
Dynamic Transitions of States for
Context-Sensitive Access Control Decision

A. S. M. Kayes1, Wenny Rahayu1, Tharam Dillon1, Syed Mahbub1, Eric
Pardede1, and Elizabeth Chang2

1La Trobe University, Melbourne, Australia
2University of New South Wales, Canberra, Australia

{a.kayes,w.rahayu,t.dillon,s.mahbub,e.pardede}@latrobe.edu.au,e.chang@

adfa.edu.au

Abstract. Due to the proliferation of data and services in everyday
life, we face challenges to ascertain all the necessary contexts and asso-
ciated contextual conditions and enable applications to utilize relevant
information about the contexts. The ability to control context-sensitive
access to data resources has become ever more important as the form of
the data varies and evolves rapidly, particularly with the development of
smart Internet of Things (IoTs). This frequently results in dynamically
evolving contexts. An effective way of addressing these issues is to model
the dynamically changing nature of the contextual conditions and the
transitions between these different dynamically evolving contexts. These
contexts can be considered as different states and the transitions repre-
sented as state transitions. In this paper, we present a new framework
for context-sensitive access control, to represent the dynamic changes to
the contexts in real time. We introduce a state transition mechanism
to model context changes that lead the transitions from initial states
to target states. The mechanism is used to decide whether an access
control decision is granted or denied according to the associated con-
textual conditions and controls data access accordingly. We introduce a
Petri net model to specify the control flows for the transitions of states
according to the contextual changes. A software prototype has been im-
plemented employing our Petri net model for detection of such changes
and making access control decisions accordingly. The advantages of our
context-sensitive access control framework along with a Petri net model
have been evaluated through two sets of experiments, especially by look-
ing for re-evaluation of access control decisions when context changes.
The experimental results show that having a state transition mechanism
alongside the context-sensitive access control increases the efficiency of
decision making capabilities compared to earlier approaches.

Keywords: Context-Sensitive Access Control, Dynamic Changes to the
Contextual Conditions, States, Transitions of States, Petri Net Model

1 Introduction

Access control is a cornerstone of the treatment of security of stored data that
has been widely investigated in today’s dynamic environments [1]. Among the
available access control mechanisms in the literature, the traditional Role-Based

2 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

Access Control (RBAC) [2,3] and Attribute-Based Access Control (ABAC) [4]
solutions are two representative and reliable security models for many practical
applications to safeguard data and information resources. Due to the flexibility
in administration when dealing with large number of users in connection with
the embodiments of the user-role and role-permission associations, the tradi-
tional RBAC model [2] and the spatial and temporal RBAC models [5,6] have
been widely accepted by security practitioners and scientific communities. On
the other hand, the ABAC models [4] differ from the RBAC models, replacing
the roles and other relevant authorities by a set of attributes and grants users’
accesses to data based on the relevant attributes that are possessed by the users.
However, these traditional role-based and attribute-based access control models
are not adequate to incorporate the dynamic contexts into the policies.

The computing technologies have been changed over the last several years
and this has created the need for the solution to the problem of controlling data
access in today’s dynamic environments. Many organizations nowadays have
been seeking appropriate context-sensitive access control mechanisms for uti-
lizing data resources. For example, a nurse can access a patient’s daily medical
records when they both are co-located in the general ward of the hospital (which
is a positive policy). On the other hand, a negative policy states that a nurse
cannot perform a given action (e.g., read or write) to a patient’s records from the
outside of the hospital. The existing context-sensitive access control approaches
[7,8,9] have used such positive and negative policies [10] to grant access to data
according to the contexts. In recent times, we have been moving towards the
Internet of Things (IoTs) and the number of IoT sensors are growing at a rapid
rate. When different types of IoT conditions which characterize different con-
texts are collected from these enormous numbers of sensors, which continuously
generate a massive amount of data, the traditional context-sensitive access con-
trol mechanisms [11,12] (i.e., manually specifying the full set of policies) become
infeasible. For example, a doctor should have access to a patient’s emergency
medical records to save his life from a critical heart attack while he is on the
move from his office to the emergency ward.

How can we be sure that the access control decisions can be re-evaluated
when there are dynamic changes to the relevant contexts? It is often easy to
manually check the relevant contextual conditions that are associated with the
applicable access control policies. However, building a required context-sensitive
access control system for a dynamic environment is too complicated for the large
number of policies. On the one hand, it is really a big challenge to specify the
full set of positive and negative policies, due to the presence of the dynamic
contextual conditions. On the other hand, there is a need to deal with the issue
of dynamicity of contexts in real-time when context changes (e.g., making an
access control decision while on the move from general ward to ICU).

In this research, our aim is to introduce a state transition model to evaluate
context-sensitive access control decisions when there are dynamic changes to
the contextual conditions. The significant contributions are listed as follows. We
first introduce the formalization of the state transition model in the treatment of

Dynamic Transitions of States for Context-Sensitive Access Control Decision 3

context-aware access control (CAAC) issues. In particular, the state transition
mechanism facilitates access control decision making when the context changes.
Using our state transition mechanism, we build a Petri net model in a way that
specifies the control flows for the transition of states according to the context
changes. The fine-grained access control decisions along with a Petri net model
is one of the main contributions in this paper. We implement an android studio-
based software prototype along with a colored Petri net for detecting contextual
changes and making required access control decisions accordingly. Through two
sets of experiments, we evaluate access control decisions including the dynamic
changes to the contextual conditions. The experimental results demonstrate the
efficiency of decision making capabilities of our proposed approach compared to
relevant earlier access control solutions.

The organization of our paper is as follows. Section 2 presents the moti-
vation and hypotheses of this study. Section 3 discusses the formalization and
methodology of our proposed state transition model. Section 4 examines the state
transition mechanism using Petri net, including a prototype testing. Section 5
evaluates our proposed approach with respect to a relevant earlier approach. Sec-
tion 6 briefly discusses the related work. Finally, Section 7 concludes the paper
and outlines future challenges.

2 Research Motivation

In this section, we present a roadside emergency assistance scenario to motivate
our work.

– The scenario begins with patient James who has experienced a heart attack
while driving in a remote area. John, who is a paramedic, has been called to
investigate the patient’s condition and give him necessary treatments to re-
duce the risk of a heart attack. John visits the roadside heart attack spot with
an ambulance that consists of a body sensor network supporting a wide va-
riety of IoT devices and monitoring applications. He needs to access James’
regular medications and all of his previous medical history to treat him prop-
erly and save his life from such an emergency heart attack situation.

The contextual conditions such as locations, request times, relationships and
situations are involved in this roadside assistance scenario and consequently the
access control decisions are based on the dynamically changing values of such
contexts. The relevant user and resource-centric data should be used to extract
relevant information about the contexts. In particular, these contexts can be
extracted from people entering data like user profiles and from measurement
data like IoT data. However, collecting and analyzing IoT contexts from all the
sources or sensors are not feasible as there are millions of sensors connected
to the Internet. In addition, an access control mechanism or application should
have an awareness of relevant information about such contexts and also about
dynamic changes to the contexts. For example, John, who is a paramedic and
has necessary medical training, should be allowed to access a patient’s regu-
lar medication and provide necessary pre-hospital treatments to the patient on

4 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

roadside environments. The relevant contextual conditions, such as John and
James are co-located, need to be checked and satisfied when making an access
control decision. However, someone on the roadside is not permitted to provide
the required treatments to the patients without necessary medical training.

In general, we need to consider the necessary access control policies with the
roles of the person and the relevant contextual conditions as policy constraints.
On the one hand, we need to specify all the positive and negative policies [10].
For a given access control request, if there is no relevant policy, the default
access control decision is usually taken as “denied the access”. In absence of
such negative policies, the default “denied” decisions may lead to an adverse ef-
fect like policy rule conflicts [13]. For example, John, who is normal paramedic,
should be permitted to access James’ medical history and provide him emer-
gency treatments when there is a potential life-threatening situation. However,
the associated contextual conditions need to be assured for granting access to the
medical history of James, such as a “life-threatening” situation has occurred. As
such, we need to specify corresponding context-sensitive access control policies,
including all the possible contextual conditions. In addition, we need to consider
the dynamically changing nature of such contextual conditions and consequently
re-evaluate the access control decisions when there are dynamic changes to such
contexts. For example, when the context changes (e.g., James’ situation becomes
normal), John should not be allowed to access James’ medical history and pro-
vide him emergency treatments as roadside assistance.

In the light of the above hypothesis, we can use the basic state transition
mechanism [14] to model all the possible “granted” and “denied” states, includ-
ing all the values of the contextual conditions.

3 Formalization of Our State Transition Mechanism

In this section, we discuss the formalization of state transition mechanism in
building our context-sensitive access control framework.

In the literature, the term “context” has been defined by many researchers
and the entity-centric concept of context, that has been claimed by Dey [15]
provides a general characterization of context in pervasive (context-aware) com-
puting environments. However, Dey’s and other earlier definitions of context are
not enough to cover dynamic changes to the contexts. Thus, we define the follow-
ing definition of context that can be used to specify the access control-specific
entities and to identify the relevant contextual conditions (i.e., how an access
control decision can be made by satisfying a relevant context.).

Definition 1 (Definition of Context). Context description or simply context is
the set of dynamic contextual conditions that are used to make a particular access
control decision. These conditions are used to characterize the state of the access
control-specific entities. Let us consider “cacd” is a context that is composed
of a set of contextual conditions “cc1, cc2, cc3, ..., cci” , then we can specify the
following expression.

cacd = {cc1, cc2, cc3, ..., cci | cacd ∈ CACD} (1)

Dynamic Transitions of States for Context-Sensitive Access Control Decision 5

Example 1 Let us consider a positive policy from our scenario, John, who is
a paramedic, is granted to access necessary medical records (MR) of James to
save his life from critical heart attack when they are co-located at the scene
of the accident. The context (cacd1

) that is associated with this positive policy
< user(John),access(granted),data(MR) > can be specified as follows.

cc1 = healthStatus(Patient) = “critical”

cc2 = isColocatedWith(Paramedic, Patient) = “yes”

cacd1 , cc1 ∧ cc2

(2)

Example 2 Let us consider a negative authorization policy from the same ap-
plication scenario, John, who is a paramedic, is not permitted to access James’
medical history (MH) from anywhere of the roadside location where they are
not co-located. The context (cacd2

) that is associated with this negative policy
< user(John),access(denied),data(MH) > can be specified as follows.

cacd2
, cc2 (3)

The same co-located contextual condition (cc2) has been associated with
both the contexts of cacd1 and cacd2 . There are two different types of contextual
conditions, sensed and inferred contextual conditions.

Definition 2 (Definition of Contextual Conditions). A sensed contextual con-
dition is captured independently from context sources and an inferred contextual
condition is derived from available conditions.

Example 3 Let us say the location co-ordinates or access request times can be
captured directly without using any other conditions. However, the current health
status of a patient can be derived from the body sensor network data. Considering
an earlier research on fuzzy context information system [9], a patient’s current
health status is “66% normal with criticality level 34%” that is derived based on
the raw contextual facts (e.g., pulse rate).

3.1 Analysis of Dynamic Changes to the Contexts

Dynamic change to the context is typically driven by a distance measure between
the new context and the old context. When there are dynamic changes to any of
the contextual conditions that are associated with a context, the distance value
indicates how similar the new and old contexts are.

Definition 3 (Definition of Distance Function). The distance function is de-
fined by the pairwise distances between the contextual conditions that are associ-
ated with the new and old contexts. This function is expressed by Equation (4).

distance(cnewacd , coldacd) , distance(ccnewi , ccoldi) (4)

6 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

In the above expression, distance(cnewacd , coldacd) is the distance between new
and old contexts, distance(ccnewi , ccoldi) is the pairwise distances between new
and old contextual conditions, cnew is a new context, cold is an old context, ccnewi

is the new contextual condition and ccoldi is an old contextual condition.
The absolute values of the pairwise distances between new and old contextual

conditions is used to measure the distance between the new and old contexts.
The pairwise distance between the new and old contextual condition is defined
as follows (see the Equation 5), where wnew

cci is the weight of the new contextual
condition and wold

cci is the weight of the old contextual condition.

distance(ccnewi , ccoldi) , |wnew
cci − wold

cci | (5)

We consider the corresponding distance vectors Wcci of the weights of the
new (wnew

cci) and old (wold
cci) contextual conditions. The vectors Wcci are designed

to maximize dynamic range of the distances between the contextual conditions.

|wnew
cci − wold

cci | ,

 0
1

0 <> 1

 (6)

In the above equation, the pairwise distance between the new and old con-
textual conditions is measured based on the range from 0 to 1.

Example 4 Based on the policy specified in Example 1, the contextual condi-
tions “healthStatus (cc1)” and “co-located (cc2)” that are associated with the
context. The distance between the new and old contexts is “0”, for the first time
when the access request is originated from the user and there are no dynamic
changes to the contextual conditions at that particular situation (i.e., both the
pairwise distances between the new and old contextual conditions are “0”). Based
on the Equations (4), (5) and (6), we can write the following expressions.

distance(cnewacd1
, coldacd1

) , |wnew
cci − wold

cci |
|wnew

cc1 − wold
cc1 | , 0

|wnew
cc2 − wold

cc2 | , 0

(7)

3.2 Definitions of States and Analysis of the Transitions of States

We consider all the relevant access control decisions and their associated contexts
to define the possible states. We represent the transition of states in terms of
contexts involved in making access control decisions and also when there are
dynamic changes to such contexts.

Definition 4 (Definition of State). A state is composed of the role, data re-
source, context and decision (e.g., “granted” decision). It can be formally de-
scribed using the following four-tuple notation.

state , < role, data, context, decision > (8)

Dynamic Transitions of States for Context-Sensitive Access Control Decision 7

Granted Denied

Intermediary

(a) The State Transition Model

Role Data Context Decision
Paramedic MH hS=’Critical’ Granted

 isCol=’Yes’

Role Data Context Decision
Paramedic MH hS=’Critical’ Denied

 isCol=’No’

Context
 hS=’Critical’
 isCol=’No’

Context
 hS=’Critical’
 isCol=’Yes’

Context
 hS=’Critical’
 isCol=’Yes’

Context
 hS=’Critical’
 isCol=’No’

(b) Example Transitions of States

Fig. 1: Proposed Model for Transitions of States

According to the decision values, we categorize granted, denied and interme-
diary states and we define these three states as follows.

Definition 5 (Definition of Granted, Denied and Intermediary States). A granted
state means a user who can play the required role can have the complete access
to the data, by satisfying the associated context. A denied state means a user
cannot have any access to associated data. An intermediary state means a user
by playing a role and satisfying the context can have partial access to data.

The transition of states can be determined using the possible states with
the corresponding distance values of the associated contextual conditions. In
particular, a state (that we call an initial state) changes to the next state based
on such a distance value. The transition of states can be formalized as follows.

State(st)
d−→ State(st+1)

State(st)
d−→ State(st−1)

(9)

In the above expression, “st” is an initial state, “d” is the distance variable
according to the Equation (6) and “st+1” or “st−1” is the next state.

The state transitions diagram based on the all three basic states (i.e., granted,
denied and intermediary) is illustrated in Figure 1(a), where rectangles repre-
sent states, arrows connecting states represent transitions and arc labels repre-
sent transition conditions. In general, the transition of states occurs as follows,
depending on the values of the distance variable “d”.

(i) For “d is 1” when there are dynamic changes to the contextual conditions,
the granted state goes to denied, the denied state goes to granted or an
intermediary state goes to denied state.

(ii) For “d is 0” when there are no changes, the granted, denied or intermediary
state goes to granted, denied or intermediary state respectively.

8 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

P1:Contex1

STRING

1`"Critical"@65 ++ 1`"Normal"@100
P2:Context2

STRING

P3:Context3

STRING

P4:Context4

STRING
P5:Context5

STRING

P6:Context6

STRING

T1:Granted

T2:Granted

T3:Denied

T4:Denied

1`"Critical"

1`"Co-located"

1`"Critical-Co-located"

1`"Normal-Co-located"

1`"Normal"

1`"Non-Co-located"

1`"Normal-Non-Co-located"

1`"Critical"

1`"Critical-Non-Co-located"

1`"Non-Co-located"

1`"Co-located"

1`"Normal"

1`"Co-located"@100 ++ 1`"Non-Co-located"@100

Fig. 2: A Snapshot of Our Petri Net Model

(iii) For “d is 0 <>1” (i.e., d is greater than 0 but less than 1), the granted,
denied or intermediary state goes to intermediary state.

(iv) For “d is 0” when there are opposite changes, an intermediary state goes
to granted state.

Based on the above-specified conditions in Steps (i) to (iv), we can formalize
the following expressions.

sgranted
d=0−−→ sgranted

d=1−−→ sdenied
d>0 & d<1−−−−−−−→ sinter

sdenied
d=0−−→ sdenied

d=1−−→ sgranted
d>0 & d<1−−−−−−−→ sinter

sinter
d=0 (no changes)−−−−−−−−−−−→ sinter

d=0 (same opposite changes)−−−−−−−−−−−−−−−−−−→ sgranted

sinter
d>0 & d<1−−−−−−−→ sinter

d=1−−→ sdenied

(10)

Considering our application scenario and based on the positive and nega-
tive authorization policies specified in Examples (1) and (2), Figure 1(b) shows
several specific transitions between “Granted” and “Denied” states and their
corresponding distance values, according to the dynamic changes to the asso-
ciated contextual conditions. In Figure 1(b), the granted state goes to denied
state when the paramedic and the patient are not co-located at the scene of the
heart attack (i.e., isCol = ‘No’), which is shown by a dotted transition.

Dynamic Transitions of States for Context-Sensitive Access Control Decision 9

Application

CAAC

Request
data

Send
results

Access control request

Restrict data access

User

Database

Response
Panel

Login
Panel

UI

User

.

.

Policy
Model

Petri Net
Model

Server

.

.

Fig. 3: Development Environment of the Prototype

4 Our Petri Net Model and Prototype Implementation

We introduce a Petri net model for our CAAC decision making process, using
CPN Tools [16]. In this model, the CAAC decision making concepts are de-
fined as inputs and outputs (i.e., places), different decisions (i.e., transitions of
states), constants or conditions (i.e., guard expressions that are evaluated to fire
the transition) and relations between transitions and places (i.e., arcs that link
the places and transitions). Figure 2 shows a snapshot of our Petri net model
based on our application scenario. For example, a transition “T1:Granted” will
be enabled and fired when a relevant condition is ‘Critical’ and the criticality
level 50% to 75% (which is a guard condition). In particular, a transition is fired
when (i) the relevant tokens in the input places are equal to the weights of the
arcs and these tokens are traveled from the places to the relevant transitions
and (ii) the transition conditions according to the guard expressions are satis-
fied. After firing the transitions, the tokens are distributed to the corresponding
output places. In a relevant earlier work, we have introduced a fuzzy context in-
formation system to derive fuzzy contextual conditions [9]. In this research, we
adapt this fuzzy context model to implement and measure the distance vector
for health status context. For example, in Figure 2, we use a temporal condition
“Critical@65”, which refers to a patient’s current health status is “65% Criti-
cal”. When a patient’s current health status is transformed from a 100% normal
state to 65% critical state, we measure the distance value (i.e., d) is 0.65. This
Petri net model is linked to a context-sensitive access controller to make possible
decisions for the users to access the requested data resources.

We have developed our prototype on the Java platform along with Android
Studio IDE [17] and other widely supported open source tools. Figure 3 gives
a pictorial overview of the tools and technologies that are used to implement
different software components of our prototype. We have used SQLite relational
database [18] to implement a data store of the patients’ medical health records,

10 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

Fig. 4: John’s Access Request for James’ Health Records

including their previous health history. We have used different XML-based tech-
nologies to build the mobile interfaces for our prototype, including the Petri
net markup language for our Petri net model [19]. Other than the health sta-
tus context, we also consider different locations (e.g., the current locations of
the patient and paramedic) as contextual conditions in our prototype. We have
stored different location coordinates in the relational database and simulated
such locations in our laboratory setup. The development environment of our
mobile prototype (see Figure 3) has mainly client-side (e.g., user interfaces) and
server-side (e.g., Petri-net, policies) parts. We have developed a mobile appli-
cation and used our implemented user interfaces to deal with different users’
requests and the responses accordingly. We actually limit the users’ access to
data (e.g., a paramedic’s access to a patient’s normal medical records) according
to the associated contextual conditions. Through our proposed state transition
mechanism, we also re-evaluate the relevant access control decisions when there
are dynamic changes to the contextual conditions.

Figure 4 demonstrates the relevant access control decisions for a paramedic
John’s request, including the results of a patient James’ different medical records.
The left part of the Figure 4 shows John is allowed to access James’ health records
by satisfying the following contextual conditions: when John is co-located with
James at the scene of the accident and his health status is critical. Another
access request result is shown in the right part of the same Figure 4, where
John has only limited access to James’ medical records as his health status
becomes normal. Overall, we have tested our proposed context-aware access
control (CAAC) approach with regards to context changes and the prototype
implementation can provide an infrastructure support for the practitioners to
build relevant CAAC applications in today’s dynamic environments.

Dynamic Transitions of States for Context-Sensitive Access Control Decision 11

550 1100 550 2200
730 1380 730 2760
900 1700 900 3400
900 2100 900 4200

1150 2250 1150 4500
2850 1450

10
50

100
150
200
300

0
600

1200
1800
2400
3000
3600
4200
4800
5400
6000
6600

10 50 100 150 200 300

Re
sp

on
se

 T
im

e
(m

s)

Number of Policies

Response Time: Our Previous Approach

Context reasoning time

Total query response time

Policy reasoning and execution time

519
394

748
476

18259

(a) Earlier Approach

10017 2711.968684

10469 2970.258913

10422 3204.048943

11265 4407.537483

21234 7628.810613

23594 9701.920038

25735 23794.33136

0
200
400
600
800

1000
1200
1400
1600
1800
2000

5 20 40 65 80 100

Re
sp

on
se

 T
im

e
(m

s)

Number of Policies

Response Time: Our Current Approach

(b) Current Approach

Fig. 5: Performance with Respect to Number of Policies

5 Experimental Evaluation and Verification

We conduct two sets of experiments to evaluate our proposed approach compared
to a relevant earlier approach [7]. In particular, we evaluate the access control
decisions when there are dynamic changes to the contextual conditions.

In our first set of experiments, we measure the query response time (i.e., per-
formance overheads) with respect to different number of CAAC policies along
with relevant contextual conditions. We specify the separate access control poli-
cies for the different values of the relevant contextual conditions. As such, ac-
cording to a relevant earlier approach [7], we have a larger size of ontology
knowledge-base, including role, data resource, context and policy ontologies. The
experimental results are illustrated in Figure 5(a). In this set of experiments, we
can see that the query response time is linearly increasing and for the 300 policies
it measures 2.9 sec (and at that point the ontology size is 748 kilobytes). For any
large policy-base, what we see that the applied approach is very expensive. This
is due to the large number of policies and the complex reasoning task (context
and policy reasoning) behind the data access query.

In our second set of experiments, we use our current approach to measure the
query response time. In particular, we quantify the performance with respect to
different number of context-sensitive access control policies in conjunction with
our state transition mechanism (i.e., Petri net model). In this current setup,
we don’t have a larger size of the policy-base, no complex reasoning task for
policy selection and reasoning is involved. Particularly, this is due to using a
state transition model with Petri net. The evaluation results are illustrated in
Figure 5(b), where we can see that the query response time measures 1.2 sec
with respect to 100 policies. This size of the policy-base has covered the 300
policies using an earlier approach. Having a state transition mechanism, the
performance can be improved using our current approach and we can achieve
fine-grained access control decisions, detecting dynamic changes to the contexts.

In the above experiments that were conducted, our proposed access control
approach can detect context changes and consequently facilitates the fine-grained
access control decisions when context changes. Having a state transition mech-
anism, our current setup reduces the number of context-sensitive access control
policies incorporating all the values of contextual conditions. However, based on

12 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

Fig. 6: Simulation Results Using Proposed Petri Net Model

a relevant earlier approach, it is really a challenging job to manually specify the
policies covering all the values of contextual conditions. Overall, we can say that
our current context-sensitive access control approach has acceptable response
time and improves the efficiency of decision making capabilities when there are
dynamic changes to the contextual conditions. There is still a possibility to im-
prove performance further by using more powerful computers.

5.1 Verification of Our Petri Net-Based Policy Specification
In this section, we verify the Petri net model that is associated with our context-
sensitive access controller by extracting necessary contextual conditions for its
correctness. In particular, we verify the correctness of the model through the
execution of the Petri net and firing each of the transition. In order to check
the correctness of the specification, we apply the top-down approach that starts
from the first level of the Petri net model and advances level by level. We know
that if the model objects (i.e., places in the Petri net model) are not suitable or
available, the relevant transitions cannot be fired. Conversely, if the objects are
available and suitable, then the relevant transitions can be enabled for firing.

Figure 6 shows our initial simulation results in which one rule is fired based on
the two tokens (“Normal” and “Co-located”) and the transition “T2:Granted” is
enabled accordingly. We then extract the relevant contextual conditions, changes
these conditions values and passes such values as tokens. Then, we check all the
transitions again in our Petri net model as well as the relevant status. The

Dynamic Transitions of States for Context-Sensitive Access Control Decision 13

transition “T4:Denied” can be enabled later when there are dynamic changes to
the contextual conditions, i.e., when John and James are not co-located with each
other and James’ health condition is critical. Based on our simulation results
in Figure 6, the transition “T4:Denied” is fired later when other two tokens
(“Critical” and “Non-Co-located”) are traveled from P1 and P2 places to T4,
i.e., when there are dynamic changes to the contextual conditions.

Overall, we have checked the status of the relevant transitions (enabled or
disabled) when their are the dynamic changes to the contextual conditions. We
have changed some contextual conditions through passing tokens and checked
the transitions accordingly to verify the correctness of the specification. Other
than the above-mentioned correctness approach, we have used CPN Tools [16])
to verify the correctness of our Petri net model and specification.

6 Related Work

In this section, we include a brief review of relevant access control solutions,
including the context-sensitive role-based and attribute-based approaches. In
particular, we briefly analyze the contributions of our proposed solution com-
pared to existing state-of-the-art context-sensitive access control solutions. Our
analysis focuses mainly on the key aspect of our proposed approach, that is, to
deal with the dynamic changes to the contextual conditions and consequently
re-evaluates access control decisions.

The traditional Role-Based Access Control (RBAC) approach [2] has consid-
ered the users’ identities and roles as conditions to make access control decisions.
The temporal and spatial RBAC approaches [5,6] have considered further condi-
tions like temporal and spatial information for making access control decisions.
These approaches are not truly context-aware and do not provide adequate func-
tionalities to integrate dynamic contexts into the access control policies.

On the other hand, the existing Context-Aware role-based Access Control
(CAAC) approaches [11,12,7,8,9] incorporate different contextual conditions into
the user-role and/or role-permission assignments policies. All the positive and
negative policies are specified in these approaches in order to cover all the val-
ues of contextual conditions. In this fashion, the complexity of specifying all the
policies can be increased when there are dynamic changes to the contexts and
subsequently the larger the size of the policy-base. However, these approaches
lack in providing support to make access control decisions when there are dy-
namic changes to the contexts. In our research, we have utilized the benefit of
state transition mechanism to deal with such an issue of handling the dynamicity
of contextual conditions and consequently making access control decisions.

Other than the RBAC approaches, the Attribute-Based Access Control (ABAC)
approaches [4,20,21] are also representative security solutions for many practical
applications to protect data. Colombo and Ferrari [21] have used the Oracle Vir-
tual Private Database (VPD) security model for the benefit of context-sensitive
access control. They have incorporated the contextual conditions into the rela-
tional tables to control the database resources. In the XACML approach, the
contextual conditions such as the temporal and spatial information are incorpo-

14 A.S.M. Kayes, W. Rahayu, T. Dillon, S. Mahbub, E. Pardede and E. Chang

rated into the policies as conditions [20]. The internal setup of these attribute-
based access control approaches are also similar to above-discussed role-based
approaches. These approaches also exist the same problem in specifying access
control policies by incorporating all the values of relevant contextual conditions.
In contrast to these existing role and attribute-based access control approaches,
we have significantly reduced the complexity of specifying access control policies
when context changes through the state transition mechanism.

Overall, the computing technologies have been changed over the last few years
and we need a flexible policy-based solution to access required data resources
in today’s dynamic environments. As such, there is a need to consider the dy-
namically changing contextual conditions into the access control policies. The
existing access control solutions are not adequate to deal with such dynamicity
of contexts. However, based on the dynamic nature of the context information, it
is really an important issue to detect dynamic changes to the contextual condi-
tions and to make access control decisions accordingly. Having a state transition
mechanism, our proposed context-sensitive access control solution is able to de-
tect dynamic changes to the contextual conditions and consequently re-evaluates
access control decisions when context changes.

7 Conclusion and Future Research Directions

We have addressed an important research issue with regards to accessing data
when there are dynamic changes to the contexts. The existing context-sensitive
access control solutions can lead to a much larger policy-base when incorporat-
ing the dynamic values of such contextual conditions into the policies. We have
introduced a new context-aware access control (CAAC) solution along with the
state transition mechanism to deal with the dynamicity of contexts. First, we
have presented a formal model for specifying the state transition mechanism
in building our CAAC approach. Then, we have implemented a mobile-based
prototype including a colored Petri net model for detecting dynamic changes to
the contexts and making access control decisions for the users to access required
data resources. We have demonstrated the applicability of our proposed access
control approach by evaluating the performance and the correctness of the spec-
ification. The experimental results show that our approach along with the state
transition model has better performance than a relevant earlier approach.

In this paper, we have considered several contextual conditions and built cor-
responding distance vectors based on the dynamic changes to such conditions.
However, while it is beyond the scope of this paper, it may require special mod-
eling to build such distances between initial and current contextual conditions,
which are domain dependent, and thus, further investigation to effectively model
such distance vectors is required in the future. We have used the CPN tools to
verify the correctness of the specification of our state transition mechanism. In
this aspect, further investigation is also required to justify the feasibility of the
underlying formalization of the specification. The main purposes of the specifica-
tion of such state transition mechanism are to (i) identify the dynamic changes to
the contextual conditions at runtime and (ii) relate such dynamic conditions to

Dynamic Transitions of States for Context-Sensitive Access Control Decision 15

the applicable policies in such a manner that the context-specific access control
decisions can be evaluated.

References

1. Weiser, M.: Some computer science issues in ubiquitous computing. Commun.
ACM 36(7) (1993) 75–84

2. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29 (1996) 38–47

3. Wang, H., Cao, J., Zhang, Y.: A flexible payment scheme and its role-based access
control. IEEE TKDE 17(3) (2005) 425–436

4. Servos, D., Osborn, S.L.: Current research and open problems in attribute-based
access control. ACM Comput. Surv. 49(4) (2017) 65:1–65:45

5. Joshi, J.B., Bertino, E., Latif, U., Ghafoor, A.: A generalized temporal role-based
access control model. IEEE TKDE 17(1) (2005) 4–23

6. Damiani, M.L., Bertino, E., Catania, B., Perlasca, P.: GEO-RBAC: a spatially
aware RBAC. ACM TISSEC 10(1) (2007) 2

7. Kayes, A.S.M., Han, J., Colman, A.: OntCAAC: An ontology-based approach
to context-aware access control for software services. Comput. J. 58(11) (2015)
3000–3034

8. Hosseinzadeh, S., Virtanen, S., Rodŕıguez, N.D., Lilius, J.: A semantic security
framework and context-aware role-based access control ontology for smart spaces.
In: SBD@SIGMOD. (2016) 1–6

9. Kayes, A., Rahayu, W., Dillon, T., Chang, E., Han, J.: Context-aware access
control with imprecise context characterization through a combined fuzzy logic
and ontology-based approach. In: CoopIS 2017, Springer (2017) 132–153

10. Damianou, N., Dulay, N., Lupu, E., Sloman, M.: The ponder policy specification
language. In: POLICY. Springer (2001) 18–38

11. Kulkarni, D., Tripathi, A.: Context-aware role-based access control in pervasive
computing systems. In: SACMAT. (2008) 113–122

12. Schefer-Wenzl, S., Strembeck, M.: Modelling context-aware rbac models for mobile
business processes. IJWMC 6(5) (2013) 448–462

13. Sloman, M.: Policy driven management for distributed systems. Journal of network
and Systems Management 2(4) (1994) 333–360

14. Chang, E., Gautama, E., Dillon, T.S.: Extended activity diagrams for adaptive
workflow modelling. In: IEEE ISORC-2001. (2001) 413–419

15. Dey, A.K.: Understanding and using context. Personal Ubiquitous Computing
5(1) (2001) 4–7

16. CPNTools: A tool for editing, simulating, and analyzing colored petri nets:
http://cpntools.org/ (2018)

17. Android-Studio-IDE: Android studio for building apps:
https://developer.android.com/studio/ (2018)

18. SQLite: It is a self-contained and mostly used sql database engine in the world:
https://www.sqlite.org/index.html (2018)

19. PNML: The petri net markup language (pnml) is a proposal of an XML-based
interchange format for petri nets: http://www.pnml.org/ (2018)

20. Rissanen, E.: XACML v3.0 core and hierarchical role based access control (RBAC)
profile version 1.0, http://http://docs.oasis-open.org/xacml/3.0/rbac/v1.0/xacml-
3.0-rbac-v1.0.html. In: OASIS Standard. (2014)

21. Colombo, P., Ferrari, E.: Towards virtual private nosql datastores. In: ICDE, IEEE
(2016) 193–204

	Lecture Notes in Computer Science
	Introduction
	Research Motivation
	Formalization of Our State Transition Mechanism
	Analysis of Dynamic Changes to the Contexts
	Definitions of States and Analysis of the Transitions of States

	Our Petri Net Model and Prototype Implementation
	Experimental Evaluation and Verification
	Verification of Our Petri Net-Based Policy Specification

	Related Work
	Conclusion and Future Research Directions

