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High-throughput biology

Modern biological experiments acquire information regarding
hundreds–millions of variables/features of interest about each
observational unit, simultaneously.

Each variable of interest requires assessment regarding its
biological and statistical significance, via some technical
mechanism.

The inflated number of variables, combined with the relatively
small sample sizes, increases the probability of false positives.
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Examples of high-throughput experiments

Microarray/RNA-seq experiments assess
thousands–hundreds of thousands of different gene
expressions.

Proteomic mass spectrometry experiments can identify
the expression of thousands–tens of thousands of different
proteins.

MRI/fMRI experiments can assess the effect of variables on
millions of image voxels.

Geospatial observational studies assess hundreds of
thousands–millions of spatial image pixels for change or
effects.
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MRI example

Figure: Coronal slice of a mouse brain MRI. Each pixel is a p-value. The
brain volume is 2.8 million voxels (Nguyen et al., 2019).
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Hypothesis testing
Let H be a random null hypothesis that can either be true
(H = 0) or false (H = 1).
When testing H, we compute a p-value P ∈ [0,1]

(summarizing our evidence) and compare it against the level
of significance α ∈ [0,1], where we assume that

Pr (P ≤ α|H = 0)≤ α.

Let rα (P) be the rejection rule of H, where

rα (P) =

0 (do not reject H) if P > α,

1 (reject H) if P ≤ α;

then we are accepting a Type-I error rate of:

Pr (rα (P) = 1|H = 0)≤ α.
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The multiple testing problem

If we set α = 0.05 then we accept that the probability of
making a Type-I is at most 1/20.

Now suppose that we test n independent hypotheses
H1, . . . ,Hn, simultaneously, using the rejection rule rα applied
on their p-values P1, . . . ,Pn; then the fact above implies

E [Total number of Type-I errors]≤ αn = n/20.

Suppose that n = 10000 (modest modern scenario); then

E [Total number of Type-I errors]≤ 10000
20 = 500.
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The famous (infamous) salmon

Figure: Significance map from an fMRI study of a dead salmon (Bennett
et al., 2009).
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The false discovery rate
The rejection rule rα is an individual test-focused rule and
should not be applied to a large sample of hypotheses.
We should subject the tests of the sample H1, . . . ,Hn to
criteria that adequately accounts for the sampling property of
the hypotheses.
Let R be the total number of rejected hypotheses
H1, . . . ,Hn according to some rule, and let V be the number
of these hypotheses that are falsely rejected; then as
famously suggested by Benjamini and Hochberg (1995), we
can control the false discovery rate (FDR):

FDR = E(V /R)(assuming R > 0),

instead of the Type-I error.
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Importance of the FDR

Figure: Web of Science citation report for Benjamini and Hochberg
(1995).
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The Benjamini-Hochberg method

Like controlling the Type-I error probability below some level
α ∈ [0,1]; we wish instead to control the FDR so that

FDR≤ β , β ∈ [0,1] .

Let
P(1) ≤ P(2) ≤ ·· · ≤ P(n)

be the order statistics of the p-values P1, . . . ,Pn, and
correspondingly arrange the hypotheses H1, . . . ,Hn in the same
order: H(1), . . . ,H(n).
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The Benjamini-Hochberg method
Benjamini and Hochberg (1995) suggest that if H1, . . . ,Hn are
independent, then we can control the FDR at the level β by
rejecting only the hypotheses H(1), . . . ,H(k), where

k = max

{
i ∈ {1, . . . ,n}|P(i) ≤

i
nβ

}
.

Alternatively, if we define the rejection rule:

rBH
β

(Pi ) =

0 (do not reject Hi) if Pi >
k
n β ,

1 (reject Hi) if Pi ≤ k
n β ;

then

FDR = E
(
V
R

)
= E

[
∑

k
i=1

q
H(i) = 0

y

k

]
≤ β .
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When does the Benjamini-Hochberg method work?

Benjamini and Yekutieli (2001) proved that the rule rBH
β

correctly
controls the FDR under the conditions:

(BH1) If Hi = 0, then

Pi ∼ Uniform [0,1] .

(BH2) The n hypotheses satisfies the so-called positive
regression dependence on subsets assumption (implied by
positive correlation between the p-values).
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The Benjamini-Yekutieli method
Benjamini and Yekutieli (2001) proved that we can drop
(BH2) if we let

k = max

i ∈ {1, . . . ,n}|P(i) ≤
i
n

(
n

∑
i=1

1
j

)−1
β


and reject the k hypotheses H(1), . . . ,H(k) using the rejection
rule:

rBY
β

(Pi ) =

0 (do not reject Hi) if Pi >
k
n

(
∑

n
i=1

1
j

)−1
β ,

1 (reject Hi) if Pi ≤ k
n

(
∑

n
i=1

1
j

)−1
β .

Blanchard and Roquain (2008) show that rBY
β

is within an
infinite family of FDR control rules that are all correct under
(BH1).
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When are p-values not uniform, under the null hypotheses?
Efron (2010) suggest the following examples:

The mathematical assumption for the hypothesis tests are not
satisfied. E.g., t-test p-values are calculated using the wrong
degrees of freedom.
Models are misspecified. E.g., p-values are obtained from
regression models where some normalizing variables are
missing.
Tests are conducted using correlated data. E.g., the genetic
material from a genomics experiment are obtained from
related individuals.
Hypotheses under consideration are pre-filtered. E.g., the
researcher quality controls data by removing variables
containing outliers.
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The z-transformation
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Figure: P ∼ Uniform [0,1], and Z = Φ−1 (1−P) and thus Z ∼ N(0,1).
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Modeling the null distribution

We observe that if P is not uniform, then the z-score

Z = Φ−1 (1−P)

will not be standard normal.

If Zi is the z-score of Pi and Hi = 0, then we can model the
probability density function of Zi by the normal PDF

f0 (z) = φ
(
z ; µ0,σ

2
0
)

=
1√
2πσ2

0

exp

[
−1
2

(z−µ0)2

σ2
0

]
,

where µ0 ≈ 0 and σ2
0 ≈ 1.

Efron (2004) calls f0 the empirical null model for the
z-score.
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Modeling non-null distribution

If Pi is a p-value and Hi = 1, then on average, it should have
a smaller value than when Hi = 0. (a well-ordered assumption,
of sort).

If Zi is the z-score of Pi and Hi = 1, then we can model Zi by
the normal PDF

f1 (z) = φ
(
z ; µ1,σ

2
1
)
,

where µ1 > µ0 (to enforce the well-ordering) and σ2
1 is free to

vary.
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An empirical Bayes model for the z-score
Suppose that each hypothesis Hi is equal to 0, with probability
λ0 > 0, and is equal to 1, with probability λ1 > 0, so that

λ0 + λ1 = 1.

Then, the empirical-Bayes model is the marginal PDF of Zi :

f (z ;θθθ) = λ0f0 (z) + λ1f1 (z) = λ0φ
(
z ; µ0,σ

2
0
)

+ λ1φ
(
z ; µ1,σ

2
1
)
,

where θθθ is a vector containing the parameter elements
λ0,λ1,µ0,µ1,σ

2
0 ,σ

2
1 .

If we knew the value of λ0 and λ1 then we can obtain the
posterior distribution of Hi , conditioned on Zi .
Since we do not know any of the parameters, we must
estimate θθθ by the maximum likelihood estimator θ̂θθ ,
containing the elements λ̂0, λ̂1, µ̂0, µ̂1, σ̂

2
0 , σ̂

2
1 .
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Estimating the FDR
By Bayes’ formula, we have the estimated posterior
probabilities:

τ̂ (Zi ) = Pr
θ̂θθ

(Hi = 0|Zi ) = λ̂0φ
(
Zi ; µ̂0, σ̂

2
0
)
/f
(
Zi ; θ̂θθ

)
.

Suppose that we reject Hi using the rule:

rEBc (Zi ) =

0 (do not reject Hi) if τ̂ (Zi ) > c,

1 (reject Hi) if τ̂ (Zi )≤ c;

where c > 0 is some cutoff value.
We can estimate the FDR based on rule rEBc (Zi ) by

FDR(c) =
∑

n
i=1 τ̂ (Zi ) rEBc (Zi )

∑
n
i=1 rEBc (Zi )

,

where E
[
FDR(c)

]
→ FDR(c), as n→ ∞ (Nguyen et al.,

2014).
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Controling the FDR

Using FDR(c), we can model the FDR as a function of c.

If we wish to control the FDR at the desired level β ∈ [0,1],
then we must find

ĉβ = sup
{
c|FDR(c)≤ β

}
.

We can then apply the rejection rule:

rEB
β

(Zi ) =

0 (do not reject Hi) if τ̂ (Zi ) > ĉβ ,

1 (reject Hi) if τ̂ (Zi )≤ ĉβ ;
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An example

We analyze the hivdata data set from van’t Wout et al.
(2003) which contains n = 7680 normalized t-statistics
corresponding to differential expression of genes related to
HIV, computed from two-sample pooled t-tests from 4 HIV
and 4 control patients.

We follow the FDR control procedure that was considered in
McLachlan et al. (2006).
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Thank you!

Email: h.nguyen5@latrobe.edu.au

Website: hiendn.github.io

26 / 26


	References

