
Accessing Data from Multiple Sources Through
Context-Aware Access Control

A. S. M. Kayes1, Wenny Rahayu1, Tharam Dillon1 and Elizabeth Chang2
1La Trobe University, Melbourne, Australia

2University of New South Wales, Canberra, Australia
1{a.kayes, w.rahayu, t.dillon}@latrobe.edu.au, 2e.chang@adfa.edu.au

Abstract—With the proliferation of data and services in today’s
dynamic computing environments, accessing data from multiple
sources and consequently providing appropriate integrated re-
sults to the users has become a key challenge, often involving large
processing overheads and administrative costs. The traditional
context-sensitive access control models have been applied in dif-
ferent environments in order to access such data and information
resources. Recently, fog-based access control models have also
been introduced to overcome the latency and processing issues
by moving the execution of application logic from the cloud-level
to an intermediary-level through adding computational nodes at
the edges of the networks. These existing access control models
mostly have been used to access data from centralized sources.
However, we have been encountering rapid changes in computing
technologies over the last few years, and many organizations need
to dynamically control context-sensitive access to data resources
from multiple sources. In this paper, we introduce a new
generation of context-aware access control approach, combining
the benefits of fog computing and traditional context-sensitive
access control solutions. We first introduce a general data model
and its associated policy and mapping models, in order to access
data from multiple sources. In particular, we present a unified set
of context-sensitive access control policies with the aim of reducing
administrative and processing overheads. We then introduce
a unified data ontology together with its reasoning capability in
realizing our formal approach. We demonstrate the applicability
of our proposal through a prototype testing and several case
studies. Experiment results demonstrate a better performance of
our approach with respect to our earlier context-sensitive access
control approach.

Index Terms—Context-Aware Access Control, Data Model,
Mapping Model, Data Security Policies, Ontology

I. INTRODUCTION

Accessing data and information resources from multiple
sources (e.g., distributed cloud servers, different databases)
has increasingly become challenging nowadays due to the
heterogeneous nature of data sources. Efficiently controlling
the users’ access to such data from multiple sources is one
of the main challenges. How to provide integrated results to
the users with low processing overheads and administrative
complexities is another key challenge. Such new challenges
require a new form of policy-based access control model with
the potential to include on-the-fly data integration in order
to deliver an integrated data view to the users. The access
control decisions might be restricted to different granularity
levels according to the relevant contextual conditions (e.g., the
temporal information, profile information). For example, a data
analyst’s request to access and analyze the data about driving

license holders (like the age and address of the drivers’) may
be allowed from the inside of the office during his duty time,
whereas a data scientist may access and use such records for
research purposes in different contexts.

A. Background

Among the different access control models available in
the literature, Role-Based Access Control (RBAC) [1] is a
representative and reliable security model for many practical
applications to protect data and information resources [2]. In
accordance with the embodiments of the user-role and role-
permission mappings, the traditional RBAC model [1] and spa-
tial and temporal RBAC models (e.g., [3]) have been widely
accepted by different scientific communities due to their flexi-
bility and simplicity in administration when faced with a large
number of users and large amount of data. Considering a wide
range of relevant context information [4] explicitly for access
control is another key research direction, mainly exploiting the
context-aware policy models to prevent unauthorized access
of such data and information resources. Thus, Context-Aware
role-based Access Control (CAAC) models (e.g., [5], [6]) have
been introduced over the last few decades, incorporating the
dynamically changing contextual conditions into the RBAC
policies. These context-dependent models are mostly domain-
specific and consider specific types of context information.
We have a successful history of developing a family of
CAAC models, where we have considered the general context
information [4], the relationship context information [7] and
the situational context information [8]. These contextual condi-
tions mostly are obtained by exploiting the classical crisp sets
and have been incorporated into the access control policies [9].
However, there are some conditions that cannot be obtained
directly from crisp sets. As such, we have exploited the fuzzy
sets in terms of an appropriate way to derive such fuzzy
context information by utilizing our fuzzy context model [10].
For example, a patient’s current health condition is derived
“95% critical”, i.e., criticality level is “very high”, from the
low-level data such as pulse rate and body temperature.

Looking at the existing context-sensitive access control
models, these solutions extensively have been used to access
data and information resources from centralized sources [11].
These models do not provide adequate functionality to access
different data sets from multiple environments, by utilizing a
single set of access control policies. Different data integration



techniques have been developed over the last few decades to
collate data from multiple sources, such as schema matching
[12]. These integration techniques mostly have been used to
map between original sources of data (i.e., different schemas)
and result in a global schema. However, these techniques are
still limited in order to provide the “granted” or “denied”
access control decision to the users, supporting a single set
of access control policies to overcome overhead issues.

Due to the technological advancements in the online envi-
ronment, currently, different stakeholders need to access data
from many distributed sources. For example, the current cloud-
based Internet of things (IoTs) paradigm [13] seeks a new
form of context-sensitive access control model for building
mechanisms of controlling data and information resources
from multiple Big Data sources. The integration of such data
directly from distributed sources raises semantic namespace
and latency problems [14] due to lack of semantics and cloud-
based services. The richer semantics of data model is needed
to resolve the semantic namespace problem, dealing with the
heterogeneous nature of such big data sets. However, the latter
is forcing the organizations to overcome the latency issue
by adding intermediary computational nodes at the edges of
the networks [15]. In recent years, fog computing models
have been introduced to reduce the latency and processing
overheads involved in managing and accessing cloud-based
data and services (e.g., [16]). These fog nodes usually provide
intermediary computation and networking services between
the end-users and the data servers. Over the last few years,
several fog-based access control models have been proposed
(e.g., [17], [18]) in the literature.These fog-based access
control models are developed to access data and information
resources from centralized environments. However, they are
not truly context-aware and robust enough to develop CAAC
mechanisms for accessing data from multiple, distributed
environments. Overall, there is a grand challenge that tradi-
tional access control solutions and measures cannot meet such
requirements in today’s dynamic computing environments. As
a result, we need to build new CAAC solutions for data and
information resources coming from multiple sources.

B. Research Issues and Requirements

From our analysis of the literature and based on the
identified characteristics of data sources, there is still a gap
relating to the data access from multiple environments and
consequently providing integrated results to the users. Such a
gap raises the following research issues.

(RP1) How to effectively model access control policies to
access data from multiple sources by means of reducing
performance overheads and administrative costs? Thus,
there is a need to specify a single and unified set of
policies instead of multiple sets of policies.

(RP2) How to define a unified data model to access different
data sets from multiple sources? Usually, different or-
ganizations have their own local schemas with different
data structures. There is a need to define a generic

schema for all data sources, considering the identical
attributes of the similar data objects.

(RP3) How to map these access control policies to multiple
data sources? There is a need to codify the mapping
rules in terms of correlating different data sources.

C. Our Contributions and Organization of Paper

Our aim in this research is to introduce a new generation of
context-aware access control model, combining the benefits of
fog computing, context-sensitive access control and traditional
data integration solutions, in terms of defining a unified global
data model and facilitating access control to data from multiple
sources. The significant contributions are listed as follows. We
present a data access scenario to motivate our research in
Section II. We propose a formal approach to a general data
model with the aim of considering different data sets from
multiple sources in Section III. In Section IV, we introduce
a unified data ontology to represent the common classes in
the relevant data sets and a mapping ontology to correlate
these common classes with other equivalent classes. In this
perspective, the proposed ontology-based approach performs
schema mapping and correlates the multiple data sources
accordingly. In Section IV, we also propose a policy ontology
to provide access control decisions to the users, specifying a
unified set of context-sensitive access control policies for all
the different data sources. We evaluate our proposed approach
by demonstrating a walkthrough of our entire mechanism via
several case studies and a prototype testing through healthcare
scenarios (see Section V). Section V also demonstrates the
practicality of our approach through an empirical evaluation
with respect to our earlier CAAC approach. Section VI briefly
discusses the related work and presents a comparative analy-
sis of our approach with respect to existing access control
approaches. Finally, the conclusion and a roadmap for future
research are presented in Section VII.

II. RESEARCH MOTIVATION

Nowadays, a large number of data has been produced as a
result of the abundance of Big Data sources about business and
government services, their environments, and their end-users.
Such data collection might be coming from centralized and/or
distributed environments. This data abundance creates new
opportunities and also raises new challenges to develop new
form of access control mechanisms along with data integration
capabilities. In the following, we consider an application
scenario for our Australian Defence Logistics [19] project,
which illustrates an access control to multiple data sources
for different types of users within the distributed system.
One of the specific aims of this project is to explore how
Australian Defence can better enable and use the infrastructure
of Defence Logistics resources in order to more effectively and
efficiently access data from multiple environments.

We consider the following very specific application sce-
nario: John, who is a data analyst, is currently working
with the Australian Department of Defence. His role is to
deliver high quality services to record and visualize data usage



Data
Cloud

#1

Data
Cloud

#2

Data
Cloud

#3

Multiple Data 
Sources

An Intermediary 
Node

End-users
Honda Car

User Location CarBody

Usr1

Usr2

MEL, VIC, 
AUS

SYD, NSW, 
AUS

Sedan

Wagon

Customer City State

Cus1

Cus2

MEL

SYD

VIC

NSW

Client Address CarStyle

Cli1

Cli2

BRI, QLD, 
AUS

SYD, NSW, 
AUS

Wagon

Sedan

Country

AUS

AUS

Sedan

BodyStyle

Wagon

BMW Car

Audi Car

Fig. 1: The Relationship Chain from End-users to Multiple Data Sources (left) and Three Car Databases (right)

statistics based on the data from different sources. On the other
hand, Richard, who is a data scientist, is working with the
same department. His role is to further analyze these statistics
to assist law enforcement and government policies through
high-quality data analysis, using creative design and advanced
statistical analytics on the resulting data sets. Currently, they
both are assigned to the Defence Logistics project in a team
to analyze the data on sedan cars (including the car owners’
data) from all around Australia.

In this application scenario, John and Richard both need
to access different types of car records (e.g., data about cars,
car registrations, driving license owners and their insurance
policies). However, they should maintain the security and
privacy requirements of different stakeholders. For example, a
data analyst only can access data about driving license owners’
from his office location and during his working hours. Also,
he only can see and visualize the statistical results, but not
the detailed records. On the other hand, a data scientist can
see such records from anywhere at anytime, even when he is
on the move. In addition, he can access the detailed car data
from recorded car details (such as the age and address of the
car owners’) for research purposes. Based on the analysis of
the scenario, one thing is common here, the requesters (John
and Richard) need to access data from multiple sources in
different contexts. That is, such data might be associated with
centralized or distributed environments. Also, the requesters
need to deal with multiple data sets within different organiza-
tions (e.g., BMW, Audi and Honda companies). We can make
two possible observations to facilitate context-sensitive access
control to such data sets from distributed sources.

(1) Build a generic data model and specify a single set
of policies subsequently to access data from multiple
sources by utilizing mapping of generic schema to local
schemas: In order to access data from multiple sources,
we can build a unified data model to specify generic
concepts and map all the local data schemas to the generic
unified schema. Using this data model, we can introduce
a policy model by taking into account a single set of data
access policies for accessing data from distributed sources.
In this fashion, we can reduce the number of access
control policies, which in turn reduces the processing and
administrative overheads. Our proposed data model and
ontology can be found in Sections III and IV.

(2) Specify different sets of policies or use existing policies
to access data from multiple sources: As an alternative
to building a generic data model and specify a single
set of policies accordingly, we can use different sets of
policies individually to access data from multiple sources.
In today’s dynamic environments, this is really a big chal-
lenge to statically model all sets of access control policies
according to the local data sources. On the one hand, it
may impose extra burdens to policy administrators’ to
specify and manage such polices by means of multiple
data sources. On the other hand, the number of policies
involved in multiple data sources might potentially be
quite large. However, in order to reduce the processing
overheads for an access control system, we should avoid
an excessive amount of access control policies [4]. The
specification of a unified set of access control policies for
this work can be found in Sections III and IV-B.



In the light of Observation 1, we illustrate the relationship
chain among requesters (end-users), multiple data sources and
an intermediary computational node, which is shown in the left
part of Figure 1. Concerning the application scenario, different
car companies such as BMW, Audi and Honda have their
own data schemas. Three snapshots of raw data from these
car databases are also captured in the right part of Figure 1.
The relationship chain in Figure 1 mainly outlines the mapping
between different end-users and multiple data sources. In order
to support such mapping to different car databases and access
data subsequently, there is a need for a context-sensitive access
control application such as the Defence Logistics Information
system (DLIS). In particular, an intermediary computational
node is required to facilitate access control to the multiple car
databases in such a DLIS application. In this paper, we only
consider the homogeneous data from multiple sources. Our
goal is to model a single set of policies to access necessary
data from multiple sources based on the relevant contextual
conditions. The computational node in Figure 1 will act as
a ubiquitous tool in this complex structure to perform the
integration of data sets that are coming from multiple sources.

III. FORMAL APPROACH TO ACCESS DATA FROM
MULTIPLE SOURCES

In this section, we first provide some preliminary definitions
with the purpose to illustrate our proposed solution approach.
We then introduce our ontology-based approach in the next
section, including a unified data ontology and its associated
access control policy and mapping ontologies. In addition, we
show the related examples from the application scenario.

Definition 1: Unified Data Model. A unified data model
(UDM) is represented as a 2-tuple relation, including base
and equivalent concepts. UDM also includes the associations
involving these concepts, what we call relationships.

UDM = 〈BC, RE, EC〉 (1)

In our ontology, the base and equivalent concepts are rep-
resented by classes and subclasses, and the object properties
are used to represent the associations or relationships between
the base and equivalent concepts.

BC = {(bc1, bc2, ..., bci)|bc ∈ BC}
EC = {(ec1, ec2, ..., ecj)|ec ∈ EC}
RE = {(re1, re2, ..., rek)|re ∈ RE}

(2)

Thus, two sets of concepts (BC and EC) and a set
of relationships (RE) form our UDM data model. We use
bc ∈ BC to represent a base concept, ec ∈ EC to represent
an equivalent concept and re ∈ RE to represent a relationship
between bc and ec.

Example 1: Looking at our application scenario, Customer
(see the Audi car records in Figure 1) is a base concept that is
equivalent to the concept of Client (see the BMW car records
in Figure 1) and an association, named equivalentOf, is used
to represent the relationship between them. In the next section,
Figure 2 shows such relationships.

Definition 2: Policy Model. A policy model (Policy) is
represented as a 4-tuple relation, including the following
components: requesters, roles, contexts and permissions.

Policy = 〈Req, R, CC, P 〉 (3)

In the above relation, Req represents a set of requesters
(req ∈ Req ), R represents a set of roles (r ∈ R), CC rep-
resents a set of contexts or contextual conditions (cc ∈ CC),
and P represents a set of permissions (p ∈ P ).

A permission is a set of 2-tuple relation on the base concept
with different operations.

P ⊆ BaseConcept×Operation (4)

Similar to the basic RBAC model [1], in our policy model,
a user can be assigned to a role under relevant policy con-
straints (e.g., the static conditions such as user’s credentials),
however the user needs to satisfy the necessary contextual
conditions (e.g., the dynamic temporal and spatial conditions)
[4]. Consequently, the user can access the necessary data from
different sources (e.g., multiple databases, data clouds). Our
policy model is based on the notions of different components
and the associations that are included in the base concepts. In
the following, we specify the mapping rules that are used to
correlate these base concepts with other equivalent concepts
with the aim of accessing data from multiple sources through
a unified set of context-sensitive access control policies.

Definition 3: Mapping Rule. A mapping rule is represented
as a one-to-one or one-to-many relationship between the base
and equivalent concepts.

BC ≡ EC (5)

An equivalent concept is either a single concept or can be
formed based on the multiple concepts. Let us consider another
set of concepts C (c ∈ C), each equivalent concept ec ∈ EC
is represented by the following relations.

C = {(c1, c2, ..., cx)|c ∈ C}
EC = {(..., (c1), (c2), (c1 ∧ c2), (c1 ∧ c2 ∧ c3), ...)|

ec ∈ EC & c ∈ C}
(6)

In the above relations, we use c ∈ C to represent a concept
and ec ∈ EC to represent an equivalent concept.

Example 2: Looking at the application scenario, the combi-
nation of three concepts City, State and Country in the Audi
car data snapshot is equivalent to the concept of Address in the
BMW car data snapshot. Also, the concept User is equivalent
to the concept of Customer. These examples are represented
in the following relations.

Address ≡ City ∧ State ∧ Country

Customer ≡ User
(7)

For simplicity, we have used Address = {City, State, Coun-
try}, instead of Address ≡ City ∧ State ∧ Country in our
UDM ontology (see Figure 2).



Policy Model

Customer = Client
Customer = User

Address = Location
Address = {City, State, Country}

CarBody = CarStyle
CarBody = BodyStyle

Policy

Context

Requester

Role Permission

Base
Concept

Operation

Mapping RulesData Model

UDM

Base
Concept

Equiv
Concept

equivalentOf

Customer

Client

User

CarBody

Country

Address

CarStyle

BodyStyle

Sedan
City

State

Location

unionOf

Fig. 2: An Excerpt of the Data Ontology (left) and its Associated Policy (middle) and Mapping Models (right) for DLIS
application

IV. UNIFIED DATA ONTOLOGY

We introduce a unified data ontology (UDM ontology)
where we model the concepts and associations with respect to
the multiple data sources. It has two parts, the general ontology
that includes the core concepts (e.g., classes) and the special-
ization ontology that includes the domain-specific concepts.
The object properties are used to represent the associations
(i.e., logical relationships) between these concepts.

Different modeling languages have been used in the liter-
ature to represent the concepts and the logical associations
between concepts within different domains. The expressive-
ness and conceptual structure of the Web Ontology Language
(OWL) [20] are very suitable for modeling information in
accordance with different direct and RDF-based semantics
[21]. The formal semantics of Description Logics (DL) [22]
are embraced by the modeling constructs of OWL because of
the knowledge representation schema that underlies the DL
syntax. As such, we use the OWL language to model the
UDM concepts and associations, and we use the DL grammar
to specify the mapping rules and incorporate them into the
UDM data ontology. We use the Protégé-OWL graphical API
[23] to implement the data, mapping and policy ontologies.
In addition, we use the SWRL language [24] and its built-
in functions [25] to specify the reasoning rules for making
context-sensitive access control decisions through context-
sensitive access control policies.

Concerning our DLIS application, let us consider three car
databases that have already been shown in Figure 1. Based on
the DLIS application, a two-layered ontology, named Unified
Data Model (UDM), is represented in Figure 2 (see left part).
The UDM ontology illustrates the main constructs, where
we model the general core classes, domain-specific classes,
and the logical relationships among them. The ontology has
two core classes BaseConcept and EquivConcept which are
organized into a hierarchy, named UDM. In this ontology,
the logical associations between different classes are usually
represented by is-a (subClassOf), union (unionOf) and equiv-

alence (equivalentOf) relationships. For example, the classes
BaseConcept and EquivConcept are linked by an arrow with a
label equivalentOf. The UDM model shown in Figure 2 defines
that the class Location is equivalent to the class Address and
the CarStyle class is equivalent to the CarBody class. In the
UDM ontology, the classes Customer, Location and CarBody
are the three domain-specific concepts and they are the sub
classes of the core class BaseConcept, which are represented
by subClassOf relationships. In Figure 2, an individual named
Sedan car is represented as an instance of the class CarBody,
which is represented by a dashed arrow labelled instanceOf.
For the sake of simplicity, in our UDM ontology, we do not
show all the logical associations (object properties) between
concepts.

A. Reasoning Rules

We incorporate the mapping rules into the UDM ontology.
Our aim is to model and apply a unified set of access control
policies for accessing data from multiple data sources as an
efficiency improvement in terms of reducing the administrative
costs and processing overheads.

We illustrate the domain-specific mapping rules in the
right part of Figure 2. One of the mapping rules specifies
that CarStyle is an equivalent concept of CarBody. As we
consider multiple data sources, there are some equivalent
classes/concepts which are formed based on the different
concepts. For example, another mapping rule specifies the
combination of City, State and Country classes is equivalent
to the Address class.

B. Context-Sensitive Access Control Policies

A policy-driven data access model, simply policy model,
has been proposed to access data from multiple sources by
utilizing our UDM ontology. In particular, we specify a unified
set of context-sensitive access control policies. In this research,
we mainly focus on policy-driven data access from multiple
homogeneous sources. Different policy languages have been



TABLE I: The Data Scientists’ Policy

1 <Policy rdf:ID=“policy1”>
2 <hasUser rdf:resource=“#Requester req”/>
3 <hasRole rdf:resource=“#Role dataScientist”/>
4 <hasContext rdf:resource=“#Context anyLocation”/>
5 <hasContext rdf:resource=“#Context anyT ime”/>
6 <hasPermission rdf:resource=“#Permission p1”/>
7 <hasData rdf:resource=“#BaseConcept p1 carAddress”/>
8 <hasOperation rdf:resource=“#Operation p1 write”/>
9 </Policy>

proposed in the literature. Our goal in this paper is to provide
a guideline in which a unified set of access control policies
can be applied to multiple data sources. As such, the basic
elements of our policy model have been represented in the
middle part of Figure 2.

The following core concepts are organized into a Policy
hierarchy: Requester, Role, Context, Permission, Operation
and BaseConcept. A policy can be read as follows: “a user,
who is the requester, by playing an appropriate role and under
satisfying the necessary contextual conditions, can access
data from multiple sources”. Our access control policies are
specified and applied to the base concepts. The mapping rules
are used to associate these base concepts with equivalent
concepts (see the right part of Figure 2).

One of the main contributions of our proposal is its ability
to model and apply a unified set of context-sensitive access
control policies for accessing data from multiple sources tar-
geting low processing and administrative overheads. Towards
this goal, we have conducted two sets of experiments and
demonstrated a prototype testing in the next section.

V. EVALUATION OF OUR CAAC APPROACH

In this section, we demonstrate the applicability of our
CAAC approach. We first provide a walkthrough of our
entire CAAC mechanism via several case studies. We then
demonstrate a prototype implementation and its associated
application scenarios from the healthcare domain. In addition,
we conduct two sets of experiments to evaluate our proposed
approach with respect to our earlier CAAC approach.

A. Walkthrough of Our Proposal

We analyse the access requests from different users and
the subsequent results with necessary data in the laboratory
setups. The purpose of these case studies is to demonstrate
the practical applicability of our proposed CAAC approach.

When a data access request arrives from a user, it includes
the user-role and role-permission (data access permission)
assignments based on our UDM ontology and its associated
policy and mapping models. In the following case studies, we
consider the dynamically changing context information, such
as request times (e.g., John’s data access request is within his
duty time or not), locations (e.g., John is located in his office
or not), inter-personal relationships between different persons
(e.g., Jane is a treating doctor of the patient Bob or not), health
conditions (e.g., Bob’s current health status is highly critical,

TABLE II: The Reasoning Rule

1 Policy(?policy1) ∧
2 Requester(?req) ∧ hasUser(?policy1, ?req) ∧
3 Role(?dataScientist) ∧ hasRole(?policy1, ?dataScientist) ∧
4 Context(?anyLocation) ∧ hasContext(?policy1, ?anyLocation) ∧
5 Context(?anyTime) ∧ hasContext(?policy1, ?anyTime) ∧
6 Permission(?p1) ∧ hasPermission(?policy1, ?p1) ∧
7 BaseConcept(?carAddress) ∧ hasData(?p1, ?carAddress) ∧
8 Operation(?write) ∧ hasOperation(?p1, ?write)
9 → canAccess(?req, ?carAddress) ∧ canPerform(?req, ?write)

critical or normal), and co-located relationships (e.g., Jane and
Bob are located in the emergency department of the hospital
or not), as contextual conditions.

1) Revisiting Our Application Case Study: Consider our
application scenario where Richard wants to access different
car owners’ records from multiple sources. Table I shows
the specification of such data scientists’ policy in OWL and
Table II shows the relevant reasoning rule in SWRL for
making context-sensitive access control decision through the
applicable policies.

In this policy (see Table I), the access control decision is
based on the following constraints: who the requester is (which
is specified in Line# 2), what role the requester can play (Line#
3), under what contextual conditions (Line# 4 and 5) and what
resource is being requested (Line# 6 to 8). For simplicity, we
do not include the data type properties (and their values) in
Tables I and II. Looking at the scenario, we can observe that
Richard, who is a data scientist, can access different types
of car records from multiple sources (e.g., Table II specifies a
reasoning rule to access the records of different car addresses).
Richard can access such records from any location at any
time, however, a data analyst John only can access relevant
car records from his office location and during his duty time.

The specification of the different contextual conditions is
out of the scope of this paper. In this respect, we adapt our
earlier context models [4][10] towards modeling the dynamic
contextual conditions (fuzzy and normal contexts) and in-
corporating such conditions into our context-sensitive access
control policies.

2) Other Real-World Application Scenarios: As contextual
conditions are involved in the access control process, in our
approach, the access control decisions depend on the wide
range of contextual conditions, such as the request time,
location, health status and so on. Our earlier context ontology
[4] discusses the rich contextual conditions and extends in this
research. We can apply our proposed CAAC approach in other
real-world applications.

For example, concerning the emergency hospital scenario
from our earlier research [4], Jane can play the emergency-
doctor role when she is present in the emergency ward of the
hospital, where a patient is admitted due to a severe heart
attack. Consequently, she can access the emergency medical
records (including other relevant records like previous medical
history) of that patient to save his life from such a critical
health condition.



Application

CAAC

Request
data

Send
integrated

results

Authorization,
based on the roles/authorities
and contextual conditions

Restrict data access

col1 col2 col3

data1 data2 data3

… … …

… … …

User

Database
Adapter.java

Request
Handler.java

Server.java
Client.javaMessage.java

Main
Frame.java

Main
Panel.java

Login
Panel.java

Server
UIClient

Multiple Databases

Fig. 3: Our Development Environment for the Healthcare Application

Let us consider another application scenario from our pre-
vious research [10], a paramedic John is allowed to play the
emergency-paramedic role if he is co-located with the patient
Tom at the scene of an accident. Using our proposed approach,
he can acquire all the permissions (data access permissions)
assigned to both paramedic and emergency-paramedic roles to
provide emergency treatments.

Overall, this paper aims to address a significant research
issue in the area of data access from multiple sources. To-
wards this goal, we introduce an intermediary computational
node to control data and information resources from multiple
sources, which mainly includes a unified data model and
its associated policy and mapping models. In particular, our
goal is to integrate multiple data sources by performing the
corresponding schema mappings. We introduce a single set of
context-sensitive access control policies to access data from
multiple sources by utilizing this unified data schema. As such,
we include the mapping rules about semantic mapping from
individual local data schemas to unified data schema.

B. Healthcare Prototype and Its Associated Scenarios

We evaluate our proposed access control approach using
another application scenario from the healthcare domain. As
such, in this section, we present a CAAC application that is
developed in our laboratory setup for the healthcare domain,
in order to illustrate the use of our proposed CAAC approach.
The main goal of this application is to access data from
multiple databases based on the users’ authorities/roles and
relevant contextual conditions.

We have used the Java language and Oracle database to
build our CAAC application. Figure 3 illustrates our devel-

Application

We can restrict users to access data from multiple databases based on their roles/authorities and relevant contextual conditions.

Amanda, who is a doctor, can access patients’ information by satisfying the relevant contexts. On the other hand, Amanda, who is a nurse, can have very limited access to patients’ information, such 
as phone numbers and times for last visit.

Fig. 4: A Screenshot of Our Application (Doctor’s Request)

opment environment of the prototype implementation. When
an access request comes from the user (client) using UI (user
interface) part in Figure 3, the server part in our prototype
generates the relevant query (data access query) according to
the applicable context-sensitive access control policies, and the
user can access the data from multiple databases accordingly.
In this application, we have used three databases (one for
access control logic and other two for different medical/heath
records) and we actually limit the users to access data from



Application

We can restrict users to access data from multiple databases based on their roles/authorities and relevant contextual conditions.

Amanda, who is a doctor, can access patients’ information by satisfying the relevant contexts. On the other hand, Amanda, who is a nurse, can have very limited access to patients’ information, such 
as phone numbers and times for last visit.

Fig. 5: A Screenshot of Our Application (Nurse’s Request)

these databases based on their roles/authorities and the relevant
contextual conditions. Figure 4 presents a screenshot from our
healthcare application that shows the access control decision
for doctor’s access request. In this scenario, Amanda, who
is a doctor, can access patients’ information by satisfying
the relevant contextual conditions. Figure 5 presents another
screenshot that shows the access control decision for nurse’s
access request. In this scenario, Amanda, by playing a nurse
role, can only have very limited access to patients’ informa-
tion, such as phone numbers and times for last visit.

The above-conducted case studies through different test sce-
narios demonstrate the applicability of our proposed approach
to build CAAC applications in today’s dynamic computing en-
vironments and facilitate access control to data from multiple
databases accordingly.

C. Empirical Evaluation

In this section, we aim to demonstrate an empirical study
on the performance of our proposed approach with respect to
our earlier approach [4]. We conduct two sets of experiments
and measure the query response time (i.e., processing over-
heads) with respect to different number of context-sensitive
access control policies in conjunction with relevant contex-
tual conditions. In order to model the healthcare roles (e.g.,
doctors, nurses, paramedics, researchers, data scientists and
data analysts) and data resources (e.g., daily medical records,
historical medical records and private health records), we adapt
our role and resource ontologies from our earlier research
[4][10]. The experiments are conducted in an Intel machine
with Core i7@3.6GHz Processor and 16GB of memory. We
deduce the average response time by executing the experiments
10 times and computing an arithmetic mean of them.

1) Experiment #1: Our Earlier Approach: In our first set
of experiments, we specify all the different sets of context-

0
600

1200
1800
2400
3000
3600
4200
4800
5400
6000
6600

100 200 300 400 500 1000

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e 
(m

s)

Number of Access Control Policies

Time Breakdowns: Earlier CAAC Approach

Context reasoning time Total query response time

Policy execution time

Fig. 6: Time Breakdowns of the Query Response Time

10017 2711.968684

10469 2970.258913

10422 3204.048943

11265 4407.537483

21234 7628.810613

23594 9701.920038

25735 23794.33136

0

2000

4000

6000

8000

10000

100 200 300 400 500 1000

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e 
(m

s)

Number of Access Control Policies

Response Time: Earlier CAAC Approach

2570

12501026
748

519
394

Fig. 7: Response Time with Respect to Number of Policies

sensitive access control policies for multiple databases and
measure the CAAC performance. Based on the Australian
standard classification of occupations (ASCO) of the health
professionals [26], we model the healthcare roles (e.g., doctors,
data scientists) and specify the context-sensitive access control
policies for the health professionals. We vary the number of
policies up to 1000 with respect to 138 different health profes-
sionals [26]. We also consider the different types of contextual
conditions in these variations. We specify the separate access
control policies for multiple databases/sources, an initial size
of 100 policies and we increase this size up to 500 for an
increment of 100 (see Figure 6). As such, we specify a large
number of access control policies, which is 1000. In Figures 6
and 7, we can see that the performance overhead varies from
1.7 seconds (sec) to 5.8 sec with respect to the increasing size
of the ontology knowledge-base. In this setup, using our earlier
CAAC approach, we can see that the query response time is
linearly increasing according to the number of policies up to
500, with respect to small size of the ontology knowledge-
base. The performance overhead increases dramatically when
the ontology size is big with respect to 1000 policies. This
is due to the large number of policies and the reasoning task
behind the data access query.

2) Experiment #2: Our Current Approach: In our second
set of experiments, we specify a unified set of context-sensitive
access control policies in order to access data from multiple
databases. The number of policies in our current CAAC



0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

50 100 150 200 300

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e 
(m

s)

Number of Access Control Policies

Time Breakdowns: Current CAAC Approach

Context reasoning time Total query response time

Policy execution time

Fig. 8: Time Breakdowns of the Query Response Time

10017 2711.968684

10469 2970.258913

10422 3204.048943

11265 4407.537483

21234 7628.810613

23594 9701.920038

25735 23794.33136

50
100
150
200
300

0

2000

4000

6000

8000

10000

50 100 150 200 300

Q
ue

ry
 R

es
po

ns
e 

Ti
m

e 
(m

s)

Number of Access Control Policies

Response Time: Current CAAC Approach

792638530405258

Fig. 9: Response Time with Respect to Number of Policies

approach is the main contributor in this current experiment
setup, which is smaller than the previous approach (See
Figures 8 and 9). Particularly, this is due to a unified set
of context-sensitive access control policies for accessing data
from multiple sources. On the other hand, the time taken to
perform the reasoning task in our current approach is a little
bit expensive than the earlier approach, as we have a data
ontology and its associated mapping ontology in our proposed
CAAC approach. However, we can see that an extra reasoning
task concerning a unified set of policies does not have great
impact in total query response time. The experimental results
are illustrated in Figures 8 and 9. In our current CAAC setup,
the query response time measures 2.6 sec with respect to 300
policies, which actually covers all the 1000 policies in our
previous setup. Overall, we can see that we need an small
number of policies using our current CAAC approach and
subsequently the performance overhead decreases using our
unified set of context-sensitive access control policies to access
data from multiple databases.

In these two sets of experiments, we separate the access
request processing time from the ontology loading time, as the
ontology loading occurs once when our system runs for the
first time. In this empirical study, we only consider the access
request processing time, which is the main contributor in
our experiments. Considering the above-conducted experiment
results, we can conclude that our current CAAC approach
offers better response time in controlling users’ access to

data from multiple sources with the benefits of a unified data
model and its associated policy model. However, there is still
a possibility of dealing with further performance overheads by
using more powerful machines.

VI. RELATED WORK AND COMPARATIVE ANALYSIS

In this section, we provide a short overview of some relevant
access control approaches as the related area of our research.
The overview includes the existing context-sensitive role-based
access control approaches and the fog-based access control
approaches. In addition, this section includes a brief analysis
by positioning the new contributions of our proposed approach
in relation to the current state-of-the-art.

A. Context-Sensitive Access Control

The Role-Based Access Control (RBAC) approach [1] is
an established model of access control and is well recognized
by security and privacy practitioners for its many advantages
in large-scale authorization management [2]. It includes two
fundamental parts: the first part provides the basic concept of
user-role associations in which the users can play necessary
roles that are usually organized in the organizational role
hierarchies; and the second part provides another basic concept
of role-permission associations in which the users can exercise
necessary organizational functions that are associated with
their roles. However, the computing technologies have been
changing over time and in today’s open and dynamic environ-
ments, many organizations have been targeted to build appro-
priate context-sensitive access control solutions for utilizing
data and information resources from multiple environments.

Over the last few decades, different Context-Aware Access
Control (CAAC) approaches have been introduced using role-
based policies in conjunction with different contextual condi-
tions. Bertino et al. [27], Joshi et al. [28] and Damini et al. [3]
have extended the traditional RBAC approach by incorporating
the temporal and spatial conditions into the access control
policies. Recently, Schefer-Wenzl and Strembeck [29], Trnka
and Cerný [5] and Hosseinzadeh et al. [6] have proposed
several CAAC approaches in which access control is managed
by means of different contextual conditions (e.g., locations, re-
quest times and resource-centric conditions). Similar to above-
mentioned RBAC approaches, Colombo and Ferrari [11] have
introduced a fine-grained access control approach utilizing
NoSQL-based datastores. Using these context-sensitive RBAC
approaches, users can access the necessary resources from
centralized sources by playing their appropriate roles and
based on the contextual conditions. These approaches are
mostly domain-specific and are not adequate enough to utilize
a wide variety of dynamically changing conditions of the
environments (e.g., the interpersonal relationships, the critical
situations). Towards this end, in this paper, we adapt our initial
context model [4][10] to capture and infer the access control-
specific contextual conditions. However, these extended RBAC
approaches do not provide adequate methodological and im-
plementation supports to model a unified set of access control
policies with respect to accessing data from multiple sources



with low overheads. Different from these existing context-
sensitive approaches, we in this paper propose a unified data
model and its associated policy model in order to deal with
the processing and latency overheads. As such, we introduce a
global data ontology and its mapping model in order to utilize
the benefits of a unified set of context-sensitive access control
policies and overcome the overhead issues accordingly.

We have a successful history of using a wide range of
contextual conditions for context-oriented decision making.
In [4], we have introduced an ontology-based context-aware
RBAC approach to information resources, where we consider
the context information about the state of the users, resources
and their surrounding environments (e.g., patients’ profiles,
users’ locations, users’ request times). In [7], we have intro-
duced an ontology-based relationship-aware RBAC approach,
incorporating the relationship context information (e.g., the
different granularity levels of relationship, the relationship
types, the relationship strengths) into the policies. In [8],
we have introduced an ontology-based situation-aware RBAC
approach, where we incorporate the purpose-oriented situa-
tion information (e.g., normal/emergency treatment purpose,
research purpose) into the policies. Our earlier approaches
do not provide adequate functionalities to access data from
multiple sources utilizing a unified set of context-sensitive
access control policies.

The access control policies in the above-discussed tradi-
tional and context-sensitive RBAC approaches are based on
involving the normal contextual conditions, which can be
usually derived from the crisp sets (e.g., an event such as
“surgery in progress” or “not”, a patient is located “in the
emergency department of the hospital” or “not”). In [10],
we have introduced a Fuzzy logic-based CAAC (FCAAC)
approach in order to facilitate context-sensitive access control
to resources according to the fuzzy conditions. Using our
FCAAC approach, a fuzzy contextual condition such as a
patient’s current health status is “60% normal with criticality
level 0.40” can be derived from other relevant information
(e.g., pulse rate and body temperature of the patient). Our
earlier CAAC approaches are developed to access data and
resources from centralized environments. However, like the
existing context-sensitive RBAC approaches, our earlier ap-
proaches are not adequate to access data coming from multiple
sources by dealing with overheads and administrative issues.

B. Fog-Based Access Control

Recently, several fog-based access control approaches have
been proposed to overcome the latency and processing over-
heads by moving the execution of application logic from the
cloud levels to the edges of the network [15].

Due to the rapid development and technological advance-
ments in the cloud-based environments, users need to access
data and information resources from multiple sources nowa-
days. The integration of such data and information resources
usually raises semantic namespace and latency problems [14],
due to the lack of semantics and data coming from multiple
environments. In order to deal with such issues, there is a

need for the richer semantics of data model, dealing with
the nature of such data sets from multiple sources. However,
currently, these issues have been forcing the organizations to
overcome the associated overheads by adding intermediary
computational nodes at the edges of the networks.

Zaghdoudi et al. [17] have proposed a fog-based access
control approach to overcome the overhead issue. They con-
sider the information about the subjects, objects and oper-
ations as contextual conditions. Salonikias et al. [30] have
presented a recent study on intelligent transport systems by
utilizing the fog computing nodes and corresponding fog-
based access control models. Both of the research works have
been concerned with several important requirements of the
fog-based access control schemes, such as context-awareness
and processing overheads. The authors also have discussed
the decentralization of authority from a single administrative
location to other locations in order to overcome the associated
overheads. Recently, Yu et al. [18] and Zhang et al. [31] have
also proposed the fog-based access control approaches in order
to share and access data along with the benefits of encryption
and decryption mechanisms. Overall, these existing fog-based
approaches have been developed to access data and informa-
tion resources from centralized environments. However, these
access control approaches are not truly context-aware and
robust enough to build fog-based CAAC applications when
accessing data from multiple sources according to the relevant
contextual conditions.

In this respect, different from these existing fog-based ac-
cess control approaches, our proposed CAAC approach in this
paper is robust enough and truly context-aware. It considers a
wide range of contextual conditions and introduces a unified
data model and its associated policy model to deal with data
from multiple sources.

C. Comparative Analysis

The context-sensitive role-based access control approaches
have been applied to access data and information resources
from centralized environments. However, these approaches are
not adequate to access data from multiple sources due to
the problems of administrative and latency overheads. On the
other hand, the existing fog-based access control approaches
are not truly dynamic and context-aware. With the increasing
demand of accessing data and information resources from
multiple sources, different stakeholders’ requirements for se-
curity and privacy are becoming more challenging nowadays.
Therefore, there is a grand challenge that traditional access
control solutions and measures cannot meet such requirements
in today’s dynamic computing environments. As a result, in
this paper, we introduce a new CAAC approach in order to
support access control to data and information resources from
multiple sources. We include both the formal and ontology-
based implementation models to specify a unified context-
sensitive access control policies with the benefits of mapping
functionality. In particular, in includes a unified data model and
a mapping model in order to correlate data and information
resources from multiple sources. We present a walkthrough of



our entire CAAC mechanism by using several case studies and
a prototype testing. Finally, we present an empirical evaluation
to validate the feasibility of our proposed approach.

VII. CONCLUSION AND ASSOCIATED RESEARCH
CHALLENGES

Accessing data and information resources from multiple
sources through appropriate access control mechanisms has
been receiving increasing attention. A key factor in the success
of such an approach is the need to access necessary data
from multiple sources beyond that which normally associated
with users’ roles. To date, several role-based, fog-based and
context-aware access control approaches have been introduced
to access data and information resources from centralized
sources. However, these approaches are not robust enough to
develop CAAC mechanisms for accessing data from multiple
sources due to the problems of latency and processing over-
heads and the lack of context-awareness as well. Many cloud-
based organizations nowadays have been targeted to avoid
such overheads and latency issues by adding intermediary
computational nodes at the edges of the networks.

In this paper, we have introduced a new direction of CAAC
solution that facilitates context-sensitive access control to data
and information resources from multiple sources. Our pro-
posed CAAC approach provides a flexible policy specification
solution to the problem of reducing processing overheads,
by specifying context-sensitive access control policies and
consequently controlling users’ access to data at multiple
granularity levels. Our solution significantly differs from the
existing access control solutions in that it utilizes the benefits
of a unified set of policies and its associated mapping functions
in order to access data from multiple sources. This paper
provides a definition of the unified data model. It also defines
the access control policies and the mapping rules to facilitate
context-sensitive access control to data from multiple sources.
We have introduced an ontology-based approach in realizing
these preliminary definitions, including the data, policy and
mapping ontologies. We have demonstrated the feasibility of
our proposal through a walkthrough of our whole approach,
using the OWL, DL and SWRL languages to model the
core and domain-specific concepts of the ontologies. We have
also demonstrated the applicability of our approach through
a prototype testing. Finally, we have carried out two sets
of experiments and presented an empirical comparison of
the performance of our proposed approach compared to our
earlier CAAC approach. The evaluation results show that our
proposed approach with the benefits of a unified set of access
control policies can be effectively used in practice.

Our proposed access control approach can be applied to
deal with the issue of data heterogeneity, by accessing data
from distributed and heterogeneous cloud sources. There is a
need to investigate a generic data model to achieve semantic
interoperability between heterogeneous data models from dis-
tributed sources. We can also extend our proposed data model,
including an integrated data view model for the end-users with

the goal of providing integrated results across many distributed
and heterogeneous sources.

ACKNOWLEDGMENT

We acknowledge the contributions of our internship stu-
dents, Yuho Lee and Minsung Han from Gachon University,
South Korea, for the development of our healthcare applica-
tion. They are partially supported by the Korea Ministry of
ICT and Future Planning grant to Gachon University National
Program of Excellence in Software. The statements made
herein are solely the responsibility of the authors.

REFERENCES

[1] Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based
access control models. IEEE Computer 29 (1996) 38–47

[2] Ferraiolo, D.F., Sandhu, R., Gavrila, S., Kuhn, D.R., Chandramouli, R.:
Proposed NIST standard for role-based access control. TISSEC 4(3)
(2001) 224–274

[3] Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: a
spatially aware RBAC. TISSEC 10(1) (2007) 1–42

[4] Kayes, A.S.M., Han, J., Colman, A.: OntCAAC: An ontology-based
approach to context-aware access control for software services. Comput.
J. 58(11) (2015) 3000–3034

[5] Trnka, M., Cerný, T.: On security level usage in context-aware role-
based access control. In: SAC. (2016) 1192–1195

[6] Hosseinzadeh, S., Virtanen, S., Rodrı́guez, N.D., Lilius, J.: A semantic
security framework and context-aware role-based access control ontol-
ogy for smart spaces. In: SBD@SIGMOD. (2016) 1–6

[7] Kayes, A.S.M., Han, J., Colman, A., Islam, M.S.: Relboss: A
relationship-aware access control framework for software services. In:
CoopIS. (2014) 258–276

[8] Kayes, A.S.M., Han, J., Colman, A.W.: An ontological framework for
situation-aware access control of software services. Inf. Syst. 53 (2015)
253–277

[9] Kayes, A.S.M., Han, J., Colman, A.: A semantic policy framework for
context-aware access control applications. In: TrustCom. (2013) 753–
762

[10] Kayes, A., Rahayu, W., Dillon, T., Chang, E., Han, J.: Context-
aware access control with imprecise context characterization through a
combined fuzzy logic and ontology-based approach. In: CoopIS. (2017)
132–153

[11] Colombo, P., Ferrari, E.: Fine-grained access control within NoSQL
document-oriented datastores. Data Science and Engineering 1(3) (2016)
127–138

[12] Bellahsène, Z., Bonifati, A., Rahm, E.: Schema matching and mapping.
Springer (2011)

[13] Gubbi, J., Buyya, R., Marusic, S., Palaniswami, M.: Internet of things
(iot): A vision, architectural elements, and future directions. Future
generation computer systems 29(7) (2013) 1645–1660

[14] Ylitalo, J., Nikander, P.: A new name space for end-points: Implementing
secure mobility and multi-homing across the two versions of ip. In: 5th
European Wireless Conference. (2004) 435–441

[15] Saurez, E., Gupta, H., Mayer, R., Ramachandran, U.: Demo abstract:
Fog computing for improving user application interaction and context
awareness. In: Internet-of-Things Design and Implementation (IoTDI),
2017 IEEE/ACM Second International Conference on, IEEE (2017)
281–282

[16] Stojmenovic, I., Wen, S., Huang, X., Luan, H.: An overview of fog
computing and its security issues. Concurrency and Computation:
Practice and Experience 28(10) (2016) 2991–3005

[17] Zaghdoudi, B., Ayed, H.K.B., Harizi, W.: Generic access control system
for ad hoc mcc and fog computing. In: International Conference on
Cryptology and Network Security, Springer (2016) 400–415

[18] Yu, Z., Au, M.H., Xu, Q., Yang, R., Han, J.: Towards leakage-
resilient fine-grained access control in fog computing. Future Generation
Computer Systems 78(2) (2018) 763–777

[19] Waters, G., Blackburn, A.J.: Australian Defence logistics: the need to
enable and equip logistics transformation. Kokoda Foundation Limited
(2014)



[20] OWL2: OWL 2 Web Ontology Language (W3C recommendation: 11
december 2012), https://www.w3.org/tr/owl2-overview/ (2018)

[21] Riboni, D., Bettini, C.: OWL 2 modeling and reasoning with complex
human activities. Pervasive and Mobile Computing 7 (2011) 379–395

[22] De Bruijn, J., Lara, R., Polleres, A., Fensel, D.: OWL DL vs. OWL
Flight: Conceptual modeling and reasoning for the semantic web. In:
Proceedings of the 14th international conference on World Wide Web,
ACM (2005) 623–632

[23] Protégé: OWL Graphical API, http://protege.stanford.edu/ (2018)
[24] SWRL: Semantic Web Rule Language,

http://www.w3.org/submission/swrl/ (2018)
[25] SWRLB: SWRL Built-Ins for comparisons and Math Built-Ins,

http://www.daml.org/2004/04/swrl/builtins.htm (2018)
[26] ASCO: Australian Standard Classification of Occupations of Health

Professionals, http://www.abs.gov.au/ (2018)
[27] Bertino, E., Bonatti, P.A., Ferrari, E.: TRBAC: A temporal role-based

access control model. TISSEC 4(3) (2001) 191–233
[28] Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal

role-based access control model. TKDE 17(1) (2005) 4–23
[29] Schefer-Wenzl, S., Strembeck, M.: Modelling context-aware rbac models

for mobile business processes. IJWMC 6(5) (2013) 448–462
[30] Salonikias, S., Mavridis, I., Gritzalis, D.: Access control issues in

utilizing fog computing for transport infrastructure. In: International
Conference on Critical Information Infrastructures Security, Springer
(2015) 15–26

[31] Zhang, P., Chen, Z., Liu, J.K., Liang, K., Liu, H.: An efficient access
control scheme with outsourcing capability and attribute update for fog
computing. Future Generation Computer Systems 78(2) (2018) 753–762


