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Abstract

Computing technologies are increasingly dynamic and ubiquitous in everyday

life nowadays. Context information plays a crucial role in such dynamically

changing environments and the different types of contextual conditions bring

new challenges to context-sensitive access control. This information mostly can

be derived from the crisp sets. For example, we can utilize a crisp set to derive

a patient and nurse are co-located in the general ward of the hospital or not.

Some of the context information characterizations cannot be made using crisp

sets, however, they are equally important in order to make access control de-

cisions. Towards this end, this article proposes an approach to Context-Aware

Access Control using Fuzzy logic (FCAAC) for data and information resources.

We introduce a formal context model to represent the fuzzy and other contex-

tual conditions. We also introduce a formal policy model to specify the policies

by utilizing these conditions. Using our formal approach, we combine the fuzzy

model with an ontology-based approach that captures such contextual condi-

tions and incorporates them into the policies, utilizing the ontology languages

and the fuzzy logic-based reasoning. We introduce a unified data ontology and its

associated mapping ontology in terms of facilitating access control to cloud-based
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data resources. We justify the feasibility of our approach by demonstrating the

practicality through a prototype implementation, several healthcare case studies

and a usability study. Finally, we demonstrate an experimental evaluation in

terms of query response time. The experiment results demonstrate the satisfac-

tory performance of our proposed FCAAC approach.

Keywords: Context-aware access control, Cloud-based data resources, Fuzzy

contextual conditions, Context model, Fuzzy reasoning model, Policy model,

Ontology

1. Introduction

Accessing data and information resources from multiple cloud environments

has increasingly become challenging nowadays due to the homogeneous and

heterogeneous nature of data sources. Efficiently controlling the users’ ac-

cess to such cloud-based data resources from multiple sources is one of the

main challenges. Over the years, access control mechanisms have shifted from

a fixed desktop environment to dynamic environments (e.g., pervasive, cloud

and mobile computing environments) [2]. Due to this paradigm shift, the role

of dynamically changing context information has gained great importance for

context-specific decision making, where users need seamless access to data and

information resources from anywhere and at anytime fashion, even when they

are on the move. In terms of context-aware access control systems [3, 4], context

means information about the state of a relevant entity or the state of a relevant

relationship between entities, where an entity can be a user, resource or their

environments.

The gathering of relevant context information as the major underlying mech-

anism in today’s dynamic world is crucial and thus demanding for further studies

on many aspects of access control to data and information resources. Among

the significant factors, an access controller needs to be context-aware by incor-

porating the different types of dynamic context information. In particular, there

is a need for an even seamless integration of precise fuzzy conditions and other
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relevant contextual conditions subsequently with access control policies, in or-

der to manage an access to information resources at different granularity levels.

Consider a healthcare scenario where a doctor Jane is needed to access the med-

ical records of a patient Bob, who is currently admitted to a hospital due to a

severe heart attack. In general, only the emergency doctors have access to all of

the medical records for patients who are admitted for emergency treatment, in-

cluding their medical history and personal health records. However, Jane, while

not being an emergency doctor, can play the emergency doctor role from the

emergency ward of the hospital when Bob’s health status is “high critical” and

consequently can access all of his medical records from multiple sources to save

his life. Therefore, an access controller needs to consider such kinds of fuzzy

facts/conditions when making access control decisions. In particular, there is a

need to quantify the fuzzy conditions more precisely (e.g., Bob’s health status is

“high critical” with “criticality level 95%”). On the one hand, context-specific

access control to data and information resources together with such conditions

can provide an extra level of safety for patients. On the other hand, accessing

data and resources from multiple sources can provide an extra level of flexibil-

ity for healthcare users (e.g., emergency doctors, nurses, researchers) in such

emergency medical situations.

The different access control solutions have been historically been applied to

support emergency situations mentioned earlier. Among them the traditional,

spatial and temporal Role-Based Access Control (RBAC) approaches [5, 6] are

the fundamental and widely accepted solutions to support hospital users and

patients. In RBAC, the roles (e.g., doctors, nurses and so on) are organized

in static hierarchies and users (e.g., Jane) are authorized to play such roles

for exercising organizational functions. However, some of these roles cannot

be organized in the same way in static hierarchies. These roles can be called

as dynamic or contextual roles (e.g., the emergency doctor). Users need to

satisfy the relevant contextual conditions (e.g., a fuzzy condition that a patient

Bob’s current health status is “95% critical”) to grant such dynamic roles and

access necessary data resources accordingly. In order to manage the emergency
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situations, these fuzzy contextual conditions can be effectively derived from

the IoT devices (e.g., a patient’s body sensors data) and the smart spaces.

In such smart environments, all static and dynamic roles that are organized

in static hierarchies might be associated with large processing overheads and

administrative costs. Based on the RBAC models, the access control policies

can either be too restrictive and deny Jane from accessing emergency health

records of Bob, or allow Jane’s access too liberal and potentially compromising

security and privacy. Thus, the basic RBAC approaches where the user roles

are organized in static role hierarchies are not adequate to address this problem.

Instead of RBAC roles in static hierarchies, there is a growing need to exploit the

dynamic contextual conditions (fuzzy and other), in order to reduce the burden

of manual specification of all static and dynamic roles. However, without the

benefits of modeling fuzzy and other contextual conditions, we have to manually

model all possible roles (e.g., doctors, emergency doctors) in static hierarchies

and specify the associated access control policies. In order to find applicable

policies, subsequently, we have to search in large policy rule-base. Since we have

to deal with emergency situations, it is really important to ensure the speed of

the responses to access the relevant data resources.

1.1. Background

Context-aware access control is a mechanism to determine whether a user’s

request to limit the access permissions to data and information resources based

on the dynamically changing contextual conditions (e.g., the interpersonal re-

lationship between patient and nurse is “assigned nurse”, the patient’s health

status is “66% normal” with “criticality level 34%”, etc.). In the literature,

there has been a significant amount of research work in developing context-

aware access control approaches.

A number of such access control approaches consider the spatial information

(e.g., [5]), the temporal information (e.g., [6]), the event-driven information such

as surgery in progress (e.g., [7]), and other environment context information such

as the range of IP addresses (e.g., [8, 9, 10]), as contextual conditions when
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making access control decisions. In this context, our group has a successful

track record in developing context-aware access control systems by considering

a wide variety of contextual conditions: the general context information about

the state of the users, resources and their environments [3, 11], the relationship

context information utilizing the process of inferring implicit knowledge [12],

and the purpose-oriented situation information based on the currently available

context information [4, 13]. We also propose a context-aware access control

policy model in our earlier research [14], incorporating these relevant contextual

conditions into the access control policies. These contextual conditions usually

derive from the crisp sets (e.g., the doctor is located in the “emergency ward”

of the hospital or “not”), and these traditional approaches are not adequate to

deal with imprecise context characterization. However, there are other types of

contextual conditions which only can be derived from the fuzzy sets by utilizing

the low-level fuzzy facts, and they are equally important in order to make access

control decisions at different granularity levels.

Other than the above-mentioned traditional context-sensitive access control

approaches, several research works consider the use of fuzzy conditions (e.g.,

computing resource owners’ trust degrees [15], quantifying risks [16], measuring

trust levels [17], calculating user-permission strengths [18]) for making access

control decisions. However, these approaches are not context-aware and robust

enough to integrate both the fuzzy conditions and other dynamic contextual

conditions with access control policies for context-specific decision making. Us-

ing successful experience from our group’s earlier research on fuzzy linguistic

representations for capturing the semantics of warehoused data [19], we develop

our fuzzy model that is used in this article to deal with imprecise context char-

acterization.

Looking at the existing context-sensitive access control approaches, these

solutions extensively have been used to access data and information resources

from centralized sources (e.g., [20, 21]). They do not provide adequate func-

tionality to access data and resources from distributed environments (e.g., from

multiple could sources). In the literature, different data integration techniques
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have been developed over the last few decades to collate data from multiple

sources (e.g., [22, 23, 24]). However, these techniques are still limited in order

to provide the “granted” or “denied” access control decision to the users. Cur-

rently, the cloud-based Internet of things (IoTs) paradigm [25] seeks a new form

of context-sensitive access control approach for understanding mechanisms of

controlling data and information resources from different cloud and Big Data

sources [26]. Our group has also established some cloud-based models to address

several issues: user-side quality of service management [27], fuzzy inference for

measuring trust values of the cloud providers [28], applications and clients’ in-

teraction with the cloud by lowering costs along with supporting high security

[29]. Over the last few years, several fog-based access control approaches also

have been proposed (e.g., [30, 31, 32, 33]) to reduce the processing overheads

and administrative costs involved in managing and accessing cloud-based data

and services (e.g., [34, 35, 36]). These fog nodes usually provide intermediary

computation and networking services between the end-users and the traditional

cloud data servers. However, these fog-based access control approaches are not

adequate to facilitate context-sensitive access control to data and resources from

distributed cloud environments.

1.2. Research Issues

In order to achieve context-awareness and integrate the different types of

fuzzy and other contextual conditions into the access control processes in the

distributed environments, the following research problems need to be addressed.

(RP1) How to derive precise contextual conditions from imprecise fuzzy facts

for context-specific decision making?

(RP2) How to integrate these derived fuzzy conditions and other relevant con-

textual conditions with access control policies to facilitate context-specific

access to information resources at different granularity levels?

(RP3) How to interact between the fog and the cloud in building context-aware

access control applications?
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1.3. Contributions

The above-identified gap in the literature suggests that there is still a need for

a new form of context-aware access control approach that can further limit the

applicability of the available access permissions to cloud-based data resources,

integrating both the fuzzy facts and other contextual conditions together with

access control policies for context-specific decision making. A first version of our

context-aware access control approach with imprecise context characterization

was introduced in [1]. However, this earlier access control approach and its asso-

ciated policy model is still limited in controlling context-sensitive access control

to data and resources from multiple cloud sources. This article extends our ini-

tial approach to Context-Aware Access Control using Fuzzy logic (FCAAC) [1]

to improve context-sensitive access control decisions in the cloud environments.

The contributions and significant extensions are listed as follows.

(CE1) Research Motivation: We have extended our emergency healthcare

scenario and demonstrated the CAAC requirements in developing ap-

plications for cloud and fog computing environments. We have now

included the detailed analysis of the scenario and its associated research

challenges. The analysis certainly helps to build a foundation for the

development of software prototypes for cloud-based data resources.

(CE2) Formal FCAAC Approach: We have introduced a new form of context-

sensitive access control approach, named Context-Aware Access Control

using Fuzzy logic (FCAAC), addressing the following aspects (see (i) to

(iii)). We have extended our initial FCAAC approach with respect to

access control operations that are performed on multiple sources, specif-

ically including a new aspect (see (iv)).

(i) Context Representation Model: We have presented a formal

analysis of the fuzziness of (imprecise) context information. We

have introduced a formal context model to represent the fuzzy

and normal contextual conditions (low-level contextual conditions)

from the raw context facts.
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(ii) Context Reasoning Model: The context representation model

is extended with user-defined reasoning rules to derive high-level

contextual conditions. In particular, the context reasoning model

uses the context representation model to infer richer contextual

conditions at different abstraction levels based on the low-level con-

textual conditions.

(iii) Policy Model: We have presented a formal analysis of the context-

specific access control decision making by taking into account the

low-level and high-level contextual conditions (fuzzy and normal).

(iv) Unified Data and Mapping Models: We have presented a for-

mal analysis of a unified data model and its associated policy model

in terms of facilitating context-sensitive access control to data and

information resources from multiple sources.

(CE3) Ontology-based FCAAC Approach: Using our formal approach, we

have introduced an ontology-based approach to model the relevant fuzzy

and normal contextual conditions, and consequently model the context-

sensitive access control policies, incorporating the relevant conditions

into the access control processes. We have made significant extension

to our ontologies and presented important ontological definitions and

examples. We have now introduced a general data ontology and its

associated mapping ontology in relation to apply our FCAAC approach

in the cloud and fog environments. Whereas our earlier approach is not

applicable to access data and resources from multiple cloud sources.

(CE4) Evaluation of Our Approach: Other than the above two main con-

tributions, we have justified the feasibility of our approach by demon-

strating the following factors:

(i) Software Prototype: We have developed a software prototype

of the FCAAC approach that can assist application developers in
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rapid prototyping. We have now included the detailed components

of our prototype.

(ii) Case Studies: We have presented several case studies from the

healthcare domain which demonstrate the practicality of the pro-

posed approach and provide the basis for developing context-sensitive

access control applications in the fog and cloud environments.

(iii) Usability Study: We have now carried out a usability study by

supporting a user interface and demonstrating a walkthrough of

our FCAAC proposal in a real setup with real users.

(iv) Performance Evaluation: We have conducted two sets of ex-

periment in a healthcare environment and evaluated the applica-

bility of our FCAAC approach by means of response time. The

experiment results have shown the satisfactory performance of our

proposed context-sensitive access control approach.

(v) Comparative Analysis: In addition to the prototype, case stud-

ies, usability study and performance evaluation, we have now pre-

sented a comparative analysis of the existing access control ap-

proaches. We have also included the fog and cloud-based access

control approaches. The comparative assessment has shown that

our FCAAC approach offers a range of new benefits for context-

sensitive access control in the fog and cloud computing environ-

ments.

1.4. Outline

The rest of this article is organized as follows. Section 2 presents a healthcare

scenario to motivate our work. Section 3 introduces our formal context-sensitive

access control approach, named FCAAC, including the context representation

and reasoning model and its associated policy model. It also includes a unified

data model and its associated mapping model in terms of facilitating access con-

trol to cloud-based data resources from multiple sources. Section 4 introduces
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an ontology-based development platform for our proposed FCAAC approach.

Section 5 demonstrates the practicality of our approach, including a software

prototype, several healthcare case studies, a usability study and an experimen-

tal evaluation in terms of query response time. Section 6 briefly presents the

related work and a comparative analysis of our FCAAC approach with respect

to existing access control approaches. Finally, Section 7 concludes the paper

and outlines future research directions.

2. Research Motivation and General Requirements

This section presents an extended application scenario from our earlier re-

search [3, 1]. We first analyse the need for the incorporation of fuzzy and normal

contextual conditions in the access control process, illustrating an access con-

trol to multiple data sources for different types of users within the distributed

systems. In addition, we identify the general requirements of developing a new

access control approach for the cloud environments by integrating both the fuzzy

conditions and other contextual conditions together with access control policies.

We use suitable examples from this scenario throughout the article to explain

the concepts of our approach.

2.1. Application Scenario

In this section, we consider an extended healthcare scenario from our earlier

research [3, 1].

• A patient Bob who is currently admitted in the emergency department of

the hospital due to a severe heart attack. Jane, who is a hospital doctor,

is required to access the necessary medical records of Bob from multiple

sources to treat him and save his life from such life-threatening situation.

After getting emergency treatment, Bob is shifted to the general ward of

the hospital and assigned a registered nurse Mary to monitor his health

status.
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2.2. Scenario Analysis

In this section, we analyse the application scenario to capture the technical

challenges to control access to data and resources from multiple sources.

In general, the emergency doctors, including a patient’s treating physician,

can access all the necessary health records of patients, such as the medical

records, past medical history and private medical records. However, Jane, while

not being an emergency doctor, is able to access the necessary medical records

by playing the emergency doctor role from the emergency ward of the hospital

when Bob’s health status is “high or 95% critical”. When the context changes

(e.g., Bob’s health status becomes “66% normal”), a decision on a further ac-

cess request by Jane to Bob’s emergency medical records may need to change

accordingly (e.g., an access permission should be denied). That is, Jane is only

authorized to play the hospital doctor role, and consequently can access Bob’s

normal medical records when his health condition is “66% normal”.

Normally, a registered nurse, who is assigned to look after a patient (or a

group of patients), is able to access the daily medical records during her ward

duty time and when she is present in the general ward where the patient is

located. However, in the mentioned emergency scenario, Mary is able to access

Bob’s medical records when she is co-located with Jane, who is currently treating

Bob by playing the emergency doctor role, and only when his health status is

“high critical”. When the context changes (e.g., Mary leaves the emergency

department or outside of duty time), a decision on a further access request by

Mary to Bob’s medical records may need to change accordingly (e.g., an access

permission should be denied). That is, Mary, by playing the assigned nurse role,

is only able to access Bob’s daily medical records during her ward duty time

and only when they both are co-located in the general ward of the hospital.

The different types of conditions are involved in this scenario, e.g., the loca-

tion and request time of a nurse, the health status of a patient, etc. Therefore,

an access controller needs to exploit such conditions directly or indirectly when

making access control decisions. The normal conditions such as the location

and request time can be obtained directly from the context sources. The health
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status is not able to obtain directly but can be derived from the available low-

level data such as the body temperature and pulse rate. As such, it is necessary

to further process the retrieved low-level imprecise data or fuzzy facts automat-

ically to precisely obtain the relevant results (e.g., the health status is “66%

normal” with “criticality level 34%”). In order to limit the access permissions

to resources exploiting such fuzzy and other conditions is both a strength and

a challenge.

Nowadays, a large number of data and information resources have been

produced as a result of the abundance of cloud and Big Data sources from mul-

tiple environments. This data abundance creates new opportunities and also

raises new challenges to develop new form of access control mechanisms along

with data integration and mapping capabilities. In the above application sce-

nario, Jane needs to access different types of medical records (e.g., Bob’s health

records) from multiple data sources in different contexts. That is, such data and

resources may come from centralized or distributed sources. Thus, the access

controller needs to deal with multiple data sets within different organizations

(e.g., medical, insurance and diagnosis companies). In order to access data from

multiple sources, there is a need to build a unified data model to specify generic

concepts and map all the local data sources to the generic unified schema. In this

fashion, on the one hand, we can reduce the number of access control policies.

On the other hand, we can overcome the processing overheads.

In the light of above-pointed observations, Figure 1 illustrates the relation-

ship chain among the users, cloud servers and an intermediary fog node. The

relationship chain connects the users to the cloud sources. In order to support

such mapping to different medical databases (e.g., health records, insurance

records, diagnosis records) and access data and resources subsequently, there is

a need for a new form of context-sensitive access control application in today’s

fog and cloud environments. In particular, an intermediary fog node is required

to facilitate access control to cloud-based data resources from multiple sources.
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Figure 1: The Relationship Chain from Users to Cloud Servers

2.3. General Requirements

The general requirements of developing the context-specific access control

with imprecise fuzzy characterization are as follows:

(Req.1) There is a need for a new form of access control approach to capture

the low-level imprecise fuzzy facts and consequently derive the precise

fuzzy conditions from them. In this respect, we introduce a context

representation and reasoning approach to represent the raw facts from

the context sources and infer the relevant conditions from them.

(Req.2) Also, an access controller needs to take into account both the fuzzy

conditions and other relevant contextual conditions for context-specific

decision making. As such, we introduce a policy model to incorporate

these conditions into the access control policies.

(Req.3) In addition, an access controller needs to deal with multiple data sources.
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Figure 2: Our FCAAC Approach

As such, we introduce a unified data model and a mapping model to map

all the local data sources to the generic schema.

3. Formal FCAAC Approach

In this section, we first introduce a high-level approach to Context-Aware

Access Control using Fuzzy logic (FCAAC), including the stages of representing

and reasoning fuzzy and normal contextual conditions, mapping multiple sources

and making context-sensitive access control decisions.

Figure 2 shows a conceptual high-level approach to FCAAC, which includes 4

basic steps: capture low-level contextual facts, derive relevant contextual condi-

tions (fuzzy and normal), map between multiple data sources and make context-

sensitive access control decisions. Stage 1 is the process of gathering low-level

contextual facts from the relevant context sources. Stage 2 is the process of

inferring relevant fuzzy and other contextual conditions from the low-level con-

textual facts. Stage 3 is the process of mapping all local data sources to a

unified data schema. Finally, Stage 4 is the process of making context-sensitive

access control decisions based on the relevant contextual conditions. In the fol-

lowing, we present all fundamental definitions with the purpose to illustrate our

FCAAC approach.
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3.1. Context Model

The development of a relevant Context-Aware Access Control (CAAC) ap-

proach is a complex task because of the need to accommodate for a wide variety

of contextual conditions. The first step in achieving this is to define these con-

ditions.

3.1.1. Representation of Contextual Conditions:

In the literature, many researchers have defined the context information.

The most well accepted definition is given by Dey [37], context is any informa-

tion about the situation of an entity, where an entity can be a person, place or

object. In general, it is a broad and generalized vision of what the context means

for context-aware applications. However, based on our application scenario, we

need to represent the different types of contextual conditions as some condi-

tions which only can be derived by utilizing fuzzy sets and fuzzy logic-based

reasoning.

Definition 1. (Fuzziness of Context Information) According to the degree of

fuzziness of context information, we classify contextual conditions into fuzzy

conditions and normal conditions, i.e., contextual conditions (CC) is the set of

all fuzzy conditions (FC) and all normal conditions (NC).

CC = FC ∪ NC (1)

Definition 2. (Fuzzy Contextual Condition) A fuzzy contextual condition is an

implicit context information and it can be derived from a fuzzy set by means of

a concept (i.e., contextual condition) with its values. On the basis of the fuzzy

set theory [19], a decimal point or truth value ranging from 0 to 1 is generally

used to characterize the degree of membership of the values to a concept.

The elements (fuzzy contextual conditions) of a fuzzy set have the truth

values (tValues) ranging from 0 for non-membership to 1 for full-membership.

µfc(v) ∈ [0, 1] (2)
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In the above expression, ‘fc’ denotes a fuzzy condition (fc ∈ FC) and ‘µfc(v)’

denotes a membership degree of a concept ‘fc’ for a certain value ‘v’.

Example 1. A patient’s current health status (PCHState) is 95% critical, which

is a fuzzy contextual condition. The degree of membership is represented in the

following expression.

µPCHState(critical) = 0.95, i.e.,

PCHState = “critical”, where tV alue = 0.95
(3)

Definition 3. (Normal Contextual Condition) A normal contextual condition

is an implicit context information and it can be derived from a classical crisp

set by means of a concept with its values. On the basis of the classical crisp

set theory, a truth value 0 or 1 is generally used to characterize the degree of

membership of the values to a concept.

The elements (normal conditions) of a crisp set have the truth values either

0 for non-membership or 1 for full-membership. The degree of membership of a

concept ‘nc’ (nc ∈ NC) to its value ‘v’ is represented in the following expression.

µnc(v) ∈ {0, 1} (4)

Example 2. In our application scenario, the interpersonal relationship (inter-

Relationship) between Bob and Mary is assigned nurse, which is a normal con-

textual condition. The degree of membership is represented in the following

expression.

µinterRelationship(assignedNurse) = 1, i.e.,

interRelationship = “assignedNurse”
(5)

Example 3. In the same application scenario, the relationship between Bob

and Jane is non-treating physician. The degree of membership is represented in

the following expression.

µinterRelationship(treatingPhysician) = 0, i.e.,

interRelationship = “non− treatingPhysician”
(6)
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3.1.2. Reasoning about Contextual Conditions:

The context reasoning part includes two types of inference rules to derive

fuzzy and normal contextual conditions. The first set of rules are used to infer

the fuzzy contextual conditions for the precise linguistic labels and the crisp

boundary values (e.g., a patient’s current health status is “66% normal” with

“criticality level 34%”) from the low-level fuzzy facts through fuzzy-logic based

reasoning. The second set of rules are used to infer the normal contextual

conditions from the low-level context information through normal rule-based

reasoning.

Further details of the reasoning about these conditions using fuzzy logic-

based and ontology-based inference rules are discussed in Section 4.2.

3.2. Policy Model

Role-Based Access Control [38] is an emerging model of access control and is

well recognized for its many advantages in large-scale authorization management

[39]. It provides the core concepts of user-role and role-permission assignments

in which a user can exercise organizational functions that are associated with the

roles. Our core CAAC policy model [3] extends the traditional RBAC model to

support context-oriented access control according to normal contextual condi-

tions. This section introduces a formal FCAAC policy model, which extends our

core CAAC policy model to a further coverage of fuzzy contextual conditions.

Definition 4. (FCAAC Policy Model) A Fuzzy logic-based Context-Aware Ac-

cess Control (FCAAC) policy model is denoted by a 4-tuple relation.

FCAAC = 〈U, R, CC, P 〉 (7)

In the above relation, ‘U’ represents a set of system users who are the resource

requesters, ‘R’ represents a set of roles, ‘CC’ represents a set of contextual

conditions, and ‘P’ represents a set of permissions or rights to perform some

operations on resources (read or write) by the users who initiate access requests.

If ‘u’ represents a user (u ∈ U), ‘r’ represents a role (r ∈ R), ‘cc’ repre-

sents a contextual condition (cc ∈ CC) and ‘p’ represents a permission (p ∈
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P ), then, together the elements ‘Users’, ‘Roles’, ‘Contextual Conditions’ and

‘Permissions’ form the FCAAC Policy Model.

CC = FC ∪NC

Users(U) = a set of users

Roles(R) = a set of roles

ContextualConditions(CC) = a set of contextual conditions

Permissions(P ) = a set of permissions

(8)

Definition 5. (A FCAAC Policy) A FCAAC policy specifies whether a user

in an appropriate role is granted a permission associated with that role to ac-

cess the information resource(s) in order to perform some operations on that

resources(s), when the relevant contextual conditions are satisfied. We consider

the contextual conditions as the policy constraints and they can be formed by

integrating the relevant fuzzy and/or normal contextual conditions.

Example 4. Consider the application scenario presented in Section 2, where

Mary wants to access certain medical records of patient Bob, the FCAAC policy

determines whether the access permission is granted or denied. An example

FCAAC policy associated with this scene can be read as: “a user by playing a

registered nurse (RN) role is permitted to access the daily medical records (DMR)

of a patient, during her ward duty time from the location where the patient is

located in the general ward, and if she is assigned to monitor his health status,

and only when his current health status is within normal ranges”. The rule

shown in Table 1 expresses the policy, fcaac1 = 〈Mary, RN, cc1, DMR〉.

In this example, the access control decision is based on the following con-

straints: who the user is (e.g., Mary), what role the user can play (e.g., RN),

what resource is being requested (e.g., write operation on DMR, writeDMR)

and under what contextual conditions (e.g., cc1). Looking at our application sce-

nario, the contextual condition ‘cc1’ is based on a normal condition ‘nc1’ (e.g.,

Mary’s location address is “general ward” and request time is “duty time”, and

the interpersonal relationship between Mary and Bob is “assigned nurse”) and
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Table 1: An Example FCAAC Policy for the Registered Nurses

If

FCAACPolicy(fcaac1) ∧ User(u1)

∧ hasUser(fcaac1, u1) ∧ equal(u1, “Mary”)

∧ Role(r1) ∧ hasRole(fcaac1, r1) ∧ equal(r1, “RN”) ∧ Permission(p1)

∧ hasPermission(fcaac1, p1) ∧ equal(p1, “writeDMR”)

∧ ContextualCondition(cc1) ∧ hasCondition(fcaac1, cc1)

∧ NormalCondition(nc1) ∧ FuzzyCondition(fc1)

∧ hasContext(cc1, nc1 ∨ fc1)

Then

canAccess(u1, p1)

a fuzzy condition ‘fc1’ (e.g., Bob’s current health status is “66% normal” with

“criticality level 34%”), and it can be represented as, cc1 = nc1 ∨ fc1.

3.3. Unified Data and Mapping Models for Multiple Cloud Sources

In this section, we present a unified data model and its associated mapping

rules in order to correlate the general data schema with other local data sources.

Definition 6. (Unified Data Schema) A unified data schema (UDS) is repre-

sented as a 2-tuple relation. It includes the general and equivalent concepts.

UDS = 〈GC, EC〉 (9)

In the next section, we have introduced the FCAAC ontology, where GC

is represented as a set of general classes (gc ∈ GC) and EC is represented as

a set of domain-specific subclasses or equivalent class (ec ∈ EC). The object

properties are used to represent the associations between the general classes and

the equivalent classes.

Definition 7. (Mapping Model) A set of mapping rules is represented as one-

to-one or one-to-many relationships between the general and equivalent concepts.
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An equivalent concept of the general concept can be formed based on the other

single or multiple concepts. Let us consider another set of concepts C (c ∈ C),

each equivalent concept ec ∈ EC can be a single concept of the subset elements

of C or can be represented by making conjunctions of the subset elements of C.

GC ≡ EC

EC = {(..., (c1), (c2), (c1 ∧ c2),

(c1 ∧ c2 ∧ c3), ...)|ec ∈ EC & c ∈ C}

(10)

In the above relations, we use c ∈ C to represent a single concept, C to

represent a set of concepts, ec ∈ EC to represent an equivalent concept and

gc ∈ GC to represent a general concept.

Example 5. Looking at the application scenario, the concept User in the health-

care professional snapshot is equivalent to the concept Person in different do-

main, the concept Location in the healthcare scenario is equivalent to the concept

Place, and the concept Resource in the healthcare scenario is equivalent to the

concept Object in another domain.

Our proposed FCAAC approach with unified data and mapping models fa-

cilitates access control to cloud-based data resources from multiple sources. Fur-

ther details of the FCAAC specification to access data and information resources

from multiple sources using ontology-based languages are discussed in the fol-

lowing section (see Section 4.4).

4. Ontology-based FCAAC Approach

In the previous section, we have presented all preliminary formal definitions

of our FCAAC approach. This section introduces an ontology-based approach,

to realize our formal approach in practice. In addition, we show the related

examples from the application scenario.

We introduce the FCAAC ontology to model the contextual conditions, uti-

lizing user-defined inference rules to derive the relevant conditions from the low-

level context information. In the FCAAC ontology, we also model the access
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control policies, incorporating these contextual conditions. Riboni and Bettini

[40] have shown that ontologies are well-suited for representing and modelling

dynamic contextual conditions and are very useful semantic technologies for

pervasive computing applications. The FCAAC ontology is defined in Web On-

tology Language (OWL) [41]. We have chosen OWL rather than other ontology

languages, because it is more expressive to specify the contextual conditions and

policies in an easy and natural manner, than others [40]. Also, it is a widely

used ontology language in semantic Web. In order to infer new knowledge, the

expressivity of OWL is extended by incorporating the SWRL (Semantic Web

Rule Language) rules [42] to the FCAAC ontology.

The FCAAC ontology, as depicted in Figure 3, has the core concepts User,

Role, ContextualCondition, Permission, Resource, Operation and AccessDeci-

sion, which are organized into a FCAACPolicy hierarchy. It is divided into

three layers. The top layer, which extends our core CAAC policy ontology [3]

to a further coverage of fuzzy contextual conditions and includes the concepts

for modelling the FCAAC policies. The middle layer includes the core concepts

for modelling the fuzzy and normal contextual conditions. The bottom layer

includes the core concepts for modelling the context information.

The detailed representation of a wide range of context information is out

of the scope of this article. In our earlier research [3, 4, 12], we have already

introduced context ontologies to represent and model the access control-specific

context information (e.g., the interpersonal relationships, the purpose-oriented

situations, the social, health and personal profiles).

4.1. Modelling Contextual Conditions

The middle layer in Figure 3 has the concepts NormalCondition, FuzzyCon-

dition and Membership, which are organized into a ContextualCondition hier-

archy. The relationships between these concepts are represented by object and

data type properties. The links between a concept (classes and subclasses) and

its attributes are achieved via data type properties, and the links between two

concepts are achieved by means of object properties (built-in and user-defined)
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Figure 3: The FCAAC Ontology

with ‘rdfs:domain’ and ‘rdfs:range’.

A contextual condition consists of the relevant fuzzy and normal conditions.

Thus, the ContextualCondition class has an object property named hasContext,

which is used to link the ContextualCondition class and the union of Normal-

Condition and FuzzyCondition classes (see Table 2).

The object property hasRange is used to link the classes FuzzyCondition and
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Table 2: ‘hasContext’ Object Property Definition in OWL

<owl:ObjectProperty rdf:ID=“hasContext”>

<rdfs:domain rdf:resource=“#ContextualCondition”/>

<rdfs:range>

<owl:Class>

<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rdf:about=“#NormalCondition”/>

<owl:Class rdf:about=“#FuzzyCondition”/>

</owl:unionOf>

</owl:Class>

</rdfs:range>

</owl:ObjectProperty>

Membership (see the ontological definition in Table 3).

Table 3: ‘hasRange’ Object Property Definition in OWL

<owl:ObjectProperty rdf:ID=“hasRange”>

<rdfs:domain rdf:resource=“#FuzzyCondition”/>

<rdfs:range rdf:resource=“#Membership”/>

</owl:ObjectProperty>

The FuzzyCondition class contains a ‘xsd:float’ type data property named

tValue (see Table 4), which denotes a membership degree (or truth value) of a

concept for a certain value. For example, concerning our application scenario,

Bob’s current health status is “66% normal”, which means that the criticality

level (tValue) is 0.34.

The class Membership has two ‘xsd:float’ type data properties, named lower-

Range and upperRange (see Tables 5 and 6), which denote the ranges of mem-

bership degree for a fuzzy condition. These properties are used to specify the

fuzzy conditions in the FCAAC policies. For example, a patient’s current health

23



Table 4: ‘tValue’ Data Type Property Definition in OWL

<owl:DatatypeProperty rdf:ID=“tValue”>

<rdfs:domain rdf:resource=“#FuzzyCondition”/>

<rdfs:range rdf:resource=“&xsd:float”/>

</owl:DatatypeProperty>

status is “normal”, which has a lowerRange of criticality 0 and an upperRange

of criticality 0.50.

Table 5: ‘lowerRange’ Data Type Property Definition in OWL

<owl:DatatypeProperty rdf:ID=“lowerRange”>

<rdfs:domain rdf:resource=“#Membership”/>

<rdfs:range rdf:resource=“&xsd:float”/>

</owl:DatatypeProperty>

Table 6: ‘upperRange’ Data Type Property Definition in OWL

<owl:DatatypeProperty rdf:ID=“upperRange”>

<rdfs:domain rdf:resource=“#Membership”/>

<rdfs:range rdf:resource=“&xsd:float”/>

</owl:DatatypeProperty>

The normal and fuzzy contextual conditions are composed of the relevant

context information specific to access control, using an object property named

composedOf. The NormalCondition and FuzzyCondition classes use the concept

ContextInfo (which is a bottom layer concept) from the core context ontology,

which is already introduced in our earlier work [3]. Table 7 specifies the ‘com-

posedOf’ definition in OWL. It shows that the union of NormalCondition and

FuzzyCondition classes is linked to the class ContextInfo.

The bottom layer of the FCAAC ontology defines the general concepts con-

cerning the different types of context entities under the hierarchy of ContextEn-

tity and the general concepts concerning the different types of context informa-
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Table 7: ‘composedOf’ Object Property Definition in OWL

<owl:ObjectProperty rdf:ID=“composedOf”>

<rdfs:domain>

<owl:Class>

<owl:unionOf rdf:parseType=“Collection”>

<owl:Class rdf:about=“#NormalCondition”/>

<owl:Class rdf:about=“#FuzzyCondition”/>

</owl:unionOf>

</owl:Class>

</rdfs:domain>

<rdfs:range rdf:resource=“#ContextInfo”/>

</owl:ObjectProperty>

tion under the hierarchy of ContextInfo. For example, to define the relationship,

profile and temporal context information, we define the classes RelationshipInfo,

ProfileInfo and TemporalInfo, and their subclasses InterpersonalRelationship

and Co-locatedRelationship, PersonalProfile and SocialProfile, and RequestTime

respectively. The classes RelationshipInfo, ProfileInfo and TemporalInfo are the

subclasses of the class ContextInfo (see the ontological definition in Table 8).

The top and bottom layers of the FCAAC ontology also contain the data

type and object properties. The domain and range of object properties are

specified in Table 9 and the data type properties are shown in Table 10.

4.2. Reasoning about Contextual Conditions

The reasoning part includes two sets of inference rules to derive the normal

and fuzzy contextual conditions: ontology-based and fuzzy logic-based rules.

4.2.1. Inferring Normal Contextual Conditions:

The semantic rules that are used to derive the normal conditions are ex-

pressed in SWRL by means of FCAAC ontology concepts/properties and SWRL
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Table 8: ContextInfo Class and Its Subclasses

<owl:class rdf:ID=“RelationshipInfo”>

<rdfs:subClassOf rdf:resource=“#ContextInfo”/>

</owl:class>

<owl:class rdf:ID=“ProfileInfo”>

<rdfs:subClassOf rdf:resource=“#ContextInfo”/>

</owl:class>

<owl:class rdf:ID=“TemporalInfo”>

<rdfs:subClassOf rdf:resource=“#ContextInfo”/>

</owl:class>

built-ins functions. An example reasoning rule to derive the interpersonal re-

lationship between user and patient is specified in Table 11. The interpersonal

relationship is inferred from the low-level context information which is already

represented in our context ontology [3, 11], i.e., from the user’s personal profile

and the patient’s social profile information.

4.2.2. Inferring Fuzzy Contextual Conditions:

The inference rules that are used to derive the fuzzy conditions are expressed

in “if-then statements” by means of the specification of linguistic labels, where

the first part (if) contains the input conditions and the second part (then) con-

tains an action output. An example set of fuzzy logic-based reasoning rules to

derive the current health status of the patients is specified in Table 12. The

first rule in Table 12 can be read as, if PAge is “Young” and PulseR is “T4”,

then PCHState is “Normal”. Further details can be found in prototype imple-

mentation section (see Section 5.1).

One of the main contributions of this research is to derive the fuzzy con-

textual conditions from the low-level information, utilizing fuzzy-logic-based

context reasoning. Towards this goal, Figure 4 shows our fuzzy context in-

formation system, which includes three main steps for mapping between crisp
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Table 9: Domain and Range Restrictions for Object Properties

Object

Property

Domain Range Description

hasUser FCAACPolicy User A FCAAC policy is

connected to a user

hasRole FCAACPolicy Role A FCAAC policy is

connected to a role

which is played by a

user

hasCondition FCAACPolicy ContextualCondition A FCAAC policy has

the relevant contex-

tual conditions

hasDecision FCAACPolicy AccessDecision A FCAAC policy has

a relevant access de-

cision

hasPermission FCAACPolicy Permission A FCAAC policy has

a permission

hasResource Permission Resource A FCAAC policy has

a permission to ac-

cess resource

hasOperation Permission Operation A FCAAC policy has

a permission to per-

form different opera-

tions on resource

and fuzzy datasets: fuzzification, fuzzy reasoning and defuzzification [19]. Our

FCAAC ontology captures the low-level data from the context sources and sends

them for fuzzification. Fuzzification is the process of representing these inputs

(from the crisp values) into their linguistic labels using membership functions.

Fuzzy reasoning is the process of deriving the linguistic outputs from the given
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Table 10: Data Type Properties

Data Type Property Domain

userIdentity User

roleIdentity Role

resourceIdentity Resource

decision AccessDecision

action Operation

requestTime RequestTime

interRelationship InterpersonalRelationship

isColocatedWith Co-locatedRelationship

userIdentity PersonalProfile

roleIdentity PersonalProfile

connectedPeopleIdentity SocialProfile

connectedPeopleRoleIdentity SocialProfile

Table 11: A Reasoning Rule to Infer the Interpersonal Relationship

User(?u) ∧ Role(?role) ∧ hasRole(?u, ?role) ∧ swrlb:equal(?role, “RN”) ∧

Owner(?o) ∧ Resource(?r) ∧ isOwnedBy(?r, ?o) ∧ InterpersonalRelation-

ship(?rel) ∧ hasRelationship(?u, ?rel) ∧ hasRelationship(?o, ?rel) ∧ Person-

alProfile(?pp) ∧ hasProfile(?u, ?pp) ∧ userIdentity(?pp, ?userID) ∧ roleI-

dentity(?pp, ?roleID) ∧ SocialProfile(?sp) ∧ hasProfile(?o, ?sp) ∧ connect-

edPeopleIdentity(?sp, ?connID) ∧ connectedPeopleRoleIdentity(?sp, ?con-

nRoleID) ∧ swrlb:equal(?userID, ?connID) ∧ swrlb:equal(?roleID, ?con-

nRoleID) → interRelationship(?rel, “assignedNurse”)

linguistic inputs in terms of fuzzy logic. As such, it selects the required rea-

soning rules from a fuzzy rule-base and executes them using the fuzzy inference

engine. Defuzzification is the process of combining all linguistic outputs into a
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Table 12: A Set of Reasoning Rules to Infer the Current Health Status

If PAge(Y oung) ∧ PulseR(T4) Then PCHState(Normal)

If PAge(Y oung) ∧ PulseR(T5) Then PCHState(Normal)

If PAge(MiddleAge) ∧ PulseR(T4) Then PCHState(Normal)

If PAge(MiddleAge) ∧ PulseR(T5) Then PCHState(Critical)

Fuzzification Defuzzification

Fuzzy

Reasoning

Fuzzy
Inference
Engine

Fuzzy
Rule-base

FCAAC

Ontology

FCAAC

Ontology

Figure 4: The Fuzzy Context Information System

single/composite crisp result. Finally, Our FCAAC ontology stores such inferred

result/condition.

4.3. FCAAC Policy

We use the OWL ontology language to represent the FCAAC policy concepts

and their relationships (see top layer in Figure 3). OWL-based reasoning rules

are not always sufficient to infer the implicit information from the low-level

information. For example, in order to compare the first and second arguments

(e.g., they are the ‘same’, ‘less than’ or ‘greater than’), we use the SWRL

language and its built-in functions to represent the fuzzy contextual conditions

in our ontology, in terms of their linguistic labels and the ranges of their degree

of membership. As such, we codify the FCAAC policies with OWL and SWRL

languages.
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Table 13: An Example Policy in Ontology format for the Registered Nurses

1 <FCAACPolicy rdf:ID=“fcaac1”>

2 <hasUser rdf:resource=“#User RN1”/>

3 <hasRole rdf:resource=“#Role RN”/>

4 <hasPermission rdf:resource=“#Permission writeDMR”/>

5 <hasCondition rdf:resource=“#ContextualCondition cc1”/>

6 <hasDecision rdf:resource=“#AccessDecision Granted”/>

7 </FCAACPolicy>

8 FCAACPolicy(?fcaac1) ∧ User(?u) ∧ hasUser(?fcaac1, ?u) ∧ userIdentity(?u, “RN1”)

9 ∧ Role(?r) ∧ hasRole(?fcaac1, ?r) ∧ canPlay(?u, ?r) ∧ roleIdentity(?r, “RN”) ∧

10 Permission(?per) ∧ hasPermission(?fcaac1, ?per) ∧ Resource(?res) ∧

11 hasResource(?per, ?res) ∧ resourceIdentity(?res, “DMR”) ∧

12 Owner(?o) ∧ isOwnedBy(?res, ?o) ∧ Operation(?op) ∧

13 hasOperation(?per, ?op) ∧ action(?op, “Write”) ∧

14 ContextualCondition(?cc1) ∧ hasCondition(?fcaac1, ?cc1) ∧

15 NormalCondition(?nc1) ∧ hasContext(?cc1, ?nc1) ∧

16 InterpersonalRelationship(?rel) ∧ hasRelationship(?u, ?rel) ∧

17 hasRelationship(?o, ?rel) ∧ interRelationship(?rel, “assignedNurse”) ∧

18 RequestTime(?rt) ∧ hasRequestTime(?u, ?rt) ∧ requestTime(?rt, “dutyTime”)

19 ∧ Co-locatedRelationship(?col) ∧ hasRelationship(?u, ?col) ∧

20 hasRelationship(?o, ?col) ∧ isColocatedWith(?col, yes) ∧

21 composedOf(?nc1, ?rel) ∧ composedOf(?nc1, ?rt) ∧

22 composedOf(?nc1, ?col) ∧

23 FuzzyCondition(?fc1) ∧ hasContext(?cc1, ?fc1) ∧ PCHState(?hs) ∧

24 composedOf(?fc1, ?hs) ∧ swrlb:equal(?hs, “normal”) ∧ tValue(?fc1, ?tv) ∧

25 Membership(?m) ∧ hasRange(?fc1, ?m) ∧ lowerRange(?m, ?lr) ∧

26 swrlb:equal(?lr, 0) ∧ upperRange(?m, ?ur) ∧ swrlb:equal(?ur, 0.50) ∧

27 swrlb:greaterThan(?tv, lr) ∧ swrlb:lessThan(?tv, ur) ∧

28 AccessDecision(?dec) ∧ hasDecision(?fcaac1, ?dec) → decision(?dec, “Granted”)
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4.3.1. An Example FCAAC Policy:

Let us consider the registered nurses’ policy shown in Table 1. In this policy,

the access decision is based on the following constraints: who the requester/user

is (e.g., registered nurse, RN), what resource is being requested (e.g., daily medi-

cal records (DMR) on write operation) and under what contextual conditions the

user sends the request (current health status, request time, and interpersonal

and co-located relationships).

An example FCAAC policy rule in OWL is shown in the top part in Table 13.

The core policy concepts are specified in Line #1 to 7). The policy illustrates

that a user, by playing a registered nurse (RN) role and satisfying the relevant

contextual condition (cc1), can be granted to access the daily medical records

(DMR) of the patients.

The bottom part in Table 13 illustrates the specification of contextual condi-

tions and other policy constraints (e.g., fuzzy conditions, role identity) in SWRL.

The main conditions and constraints are represented in bold type. Firstly, the

user and role specifications are shown in Line #8 to 9, and the permission spec-

ification is shown in Line #10 to 13. The, the basic condition construction

is specified in Line #14, which is related to the normal and fuzzy contextual

conditions. The normal contextual condition is specified in Line #15 to 22, and

the fuzzy contextual condition is specified in Line #23 to 27. Finally, the access

control decision is specified in Line #28.

In the previous section, an example SWRL-based reasoning rule in Table 11

is used to determine the user and patient have a ‘assignedNurse’ relationship,

and an example set of fuzzy logic-based reasoning rules in Table 12 is used to

determine a patient’s current health status is ‘normal’. The reasoning rules to

derive the request time and co-located relationship can be found in our earlier

work [3].

One of the key features of our FCAAC ontology is its ability to specify the

fuzzy contextual conditions at different membership/criticality levels (see the

middle layer in Figure 3). For example, in the above policy, Mary can access
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Bob’s DMR when his current health status is “normal”, which means that the

criticality levels of the degree of membership are between 0 (lowerRange) to 0.50

(upperRange). However, Mary is not granted access to Bob’s DMR from the

general ward of the hospital, when his current health status is “high critical”

or “critical”, as he needs to admit immediately in the emergency department

of the hospital in such a situation. That is, our FCAAC policy model provides

access control decisions by taking into account the fuzzy contextual conditions.

4.4. Data and Mapping Ontologies for Cloud-Based Data Resources

We extend the bottom layer of our FCAAC ontology (see Figure 3) in order

to correlate the general data schema with multiple data sources. As such, we

define the general concepts (i.e., general context entities) and the equivalent

concepts (i.e., domain-specific context entities). Figure 5 shows an excerpt of

the UDS data ontology, named Unified Data Schema (UDS). It has two core

classes: GC (general concepts) and EC (equivalent concepts). The classes GC
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and EC are associated with an object property named equivalentOf. The general

concepts are the base classes and they are the subclasses of the class GC. For

example, in the UDS ontology, the classes User, Location and Resource are the

subclasses of the class GC. The subclasses are represented by is-a relationships.

The classes Person, Place and Object are the domain-specific concepts and they

are the subclasses of the class EC. In our UDS ontology, the class Person is

equivalent to the class User and an individual named Jane is represented as an

instance of the class User. In the following, a set of mapping rules are used to

specify such equivalent relationships.

We incorporate a set of mapping rules into the UDS data ontology in order

to correlate the general schema with multiple data sources. In the literature, the

description logic (DL) semantics are well accepted by the modeling constructs of

OWL ontology [43]. Accordingly, we specify a set of DL rules in Table 14. One

of the mapping rules specifies that Place is an equivalent concept of Location.

Table 14: A Set of Mapping Rules

GC ≡ EC

Person ≡ User

Place ≡ Location

Owner ≡ Resource

The detailed representation of a wide range of general context entities is out

of the scope of this article. In our earlier research [3], we have already introduced

different context ontologies to represent and model the general context entities

(e.g., user, owner, resource, relationship).

5. The Evaluation of Our Approach

In this section, we first present a prototype architecture to assist application

developers in rapid prototyping. Using this prototype, we develop a healthcare

application, called eHealthcare, to validate the functionalities of our FCAAC
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approach. In particular, we present two case studies from the healthcare domain

to demonstrate the practicality of our context-sensitive access control approach.

In addition, we conduct a usability study to demonstrate a walkthrough of our

proposal. Furthermore, the deployment of eHealthcare application is performed

by presenting an experimental evaluation of our approach.

5.1. Software Prototype

To alleviate the complexities of building context-sensitive access control ap-

plications, we in this section present a software prototype of the FCAAC frame-

work.

Figure 6 shows an architecture of the software prototype, which extends our
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earlier prototype [3], utilizing both the fuzzy logic and ontology-based reasoning

capabilities. It mainly includes environment, middleware and application layers.

It has a set of software components that support software engineers to develop

FCAAC applications using this architecture.

5.1.1. Environment Layer:

The environment layer includes the different types of sensors or data sources.

The functional components of this layer are application-specific, which are out-

side our research scope. In this article, our main focus is the middleware layer

and its associated components of the application layer.

5.1.2. Middleware Layer:

The middleware layer includes the following main components: context

providers, context reasoner, fuzzy logic engine and access control processor.

The context providers receive the raw context facts from the sensors or data

sources, extract the low-level contextual conditions and convert these condi-

tions to OWL representation, according to the FCAAC ontology. The FCAAC

ontology captures such low-level contextual conditions from the relevant context

providers.

The context reasoner consists of the context inference engine and an ontology

rule-base. The context reasoner derives the high-level contextual conditions

from the the low-level contextual conditions from the ontology by using the

reasoning rules. These reasoning rules are user-defined and stored into the

FCAAC ontology rule-base.

The FCAAC ontology is defined by using ontology languages OWL [41],

SWRL [42], SWRL Built-ins [44] and DL [43], and the ontology has been gen-

erated with the Protégé-OWL graphical tool [45]. We develop an ontology

rule-base to derive the normal contextual conditions from the low-level context

facts using ontology-based reasoning rules, which have been generated with the

Protégé-SWRLTab. We have used a rule engine that is written in Java, named

Jess [46], to facilitate reasoning tasks for executing such rules. We use the Jess
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rule engine because of its rule management capabilities.

The fuzzy logic engine consists of the fuzzy inference engine and a fuzzy rule-

base. We develop a fuzzy rule-base to derive the fuzzy contextual conditions

from the imprecise fuzzy facts using fuzzy reasoning rules, which have been

expressed in the form of fuzzy conditional “if-then” statements. For executing

such fuzzy rules, we have used the fuzzy inference engine, named jFuzzyLogic

[47], which is written in Java. We have already shown the fuzzy reasoning

processes in Figure 4. In order to execute such fuzzy and normal reasoning rules

and consequently derive the implicit information (normal and fuzzy conditions),

we have implemented two Java functions. The first function is used to execute

the reasoning rules and infer the implicit high-level contextual conditions using

low-level contextual conditions from the FCAAC ontology. The other function

is used to transfer the inferred information in the ontology.

The access control processor is responsible for the evaluation of access re-

quests. We have implemented the FCAAC PDP (policy decision point) and the

FCAAC PEP (policy enforcement point) as parts of the access control proces-

sor. The FCAAC PDP is implemented in Java to determine the access request

is “granted” or “denied”, according to the applicable policies and the neces-

sary contextual conditions. The context-sensitive access control policies are

also stored in FCAAC ontology.

5.1.3. Application Layer:

We have implemented the application layer (application interface) using Java

and Web technologies. Users normally communicate (by sending requests and

getting responses) through this interface. The application layer includes the

FCAAC PEP. Upon receiving an access request from the user, the FCAAC

PDP forwards the request to the FCAAC PDP for evaluation. The detailed

implementation of the context providers, FCAAC PEP and FCAAC PDP can

be found in our earlier prototype [3]. We in this article mainly have discussed

the implementation of the context reasoner and the fuzzy logic engine to derive

the contextual conditions (fuzzy and normal contextual conditions).

36



5.2. Walkthrough of Our Proposal

In this section, we present several case studies from the healthcare domain to

demonstrate the applicability of our proposed approach. In addition, we present

a usability study to demonstrate our approach in a real setup with real users.

5.2.1. Case Study #1:

We evaluate our FCAAC prototype using an eHealthcare application scenario

described in Section 2. The eHealthcare application provides the healthcare pro-

fessionals (e.g., emergency doctors, treating doctors, registered nurses) to access

different medical records of patients based on the dynamic context information

(normal and fuzzy contextual conditions).

Consider the motivating example where Mary wants to access the daily med-

ical records (DMR) of the patient Bob, an access request is submitted to the

FCAAC PEP for evaluation. The FCAAC PEP forwards the request to the

FCAAC PDP to determine whether the access request is “granted” or “denied”,

according to the current contextual conditions in effect and the applicable access

control policies. The applicable FCAAC policy is already specified in Table 13,

which defines the permission is granted when both of the two Boolean conditions

“nc1” and “fc1” are true. The normal contextual condition nc1 is composed

based on the following sub-conditions (context information): the nurse is as-

signed to monitor the patient’s health condition and they both are co-located in

the general ward during her duty time. The fuzzy contextual condition fc1 is

composed of the context information: the patient’s current health status (PCH-

State). In the following, we further discuss how our proposed approach captures

the PCHState of Bob.

For simplicity, in our eHealthcare application, we consider the pulse rate

(PulseR) and age of a patient (PAge) are the two input fuzzy sets to derive

the PCHState (an output fuzzy set). We also consider three fuzzy age groups:

VeryYoung, Young and MiddleAge, a normal pulse rate that is between 75 to

110 beats per minute (bpm) (which represents seven fuzzy sets, T1 to T7),

and a patient’s current health status which is represented using three fuzzy
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Figure 7: The Inputs Membership Functions

Figure 8: The Output Membership Function

sets: Normal, Critical and HighCritical. Based on the experience from our

group’s earlier research on fuzzy linguistic representations [19], these input and

output fuzzy sets are characterized by triangular and trapezoidal membership

functions (see Figures 7 and 8) and Mamdani’s center of gravity (COG) method

in conjunction with max-min inference is used for fuzzy reasoning (see Figure

9). We have specified 21 linguistic rules to cover all the possible values of PAge

and PulseR.

We assume that Bob’s age is 35, which belongs to the fuzzy sets Young and

MiddleAge and his pulse rate is captured as 102 bpm, which belongs to the fuzzy

sets T4 and T5. These inputs are fired four rules, which are already specified in
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Figure 9: The Patient’s Current Health Status (PCHState)

Table 12. Finally, Bob’s PCHState is derived using the COG max-min inference

method (see Figure 9). In this scenario, Mary is assigned to look after Bob and

we can observe that she is granted access to Bob’s DMR in his normal health

condition (i.e., “66% (0.66) normal with criticality level 0.34”).

In FCAAC, we model the criticality ranges of the normal, critical and high

critical health status are [0, 0.50], [0.50, 0.75] and [0.75, 1.0], respectively.

However, Mary is not granted access to Bob’s DMR when the context changes

(e.g., Bob’s health condition is critical or high critical again, i.e., the criticality

level is beyond the normal ranges).

Table 15 shows the access control decisions in terms of Mary’s requests. We

have observed that Mary, by playing a “registered nurse” role, has “granted”

access to Bob’s “daily medical records (DMR)” when his current health condition

is “normal”. However, when Bob’s current health condition becomes critical or

high critical again, Mary has been “denied” to access Bob’s medical records, as
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Table 15: The Context-Sensitive Access Control Decision (Case Study #1)

User Role Health Condi-

tion

Resource Access

Decision

Mary Registered Nurse Normal DMR Granted

Mary Registered Nurse Critical DMR Denied

Mary Registered Nurse High Critical DMR Denied

Bob needs emergency treatments in such situations.

5.2.2. Case Study #2:

Consider another case study from the same emergency scenario presented in

Section 2, where Jane wants to access necessary health records of the patient Bob

from multiple sources and consequently provides him emergency treatments.

The following are the contextual conditions that are included in this sce-

nario: current health conditions (e.g., normal, critical or high critical), location

addresses (e.g., emergency department), and so on. Our implemented access

control processor (FCAAC PEP and FCAAC PDP) exploits these fuzzy and

normal contextual conditions for making access control decisions and provides

relevant resource access permissions accordingly.

Table 16 shows the access control decisions in terms of Jane’s requests. In

this case study, we can observe that Jane, by playing the “emergency doctor”

role, has “granted” access to Bob’s “emergency medical records (EMR)” when his

current health condition is “critical” or “high critical”. Such emergency medical

records (EMR) are based on the different health records (e.g., health records,

diagnosis records, and so on) from multiple sources, in order to provide him

emergency treatments in the emergency department of the hospital. However,

when Bob’s current health condition becomes normal again, Jane is not allowed

to provide emergency treatments to Bob. Consequently, Jane has been “denied”

to access Bob’s health records coming from multiple sources.
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Table 16: The Context-Sensitive Access Control Decision (Case Study #2)

User Role Health Condi-

tion

Resource Access

Decision

Jane Emergency Doctor Critical EMR Granted

Jane Emergency Doctor High Critical EMR Granted

Jane Emergency Doctor Normal EMR Denied

5.2.3. Case Study #3:

In order to demonstrate the practical applicability of our proposed CAAC

approach, we have demonstrated another healthcare scenario. Amanda, who is

working as data analyst, can access and analyse the patients’ medical records.

However, she only can access Bob’s medical records when the patient’s current

health status is normal in specific contexts (e.g., from the inside of the office

during her duty time). She also can access and use such records for research

purpose at anytime from anywhere, by playing a data scientist role.

The PEP forwards Amanda’s request to the PDP for evaluation and conse-

quently determines the access control decision in terms of associated contextual

conditions. The contextual conditions, such as the purpose or intention to access

the medical records, request time, location and patient’s current health condition

are included in this scenario.

Table 17 shows the access control decisions in terms of Amanda’s requests.

We have observed that Amanda, by playing a “data analyst” role, has “granted”

access to Bob’s medical records from her office location of the inside-of-hospital

during her working hours. She also has credentials to play the “data scien-

tist” role and consequently can access Bob’s medical records at anytime from

anywhere, however, the access is only allowed for research purpose.

5.2.4. Usability Study:

This section demonstrates the usability testing of our FCAAC approach with

real users and in a real setup. We analyse the access control requests from dif-
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Table 17: The Context-Sensitive Access Control Decision (Case Study #3)

User(Role) Purpose Location Time Decision

Amanda(Analyst) Analysis Inside-of-Hospital OfficeHours Granted

Amanda(Scientist) Research Anywhere Anytime Granted

Table 18: Access Control Requests and Responses

User Role Request Granted Denied

Jane EmergencyDoctor 50 35 15

Mary RegisteredNurse 50 13 37

ferent users and the responses as well. We have asked different healthcare users

to send their requests to access necessary health records of the patients. We

have checked the applicable access control policies and the contextual condi-

tions in our FCAAC ontology in order to evaluate their requests under different

situations (different health status, different locations, and so on).

We have asked Jane (who is healthcare doctor) to send a number of requests

using several Windows machines from different locations (e.g., emergency de-

partment) to access Bob’s health records (e.g., emergency medical records). We

have also asked Mary (who is a registered nurse) to send a number of requests

from different locations (e.g., general ward) to access Bob’s health records (e.g.,

daily medical records). We have evaluated these requests using our developed

prototype, based on the applicable context-sensitive access control policies and

the contextual conditions in the FCAAC ontology. We have investigated the

different requests when they all (Jane, Mary and Bob) are in the same location

or different locations. We have recorded the access decisions accordingly.

In this study, we have also asked users to send their notes if they are not

satisfied with the access decisions. We have analysed all such notes according

to the access requests. We believe that this process is helpful to improve our

software prototype, by specifying the new access control policies or refining the
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existing policies accordingly. Overall, we have checked 100 access control re-

quests from Jane and Mary (see Table 18), which are the repeated requests in

different situations. Out of the 100 requests for this study, Jane has received 35

“Granted” responses, whereas Mary has received only 13 “Granted” responses.

These variations are confirmed that some access requests are originated from dif-

ferent locations where Bob is not located. Actually, Mary only can access Bob’s

daily medical records if Bob or Jane is co-located with her and also satisfying

other relevant contextual conditions.

Let us consider another real-world application scenario and discuss how to

apply our proposed FCAAC approach in such a scenario. A paramedic Richard

is allowed to play the emergency-paramedic role (which is a dynamic contextual

role) if he is co-located with the patient at the place of an accident. Using

our proposed FCAAC approach, he can access different health records of the

patient from multiple sources. Consequently, he can acquire all the permissions

assigned to both paramedic and emergency-paramedic roles to provide emer-

gency treatments to the patient.

In summary, the purpose of the above-mentioned two case studies and a

usability study demonstrates the practical applicability and a walkthrough of the

whole FCAAC approach. The prototype and its software components provide

an infrastructural support for building such FCAAC applications.

5.3. Experimental Evaluation

In this section, we measure the query response time in order to assess the

performance overhead of our proposed FCAAC approach.

We conduct two sets of experiments in our simulated healthcare environment

with the aim of measuring the response time and scalability of our FCAAC

proposal. In each set of experiments, we vary the number of context-sensitive

access control policies with respect to different numbers of roles (healthcare

roles) and contextual conditions. The conducted tests are carried out in a

Windows PC with an Intel Core i7@3.6GHz Processor and 16GB of RAM. We

deduce the average response time after making repeated measurements of the
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Figure 10: Populations vs Response Time

same size. The final results have been obtained by executing the experiments

10 times and computing their arithmetic mean.

In order to model the healthcare roles (e.g., general practitioners, emergency

doctors), we follow the Australian standard classification of occupations (ASCO)

of the health professionals [48]. In order to model the information resources

(patients’ health records), we follow the most implemented health level seven

(HL7) standard [49]. Further details of the necessary components of a patient’s

medical records and different health professional roles can be found in our earlier

research (please see the role and resource ontologies) [50].

5.3.1. Experiment #1:

In our first set of experiments, we vary the number of FCAAC policies with

respect to different healthcare professional roles (e.g., emergency doctors, reg-

istered nurses, researchers). We measure the response time to provide resource

access permissions to users. The number of policies contained in our FCAAC on-

tology is referred as population. Actually, we measure the FCAAC performance

with different variations of population size. We first define an initial population

of 100 policies and increase this population up to 500 for an increment of 100.

Figure 10 depicts how the response time varies, measured in milliseconds
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(ms), considering different population sizes associated to the policies. We ob-

serve that the response time is linearly increased according to the number of

policies up to 500 and it varies from 1.7 to 3.5 seconds approximately. For all

populations, the difference in response time between the sizes of 394 kilobytes

(KB) and 1342 KB of ontology is around a few seconds. We can say that the

performance is acceptable in such a computer setup with limited computing

resources.

5.3.2. Experiment #2:

The FCAAC reasoning model based on the fuzzy and ontology-based in-

ference rules is one of the important parts of our proposed context-sensitive

access control approach. In order to check the reasoning time and its scalabil-

ity, we conduct another set of experiments. Actually, we measure the different

breakdowns of the response time, where we observe the following main stages:

time taken to (i) derive the fuzzy contextual conditions, (ii) derive the normal

contextual conditions, and (iii) execute the access control policies for making

decisions.
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Figure 11 depicts the time, measured in milliseconds (ms), depending on

the different stages of response time breakdown. We observe that the fuzzy

logic-based reasoning in order to derive the implicit knowledge which does not

have a great impact in total reasoning time (fuzzy reasoning and ontology-based

reasoning). This is due to the following reasons. In our experiments, the current

health status of a patient (i.e., an output fuzzy set) is derived from the pulse

rate and age of the patient (i.e., two input fuzzy sets). However, the numbers

of input and output fuzzy sets usually appear to be limited according to the

inherent nature of context-aware access control (CAAC) applications. We also

note that it does not even impact the size of the FCAAC ontology when we

increase the number of fuzzy inference rules. Thus, the time taken to derive the

fuzzy condition seems a straight line in Figure 11.

In these two sets of experiments, we separate the ontology loading time from

the access request processing time and we only consider the access request pro-

cessing time as the total response time. However, the ontology loading occurs

once when the system runs the first time. Regarding the performance of our

FCAAC approach, the fuzzy logic-based reasoning time has a very low impact

in the overall response time to process a user’s request to access the resources

(see Figure 11), as the search space is limited to a small number of fuzzy infer-

ence rules. On the other hand, when we linearly increase the number of policies

in our FCAAC ontology, the response time also increases linearly. However,

the results fluctuate greatly at the point when we specify a large number of

policies and they are more stable up to 500 policies (see Figure 10). This is

due to the growing numbers of users, roles, contextual conditions and reasoning

rules in the ontology. In this sense, we can conclude that the population size

(i.e., the number of policies with OWL and SWRL) mainly affects the overall

system performance of our FCAAC approach. Furthermore, the linearity prop-

erty behind the results allows us to deduce that a better computer system with

powerful computing resources would obtain a lower response time. Based on

the experience from our previous work on improving system performance [51],

we may adopt RDF language to build a new approach as an alternative of using
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OWL language.

5.3.3. Discussion:

The main objective of these two sets of experiments is to evaluate the per-

formance of our proposed FCAAC approach when it is applied to facilitate

access control to necessary medical records of the patients from a single data

source. Considering the experimental results, we can conclude that our pro-

posed context-sensitive access control approach has an acceptable response time.

There is still a possibility of performance improvement by using more power-

ful machine, however, there is a need to further investigate the performance

issues in supporting context-sensitive access control to data and resources from

multiple homogeneous and heterogeneous sources.

6. Related Work and Comparative Analysis

This section provides a short overview of the relevant access control ap-

proaches. This includes the (i) context-aware access control and (ii) fuzzy logic-

based access control approaches. It also includes the (iii) cloud and fog-based

access control approaches. In addition, this section includes a comparative anal-

ysis of these existing access control approaches with respect to our proposed

approach.

6.1. Context-Aware Access Control Approaches in the Centralized Environments

Different approaches have been proposed in literature to model role-based

access control policies in conjunction with context information. Mostly these

policies are based on involving the normal contextual conditions, which can be

derived from the crisp sets.

Joshi et al. [6] have proposed a role-based access control (RBAC) approach

and incorporated the temporal information into the RBAC policies. Bertino

et al. [5] have proposed another RBAC approach, incorporating the spatial

information into the policies. However, these temporal and spatial approaches
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are not context-aware and adequate enough to capture and infer a wide variety

of dynamically changing conditions of the environments (e.g., the relationships).

On the other hand, Bonatti et al. [7] have introduced an event-driven ex-

tension to the temporal RBAC approach. They provide an implementation of

RBAC in which access control is managed by means of context information

(e.g., location, time, an event such as “surgery in progress”). Schefer-Wenzl

and Strembeck [8] have proposed a context-aware RBAC approach to ubiqui-

tous systems, incorporating the context information such as time and location

into the policies. Similar to [8], Hosseinzadeh et al. [9] and Trnka and Cerný [10]

have proposed the context-aware RBAC approaches. Using these approaches,

users can access the resources by playing the appropriate roles and based on

the context information. For example, in the healthcare domain, a doctor is re-

stricted to read the medical history of the patients after the office time or outside

the hospital locations. Different from these approaches, our FCAAC approach

utilizes fuzzy sets to derive the fuzzy conditions from the low-level fuzzy facts,

and incorporates such fuzzy conditions along with normal contextual conditions

into the policies. However, these existing context-aware RBAC approaches are

not adequate to exploit the relevant contextual conditions together with fuzzy

conditions for context-specific decision making at different granularity levels.

We have a successful history of using a wide range of contextual condi-

tions for context-oriented decision making. In [3, 11], we have introduced an

ontology-based context-aware RBAC approach to information resources, where

we consider the context information about the state of the users, resources and

their surrounding environments (e.g., patients’ profiles, users’ locations, users’

request times). In [12], we have introduced an ontology-based relationship-aware

RBAC approach, incorporating the relationship context information (e.g., the

different granularity levels of relationship, the relationship types, the relation-

ship strengths) into the policies. In [4, 13], we have introduced an ontology-based

situation-aware RBAC approach, where we incorporate the purpose-oriented sit-

uation information (e.g., normal/emergency treatment purpose, research pur-

pose) into the policies. Similar to above-mentioned context-aware approaches,
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however, our earlier approaches do not provide adequate functionalities to derive

and incorporate the fuzzy contextual conditions into the access control policies.

Overall, the existing context-aware RBAC approaches are not adequate to

deal with imprecise context characterization and consequently derive the fuzzy

conditions from the low-level fuzzy facts. For example, concerning our applica-

tion scenario, Bob’s current health status is “66% normal with criticality level

0.34” only can be derived from Bob’s pulse rate and body temperature.

6.2. Fuzzy Logic-Based Access Control Approaches

Different access control approaches have been proposed in the literature to

model policies based on involving the fuzzy conditions, which can be derived

from the fuzzy sets.

In [15], the authors have proposed a trust-based access control approach

based on the trust values [52], allowing only authorized users to access sensitive

data (and information resources) that are usually confidential. They also pro-

pose a trust model to dynamically derive the trust degrees of high, medium and

low. Cheng et al. [16] have proposed a risk-adaptive access control approach

for an organization to protect its sensitive information. They quantify risk as

the expected value of damage and consider risk to make access control decisions

(e.g., the access decision is “denied” because the risk is too high).

Takabi et al. [17] have proposed a trust-based RBAC approach to online

services based on trustworthiness which is fuzzy in nature. They use fuzzy

relations to compute trust values from the relevant attributes (e.g., behavioral,

personal). In [18], the authors have proposed a fuzzy RBAC approach to deal

with authorization-related imprecise information through fuzzy relations. They

consider the various strengths of user-permission assignments as fuzzy relations

to deal with such imprecise information and consequently propagate them to

make access decisions.

However, these fuzzy logic-based access control approaches are not context-

aware and still limited to incorporate a wide variety of access-control specific

normal contextual conditions together with fuzzy conditions into the access
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control policies for context-specific decision making. Different from these fuzzy

logic-based approaches, our FCAAC approach provides context-specific access

permissions to users exploiting both the fuzzy and normal contextual conditions,

and further limits the users’ access to information resources accordingly.

6.3. Cloud and Fog-Based Access Control Approaches in the Distributed Envi-

ronments

The above mentioned context-sensitive access control approaches have been

applied to access data and information resources from centralized sources. In

order to support data integration from multiple sources, in the literature, differ-

ent data integration approaches have been developed, such as schema matching

[22, 53], entity resolution [54], record linkage [55, 23], data fusion [56], global

view [57], and ontology-based [58, 24] approaches. These integration techniques

mostly have been used to map between original sources of data (i.e., different

schemas) and result in a global schema. However, these approaches are still

limited in order to provide the “granted” or “denied” access control decision to

the users.

Due to the technological advancements in the cloud and fog environments,

currently, different stakeholders need to access data and resources from multiple

sources. The integration of such data that is directly coming from multiple

sources raises semantic namespace and latency problems [59, 60], due to lack of

semantics and cloud-based services. Towards this end, the richer semantics of

data model is needed to resolve the semantic namespace problem, dealing with

the homogeneous and heterogeneous nature of such big data sets. However,

the latter is forcing the organizations to overcome the latency issue by adding

intermediary computational nodes at the edges of the networks [61].

In recent years, fog-based access control approaches have been introduced in

order to overcome the processing overheads and administration costs by moving

the execution of application logic from the cloud-level to an intermediary-level

(e.g., [30, 31, 32, 33]).

Zaghdoudi et al. [30] propose a generic and scalable access control approach
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for fog computing with low overhead, considering information about subjects,

objects and the context of operation. In [31], the authors present a recent

study on intelligent transport systems utilizing fog computing and by identi-

fying corresponding fog-based access control issues. Both research works have

been concerned with several important requirements of the fog-based access

control schemes, such as context-awareness and distributed architecture. The

decentralization of authority from a single administrative location to other lo-

cations is also discussed. Recently, Yu et al. [32] and Zhang et al. [33] propose

the fog-based access control approaches in order to provide a way to securely

share data along with the benefits of encryption and decryption system. These

existing fog-based access control approaches are developed to access data and

resources from centralized environments. However, they are not truly context-

aware and robust enough to introduce fog-based context-aware access control

solutions when accessing data from multiple sources.

6.4. Comparative Analysis

This section presents a comparative analysis of the existing context-sensitive,

fuzzy logic-based and fog-based access control approaches with respect to our

proposed FCAAC approach. In this comparative analysis, we have considered

the following aspects of our FCAAC approach.

Following the traditional context-sensitive RBAC approaches [5, 6, 7, 8, 9,

10], they are not adequate to derive the (i) Fuzzy Conditions from the low-

level contextual facts and incorporate them into the access control policies for

context-sensitive decision making. In addition, our earlier context-aware RBAC

approaches [3, 11, 4, 13, 12, 1] are not adequate to facilitate access control to

data and resources from multiple sources. Moreover, the fuzzy logic-based ap-

proaches [15, 16, 17, 18] are not context-aware and robust enough to capture

and derive the dynamically changing (ii) Contextual Conditions from the

low-level contextual facts. On the other hand, the cloud and fog-based access

control approaches [30, 31, 32, 33] consider the (iii) Decentralization of au-

thority from a cloud level to the different fog locations. However, they are not
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Table 19: Comparative Analysis of the Access Control Approaches

Approaches
Modeling Different Conditions Multiple Sources

Contextual

Condi-

tions

Fuzzy

Con-

di-

tions

Decentralization FCAAC

Policies

with Map-

ping Capa-

bility

Temporal RBAC

Approach [6, 7]

PY ES NO NO NO

Spatial RBAC Ap-

proach [5]

PY ES NO NO NO

Other RBAC Ap-

proaches [8, 9, 10]

PY ES NO NO NO

Our OntCAAC Ap-

proaches [3, 11]

Y ES NO NO NO

Our PO-SAAC Ap-

proaches [4, 13]

Y ES NO NO NO

Our RelBOSS Ap-

proach [12]

Y ES NO NO NO

Fuzzy Logic-Based

Approaches [15, 16,

17, 18]

NO Y ES NO NO

Our Fuzzy CAAC

Approach [1]

Y ES Y ES NO NO

Fog-Based CAAC

Approaches

[30, 31, 32, 33]

PY ES NO Y ES NO

Our FCAAC Ap-

proach

Y ES Y ES Y ES Y ES
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truly context-aware and robust enough to support context-sensitive access con-

trol to data and information resources. Also, they are not adequate to support

access control to data from (iv) Multiple Sources.

In this respect, different from these existing context-sensitive, fuzzy logic-

based and fog-based access control approaches, our proposed FCAAC approach

is robust enough and truly context-aware. It considers a wide range of contextual

conditions and introduces a fuzzy model to deal with the fuzzy contextual condi-

tions. In particular, our approach exploits the raw imprecise fuzzy facts, derives

the fuzzy conditions from them and incorporates such conditions together with

other contextual conditions into the access control policies for context-sensitive

decision making at different granularity levels. The practical significance of

our research is that it addresses the integration of fuzzy contextual conditions

and other relevant contextual conditions with access control processes for access

control to data and resources from multiple sources.

Table 19 shows all the results of this comparative study in which we use

“YES” when a feature is available, “PYES” when a feature is partially avail-

able, and “NO” when a feature is not available.

Overall, our article includes both the formal and ontology-based implemen-

tation models to specify the contextual conditions (fuzzy and normal condi-

tions) and the context-sensitive access control policies. It includes a unified

data schema and a mapping model in order to access data and resources from

multiple sources. It presents a walkthrough of the entire mechanism by demon-

strating two case studies, a usability study and a prototype testing. Finally,

it includes two sets of experiments in order to validate the feasibility of our

proposed approach.

7. Conclusion and Future Research

In this article, we have addressed a significant research issue in order to

access data and resources from multiple sources. The existing context-sensitive

access control approaches can lead to a large number of access control policies
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in order to access data and resources from multiple sources. On the other hand,

the existing fog-based access control approaches are not adequate in today’s

dynamic environments due to the lack of context-awareness. Towards this end,

this article introduces a fog-based access control approach to deal with cloud-

based data resources from multiple sources.

The FCAAC approach proposed in this article represents a flexible policy

specification solution to the problem of incorporating fuzzy contextual condi-

tions, in the domain of access control to data and information resources utilizing

the benefits of fuzzy sets. Our approach significantly differs from the existing

access control approaches in that (i) it integrates the fuzzy conditions together

with other relevant contextual conditions into the access control policies for

context-sensitive decision making and (ii) it can facilitate access control to data

and resources from multiple sources by utilizing our proposed unified data and

mapping models. We have presented the formal and ontology-based approaches

to represent and reason about the fuzzy and other contextual conditions, and

specify the access control policies by taking into account these conditions.

Furthermore, we have demonstrated the feasibility of our approach by con-

sidering the factors such as practicality and performance. In particular, we

have developed a software prototype in order to assist the application develop-

ers in rapid prototyping. Using this prototype, software practitioners can build

context-sensitive access control applications to cope with the complexities in

the integration of fuzzy and other contextual conditions. Using this prototype,

we have demonstrated the practicality of our approach by showing several case-

based proof of concepts from healthcare domain. In addition, we have carried

out a usability study and demonstrated a walkthrough of our whole mecha-

nism. Finally, we have conducted two sets of experiments with our prototype

and measured the query response time and scalability of our proposal. Both

the prototype implementation and the experimental evaluations show that the

new approach to access control using fuzzy logic is efficient and can be used in

practice.

In this article, we have defined the membership functions using the necessary
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information from the existing literature (e.g., the criticality ranges of the degree

of membership for a “normal” health status are specified from 0 to 0.50). How-

ever, it may require special modelling to define the membership functions, which

are domain dependent, and thus, further investigation to effectively represent

them using the crisp boundary conditions is required in the future.

In this article, we have considered the context-sensitive access control to

data and information resources from homogeneous cloud sources. Our proposed

approach also can be applied to deal with the issue of data heterogeneity through

accessing data from heterogeneous cloud sources. In such perspective, there is

a need to investigate a generic data model to achieve semantic interoperability

between heterogeneous data models from distributed cloud sources.

Further investigation is also required to demonstrate the feasibility of our

proposal by considering an empirical evaluation of our proposed approach in

this article with respect to our earlier approach [1]. One of the main goals is

to show that our proposed CAAC approach with the benefits of unified data

model and its associated policy and mapping models can be effectively used

in practice to access information and data resources from multiple, distributed

environments.

Another important research challenge is related to measure the performance

overheads from the ontology complexity perspective. In this article, we have

used OWL, DL and SWRL languages to model the data, policy and mapping

ontologies. Currently, in both sets of experiments, we have measured the per-

formance based on the different sizes of such ontologies. Future research can

investigate the variations of performance overheads based on the single ontology

versus multiple smaller different ontologies, considering reasoning time to map

multiple data sources, reasoning time to derive relevant contextual conditions,

loading time (single ontology versus multiple ontologies) and so on.

In our proposal, we have considered a general data model and its associated

policy and mapping models to link multiple data sources and consequently ac-

cess data resources from these different sources. However, accessing data and

information resources from distributed sources has increasingly become chal-
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lenging due to privacy issue. It is particularly important from the standpoint

of integrating required data from different sources with the goal of privacy and

utility trade-off. This is the case, for instance, in healthcare and military appli-

cations, where experts only want to share parts of the client’s data they have. As

a result, how to provide integrated results to the users by maintaining privacy

of client’s records is another key challenge that is required to be investigated in

the future.
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[10] Trnka, M., Cerný, T.: On security level usage in context-aware role-based

access control. In: SAC. (2016) 1192–1195

[11] Kayes, A.S.M., Han, J., Colman, A.: An ontology-based approach to

context-aware access control for software services. In: WISE. (2013) 410–

420

[12] Kayes, A.S.M., Han, J., Colman, A., Islam, M.S.: Relboss: A relationship-

aware access control framework for software services. In: CoopIS. (2014)

258–276

[13] Kayes, A.S.M., Han, J., Colman, A.: PO-SAAC: A purpose-oriented

situation-aware access control framework for software services. In: CAiSE.

(2014) 58–74

[14] Kayes, A.S.M., Han, J., Colman, A.: A semantic policy framework for

context-aware access control applications. In: TrustCom. (2013) 753–762
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