59].  

  

To explore the photoconductivity properties of surface conducting hydrogen-terminated 

diamond, we made four devices on one diamond sample which includes 2 kinds of channel 

dimensions multiplied by two regions which are hydrogenated and oxygenated respectively. 

Our research interest lies in the hydrogenated region which is conductive while the 

oxygenated region is insulating. 
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Figure 4.1: (a) Schematic image of the device design for photocurrent measurement; (b) 
the images of the four devices under optical microscopy. The left two devices are hydrogen 
terminated areas, while the right two are the oxygen terminated. The channel dimension 
(red region) is 5 20m m   and 20 20m m  . 
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Figure 4.2: The relation between photoconductance and wavelength in the hydrogenated 
area.  

 
 
The light source we used here was Fianium SC-450-2, which can modulate the wavelength 

through a wide range. The photocurrent has been normalised to the illumination power of 

the laser at each wavelength. We can tell from the plot that photoconductance increased 

dramatically from 500 nm, which indicates that the on-set of photocurrent generation is at 

500 nm. The photon energy is much smaller than the band gap of a diamond, which might 

result from the defect in the surface that helps narrow the band gap. 
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Figure 4.3 The comparison of I-V measurements in dark and with 525 nm laser illumination 
for oxygen-terminated channel.  
 

We want to show that the photoconductivity is related with the occurrence of a 2D hole gas, 

thus we draw the IV curve with and without light illumination in the oxygenated area (Fig. 

(4.3)). One can tell from the plot that the current with or without the laser illumination are 

both within noise level, which suggests that photoconductivity is not a bulk phenomenon, 

instead it's closely related to the 2D hole gas. The wavelength relevant to photoconductivity 

occurs in 500 nm visible light regime, while for most other 2D materials plasmonic 

excitation occurs in far-infrared or even terahertz regimes given the much lower carrier 

density compared to metal. In conclusion the result shows that carrier concentration won’t 

be changed at the wavelengths relevant to exciting SPP because photocurrent and SPP 

occurring very distinct spectrums. For future work, it's worth investigating whether SPP can 

be coupled to the photocurrent effect, via tuning the plasmonic response of the diamond by 

terahertz or far-infrared light. 
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4.3 Ellipsometery measurements 
 

It is feasible to measure the dielectric function using ellipsometry [60], which can directly 

relate to the theoretical results from Chapter 3, therefore paving the way to the plasmonic 

realization ultimately. We hope this study lays an important foundation towards any future 

work of investigation into the optical properties of such 2DHG systems. 

 

Dielectric function is the key parameter in determining the optical properties, so the 

measurement of dielectric function was also conducted using J.A. Woollam IR-VASE 

Infrared variable angle spectroscopic ellipsometer at the University of Adelaide.  

  

 
Figure 4.4: Dielectric function of hydrogen and oxygen terminated diamond in the infrared 
range. 
 

The data of the hydrogen terminated diamond and the oxygen terminated diamond were fit 

(with angle offset increasing RI) using a Cauchy model Angle offset. Regardless, the fact 

that the reference and H-terminated diamond differ only slightly (Fig. (4.4)) indicates no 

large absorption in this wavelength range.  
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Because the back reflection from a thick diamond substrate is very weak, which means there 

could be lots of noise in the signal. One way to verify whether the slight difference arises 

from the thin layer of 2D hole gas or not is to form a 2D hole gas on a much thinner 

diamond substrate, say 100 nm thickness, which will be able to generate higher signal to 

noise ratio. Once the work of cross checking theoretically and experimentally on the optical 

parameters of hydrogen terminated diamond is done, plasmonic devices can be designed 

using simulation software such as Lumerical FDTD.  

 

Once we can simulate various designs of the plasmonic interactions on hydrogen-terminated 

diamond, it is possible to tune its dispersion relation via changing the carrier density. This 

has the added advantage of overcoming the hurdle of significant propagating loss suffered 

by SPP. With a potential design, the realization of plasmonic excitation on the diamond 

surface can be deployed with SNOM probing on the device fabricated with the parameters 

obtained from simulation. The extraordinary properties of such device await to be explored. 

 

4.4 Refinement on theoretical analysis 
 
Based on the same theoretical framework done by Ehrenreich [29], A. Hill et. al. [61] 

studied the dielectric function and plasmonic properties using the Bloch wave function from 

the tight-binding approximation, in which the Brillouin zone is indicated by the hexagon 

which connects the Dirac nodes, thus generating a linear band structure. Whereas in our 

case we adopted the free electron/hole wave function, hence the band structure is parabolic 

shaped. In the long wavelength limit, the plasmon energy of graphene is still proportional to 

the square root of wavenumber, but not the square root of charge carrier density in the 

parabolic band structure approximation, instead it’s proportional to the quartic root of the 

charge carrier density. This inspire us to consider the light hole, heavy hole and split off 

band structure in the case of hydrogen terminated diamond surface, and use the Bloch wave 

function instead of free charge carrier wave function. Though our approximation well 

describes the situation in which heavy hole band is mostly populated on the diamond 

surface, the consideration of other two bands will increase the accuracy of the analysis. 

 

Also DFT (Density functional theory) calculation has been widely used for accurate analysis 

of plasmonic properties, in which the cell structure, doping material and other parameters 
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are all accounted for [62]. The previous method is based on random phase approximation to 

deal with many body interaction, specifically the coulomb interaction when analyzing 

plasmonic /collective excitation. Whereas for DFT calculation, the interaction effect exerted 

on each of every particle is studied separately, which can only be done with massive 

computation resources. Recently a new technique for quasi-low-dimensional DFT is 

developed by Vladimir U. Nazarov [51], who proposed that the energy split due to vertical 

confinement can be included during calculation. 

 

Experiment wise, D. N. Basov et. al. [62] summarized all kinds of two-dimensional 

polariton, including SSP, phonon polariton, exciton polariton, etc., within the framework of 

semi-classical model of conductivity, which is written as following 

                    
1 2 2 1

( )
f b

f b f

S Si i

i i
 

       
 

  
                   (4.1) 

The first and second term stands for the contribution from free (f) and bound (b) charges, 

and 
b  is the phonon frequency, and fS , 

bS , f  are the quantities given by 

experimental measurement. Here we notice that our case matches well with the conductivity 

when only free charges term is considered as in Eq. (2.18) and (2.19). This motivates us to 

experimentally realize the plasmonic excitation using hydrogen terminated diamond, to 

figure out the novel phenomenon beyond the simplified theoretical model. 
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5 

 

Summary and Conclusion 
 

This thesis focuses on the plasmonic excitation of Q2D materials theoretically. In particular 

the 2DHG on diamond was analyzed as a particular example. In the literature review the 

definition of plasmons are discussed thoroughly, and different models to derive the 

plasmonic dispersion relation are given, in which the self-consistent field approach is 

discussed in detail. In the Chapter 3 the main result of the dielectric function for the 2DHG 

system was presented by extending the published work of Lee [31], changing the confining 

potential to a triangular well which better approximates the confining potential profile at 

diamond surface as well as in other semiconductor heterostructures. Later the plasmon 

dispersion relation is discussed with this newly proposed mathematical framework and it is 

found that the plasmon energy is proportional to the square root of wavenumber for small 

wavenumber, and the square of wavenumber when wavenumber exceeds 9 -110  m . This 

leads to the key result of the light momentum matching condition at wavenumber of 

-150 m . This means that if a plasmon is supported in the 2DHG for hydrogen-terminated 

diamond, it will be around the GHz range. The theoretical framework developed in this 

work in obtaining the dielectric function for a Q2D system with a non-square confining 

potential will not only guide future experimental work in this field, but also lay a foundation 

to model the realistic dielectric functions in other types of promising 2D or Q2D materials. 

 

The pilot studies of photocurrent and ellipsometry were also conducted on hydrogen 

terminated diamond. It is found that the wavelength relevant to photoconductivity occurs in 

the 500 nm visible light regime, and there is slight difference between the dielectric 

functions of hydrogen and oxygen terminated diamond in the far-infrared range. Future 

work can be done on verifying whether plasmonic response of the diamond by terahertz or 

far-infrared light can be coupled to the photocurrent effect, and whether forming 2D hole 

gas on a much thinner diamond substrate would give us different results through higher 

signal to noise ratio. 
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