Genomic Prediction

Modern Statistical Approaches for Biological Data 29.09.2020 A/Prof Hans Daetwyler and Dr Zibei Lin <u>Hans.Daetwyler@agriculture.vic.gov.au</u>

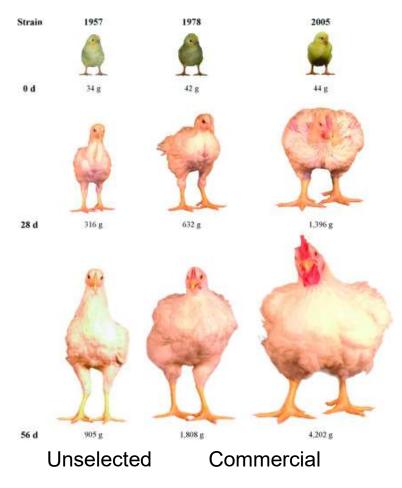
(some slides adapted from course by Prof Ben Hayes, University of Queensland)

Outline

- Introduction to Genomic Prediction
- Methods
- Validation principles
- Limitations
- Examples

Quantitative Traits and Selection

- Dramatic changes in phenotypes due to selection
- Many traits affected by large number of mutations
 - Quantitative trait loci (QTL)
- Variance explained by individual markers will be small
- Genomic prediction -> Use large numbers of DNA markers to simultaneously track all QTL
- Increase efficiency of selection



Zuidhof et al., 2014. Poultry Sci 93:2970-2982

Methods to 'Genetically' Evaluate Individuals

- Phenotypic Selection
 - Low tech
 - Simple to implement
 - Works best when heritability is higher
 - Must observe phenotype
 - Still widely used in plant breeding

y = Xb + Zu + e

- V(u)=I
- Individuals are assumed independent

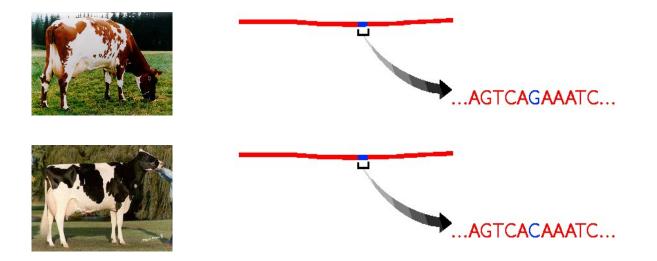
- Pedigree Breeding
 - Can predict performance based on relatives
 - Juvenile = parent average
 - Requires pedigree recording
 - Observed phenotypes increase accuracy
 - Info on Mendelian sampling term from own records and progeny
 - Efficiency less dependent on h^2 than phenotypic selection
 - More inbreeding than phenotypic selection at low h^2 (BLUP)

y = Xb + Zu + e

- V(u)=A
- Covariance of lines from pedigree relationship matrix (A)

The Genetic Marker Revolution

- As a result of sequencing animal and plant genomes, have a huge amount of information on variation in the genome
 - at the DNA level
- Most abundant form of variation are Single Nucleotide Polymorphisms (SNPs)



The Genomic Revolution

- Genotyping solutions available for most species
- SNP arrays
 - Accurate genotypes at specific positions
- Genotyping by (re)-sequencing
 - Targeted and untargeted approaches
 - Not quite as accurate but more flexible than chips
- Cost?
 - ~ \$15-100 AUD for 50,000+ markers

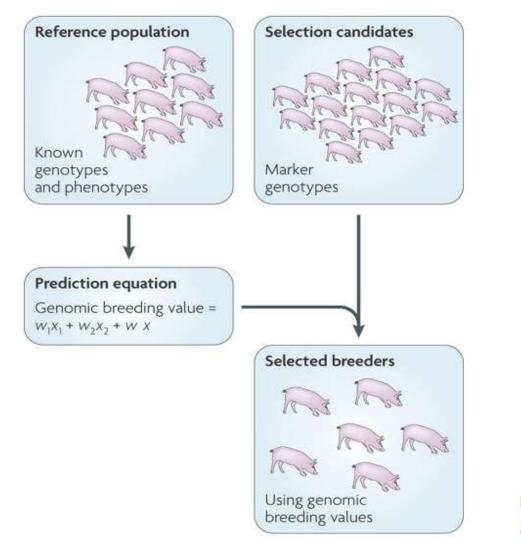
Methods to Genetically Evaluate Individuals

Genomic Prediction

- Predict performance based on reference population (relatives?)
 - Predict young individuals with only genotypes
 - Decrease generation interval
- Requires genotyping
- Observed phenotypes increase accuracy
- Info on Mendelian sampling term from all individuals in reference

- y = Xb + Zu + e
- V(u)=G
- Covariance of lines from genomic relationship matrix (G)

Genomic Prediction



Michael E. Goddard & Ben J. Hayes

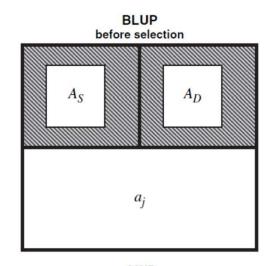
Nature Reviews Genetics 10, 381-391 (June 2009)

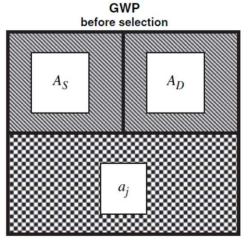
Why makes genomic prediction different to pedigree breeding?

The Mendelian Sampling Term

An individuals breeding value has two components

- 50% due to parent average component
 - Prediction at birth is the average of two parents breeding value
- 50% due to Mendelian sampling component
 - Individual's deviation from parent average breeding value
 - Sampling of parental alleles
 - Reason for differences in:
 - a pair of full sibs
 - a pair of F2 in a bi-parental
 - Cannot predict at birth/seed using pedigree alone
 - Genetic gain driven by
 - Accuracy of and time taken to estimate of Mendelian sampling term
 - Genomic prediction (GWP) provides information on which alleles received from parents

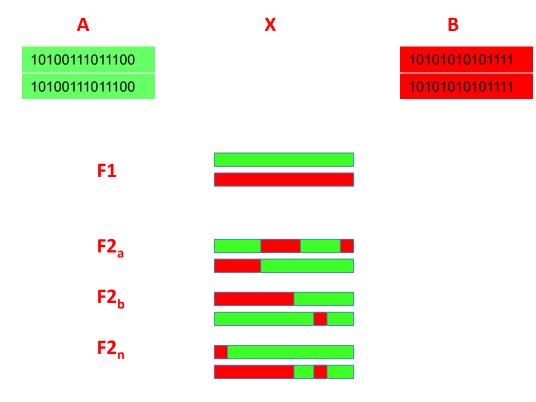




Daetwyler et al., 2007. J Anim Breed Genet 124: 369-376

What Mendelian sampling looks like in a inbred biparental cross

- Diploid genetics
 - Each individual has two gametes
 - If individual is inbred these gametes are the same



Factors affecting genomic prediction accuracy

$$r = \sqrt{\frac{N_P h^2}{N_P h^2 + M_e}}$$

- Reference population size (Np)
- Heritability (h²)
- Number of effective chromosome segments (Me)
 - Effective population size
 - Linkage disequilibrium
 - Genome length
- Number of QTL (if few)
- Dense genetic markers

Genomic Prediction

- Genomic selection exploits linkage disequilibrium
 - Assumption is that markers are correlated with mutations (QTL) and have same effect across whole population
- Justified assumption as we now have dense marker maps
- Trace whole genome with markers
 - Capture all mutations = all genetic variance
- Genomic selection avoids bias in estimation of effects due to multiple testing, as all effects fitted simultaneously

Genomic Prediction Methods

- Mixed linear models
 - Often referred to as best linear unbiased prediction (BLUP) methods
 - Two equivalent models: SNP BLUP and GBLUP (Habier et al., 2007. Genetics 177:2389-2397)
- Bayesian models
 - More flexible assumption on marker variances than BLUP
 - Utilise Gibbs sampling

De los Campos et al., 2013. Genetics. 193: 327-345

Genomic prediction with BLUP

SNP BLUP model

$$\mathbf{y} = \boldsymbol{\mu} \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e} \qquad \begin{bmatrix} \hat{\boldsymbol{\mu}} \\ \mu \\ g \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{n} \mathbf{1}_{n} & \mathbf{1}_{n} \mathbf{X} \\ \mathbf{X} \mathbf{1}_{n} & \mathbf{X} \mathbf{X} + \mathbf{I} \frac{\sigma_{e}^{2}}{\sigma_{g}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{n} \mathbf{y} \\ \mathbf{X} \mathbf{y} \end{bmatrix} \qquad \mathbf{GEBV} = \mathbf{X} \mathbf{g}$$

GBLUP model

$$\mathbf{y} = \boldsymbol{\mu} \mathbf{1}_{\mathbf{n}} + \mathbf{Z}\mathbf{v} + \mathbf{e} \qquad \begin{bmatrix} \uparrow \\ \boldsymbol{\mu} \\ \uparrow \\ \mathbf{v} \end{bmatrix} = \begin{bmatrix} \mathbf{1}_{\mathbf{n}}'\mathbf{1}_{\mathbf{n}} & \mathbf{1}_{\mathbf{v}}'\mathbf{Z} \\ \mathbf{Z}'\mathbf{1}_{\mathbf{n}} & \mathbf{Z}'\mathbf{Z} + \mathbf{G}^{-1}\frac{\sigma_{e}^{2}}{\sigma_{v}^{2}} \end{bmatrix}^{-1} \begin{bmatrix} \mathbf{1}_{\mathbf{n}}'\mathbf{y} \\ \mathbf{Z}'\mathbf{y} \end{bmatrix}$$

SNP BLUP

- BLUP = best linear unbiased prediction (SNP-BLUP)
- Model:

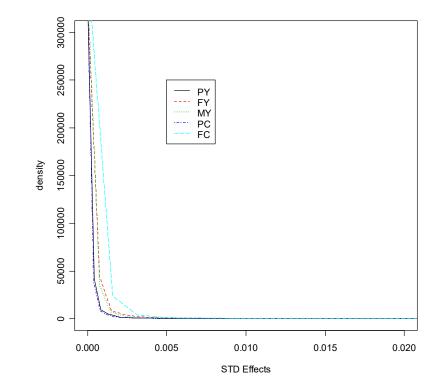
$$\mathbf{y} = \mu \mathbf{1}_{\mathbf{n}} + \sum_{i=1}^{p} \mathbf{X}_{i} \mathbf{g}_{i} + \mathbf{e}$$

 In BLUP we assume all SNP effects come from normal distribution with same variance

$$- E(g) \sim N(0,\sigma_g^2)$$

Alternative prior assumptions for SNP effects

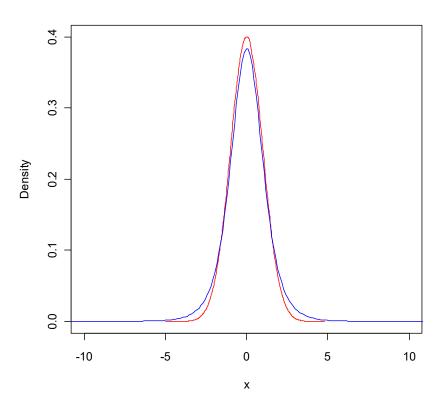
- BLUP assumes normally distributed QTL effects
- Does not match prior knowledge of distributions of QTL effects for some traits



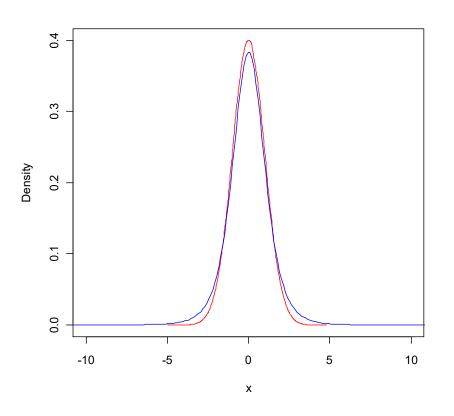
Alternative prior assumptions for SNP effects

- Students t distribution?
 - BayesA
- Many zero effects and a proportion Students t distribution?
 - BayesB
- Many zero effect and rest normal distribution
 - BayesCpi
- Double exponential effects
 - BayesianLASSO
- Multiple normal distributions
 - BayesMulti, BayesR

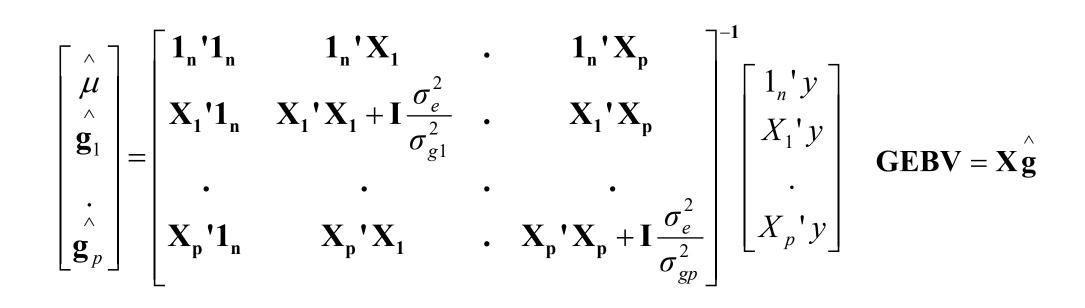
- For some traits prior knowledge suggests t-distribution of effects
- How to incorporate this into our predictions?



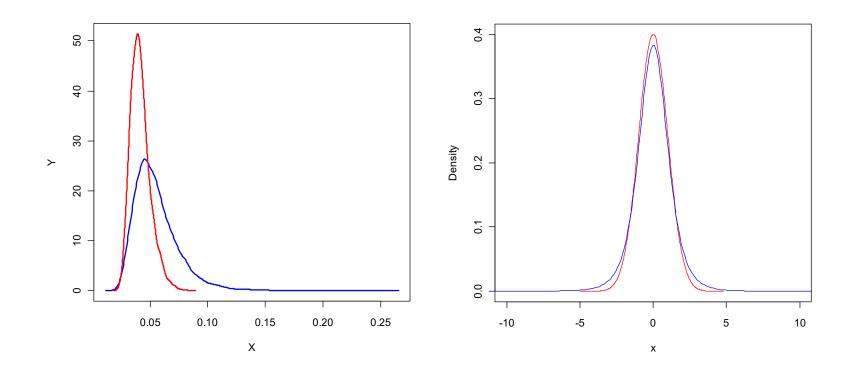
- The **t distribution** can be presented as a two level hierarchical model
- Allow different variances for markers
- Assume a distribution of these variances
- Computationally easier to deal with than original form



Now lets allow different variances of marker effects



Distribution of $\sigma_{gj}^2 \rightarrow Distribution of g_j$



- Now lets allow different variances of marker effects
- Two levels of models

Data

$$P(\mathbf{g}, \mu \mid y) \propto P(y \mid \mathbf{g}, \mu) P(\mathbf{g}, \mu)$$

– Variances of marker effects

$$P(\sigma_{gi}^2 \mid g_i) \propto P(g_i \mid \sigma_{gi}^2) P(\sigma_{gi}^2)$$

Bayesian methods – A word on priors

- Bayesian methods utilise priors
- A prior reflects the existing knowledge about the parameter to be estimated
- Priors affect results
 - The stronger the prior, the more the influence

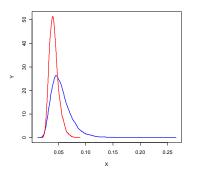
• Variances of chromosome segments

Prior?

$$P(\sigma_{gi}^{2} | g_{i}) \propto P(g_{i} | \sigma_{gi}^{2})P(\sigma_{gi}^{2})$$

$$S^{2} / \chi_{v}^{2}$$

 We can choose v (degrees of freedom) and S² (scale factor) so that the prior reflects our knowledge that there are many QTL of small effect and few of large effect



Meuwissen et al., 2001. Genetics. 157: 1819-1829

• Variances of chromosome segments

$$P(\sigma_{gi}^2 | \mathbf{g_i}) \propto P(\mathbf{g_i} | \sigma_{gi}^2) P(\sigma_{gi}^2)$$

• Posterior?

$$\chi^{-2}_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}$$

• But posterior cannot be estimated directly, dependent on gi!

- Solution is to use Gibbs sampling
 - Draw samples from the posterior distributions of parameters conditional on all other effects
 - The average of these samples can be used as the estimates of the parameters

- Gibbs sampling scheme
 - Parameters to estimate and their posteriors

$$-P(\sigma_{gi}^{2}|g_{i})$$

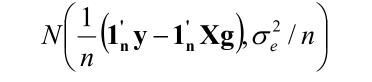
 $- P(\sigma_e^2 | \mathbf{e})$

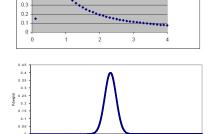
 $-P(\mu|\mathbf{y},\mathbf{e},\mathbf{g},\sigma_{e}^{2})$

 $-P(g_{ii}|\mathbf{y},\mu,\mathbf{g}\neq ij,\sigma_{qi}^{2},\sigma_{e}^{2})$

$$\chi^{-2}_{(4.012+n_i,0.002+\mathbf{g_i'g_i})}$$

$$\chi^{-2}_{(n-2,\mathbf{e'e})}$$

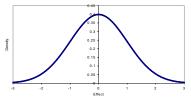




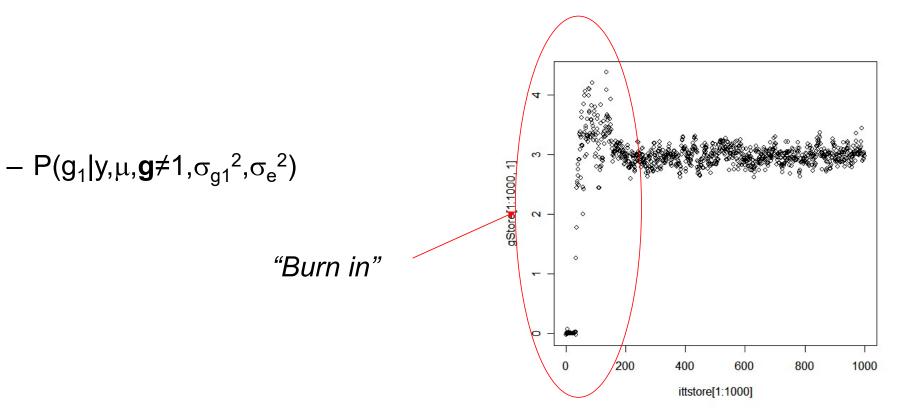
Series1

Series 1





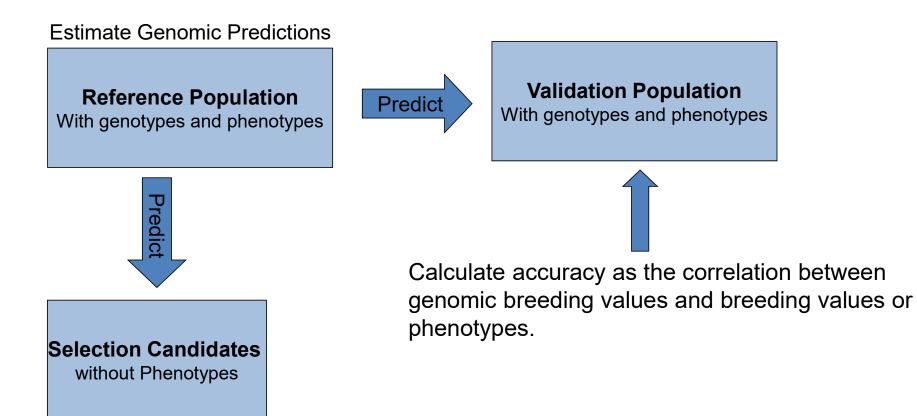
Gibbs chain for 1000 cycles



Validation of genomic selection

- Aim of genomic selection
 - predict (young) selection candidates without phenotypes
- How to test or validate predictions?
- Test predictions in a population sample that is similar to selection candidates
- Key principle of validation
 - Independence of reference and validation populations

Validation – Accuracy of genomic prediction



Prediction Accuracy

- Most commonly used:
 - r = Pearson correlation(GEBV,phenotypes)
 - Gives accuracy of a group of individuals
 - Correlations have a standard error which depends on sample size and the magnitude of the correlation
 - An approximation of this standard error was given by Fisher (see Fisher z transform)
 - SE ~ 1/sqrt(N-3)
 - For example with 31 individuals
 - SE = 1/sqrt(31-3) = 0.189
- Individual accuracy
 - Calculated using the prediction error variance from the diagonal of the coefficient matrix (GBLUP)

Two main ways to validate

- 1st way: Independent set of individuals
 - Breeding values or phenotypes
 - Dairy bull progeny test (e.g. Daughter trait deviations)
 - Large progeny groups or many clones (plants)
 - Different population
 - Step 1: Estimate marker effects in reference population
 - Step 2: Predict highly accurate individuals and calculate accuracy
- 2nd way: 'Classic' cross-validation
 - Step 1: Divide dataset into n subsets of individuals
 - Step 2: Predict each subset using all other subsets
 - Step 3: Calculate accuracy in each subset and take mean across all subsets

Validation - Independence

- Always ask yourself this question:
 - If the validation individuals were selection candidates what data would be available?
 - Then only use that data for reference!
- Independence of 'data', not independence in relationship

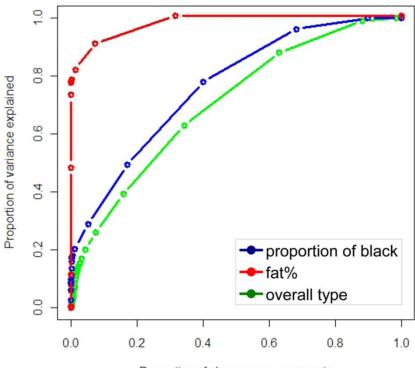
Independence

- Validation individuals are not used in the reference population
- Validation phenotypes do not contribute to observed variables of reference pop
 - E.g. excluded when calculating estimated breeding values
- Validation individuals do not have contemporaries of same age in reference

Target of prediction

- Validation population should be similar to selection candidates
- Similar relationship to reference as selection candidates
 - Same number of generations removed
 - Same breeds
 - Same population
- Same SNP density
 - Consider imputation error

Cattle: Performance of genomic prediction



Proportion of chromosome segments

Figure 1. Proportion of black phenotype. Bull with 95% black (A) and bull with 5% black (B doi:10.1371/journal.pgen.1001139.g001

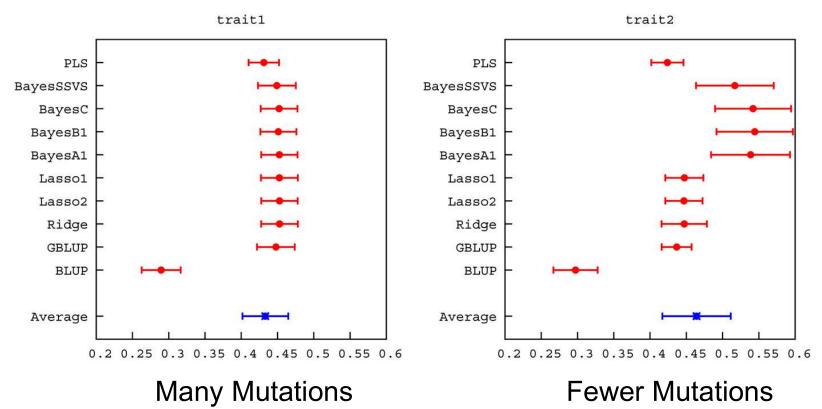
1200 Australian Holstein bulls

In traits with large QTL effects BayesA performed better than GBLUP

	Overall Type	Proportion Black Coat	Milk Fat %
GBLUP	0.42	0.46	0.63
BayesA	0.38	0.59	0.73

Hayes et al., 2010. PLoS Genetics 6: e1001139

Performance of genomic prediction methods

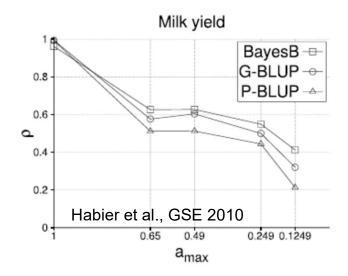


- Many mutations, most methods perform the same
- Fewer mutations, methods that can differentially shrink marker effects are better

Daetwyler et al., 2013. Genetics. 193:347-365

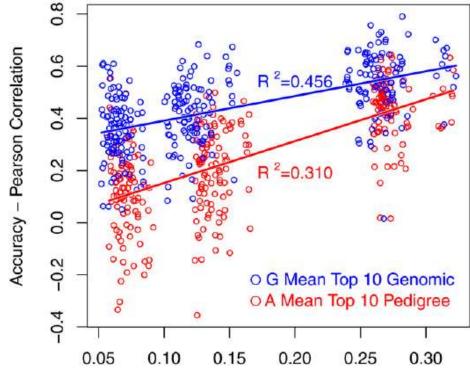
Limitations of genomic selection

- Accuracy strongly related to relationship to reference population
 - Accuracy decreases as relationship decreases
 - Decay across generations
 - Lower accuracy across breeds
 - Low accuracy into novel germplasm
- Accuracy into new environments low
 - Genotype-by-environment interactions



Influence of relationships on prediction accuracy

Relationship of validation to reference important contributor to accuracy



Mean Top 10 Relationships

Daetwyler et al., 2013. Genetics. 193:347-365

Reference population design

- Which individuals/lines?
- The relationship of the reference population to the selection candidates affects accuracy of GEBV
- Need individuals close to those being predicted in reference
- At the same time, as diverse as possible so that many individuals/lines can be accurately predicted

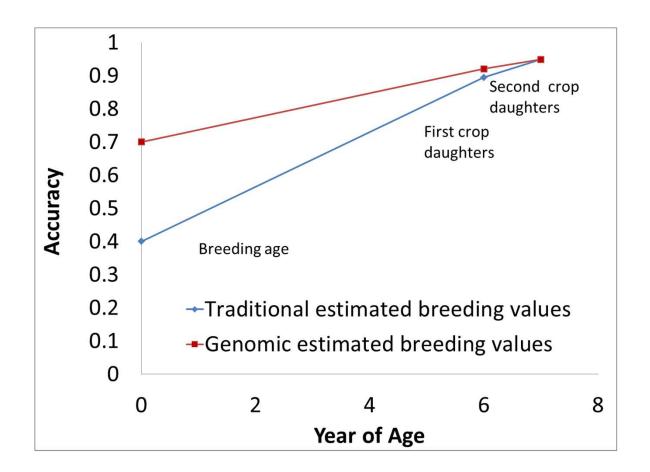
Optimal breeding program design

- Predict GEBV with good accuracy in selection candidates with only a DNA sample
- Achieve higher accuracy earlier in life
- How does this change the optimal breeding program design?
- Breed from individuals as early as possible

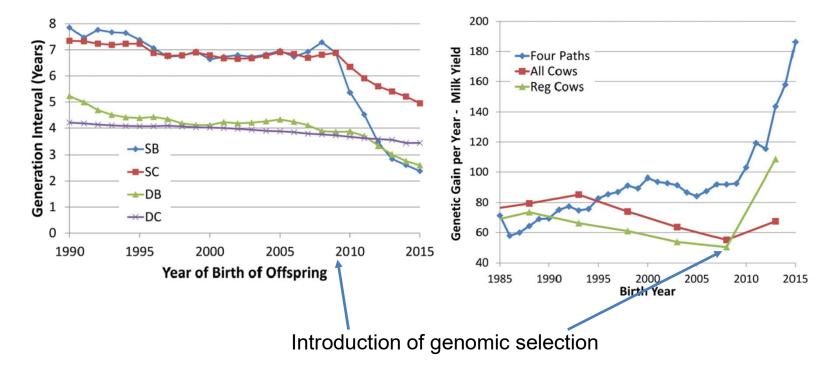
Genomic selection: dairy cattle

 $\Delta G = \frac{ir\sigma_g}{L}$

ΔG genetic change
i selection intensity
r selection accuracy
og genetic std deviation
L generation interval



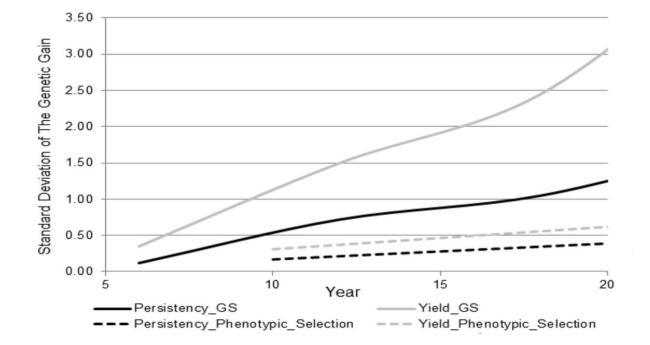
Genetic Gain: US Dairy Cattle



Large increases in genetic gain from genomic selection

Garcia-Ruiz et al., 2016. PNAS. https://www.pnas.org/content/pnas/113/28/E3995.full.pdf

Genetic Gain: Pasture Grasses (Simulations)



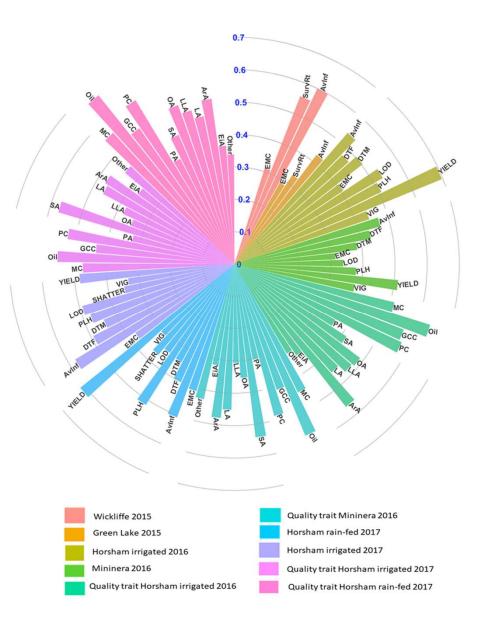
Large increases in genetic gain from genomic selection (GS)

Lin et al., 2016. The Plant Genome. 9:1

Canola Genomic Prediction

- 200 spring canola lines
- 60,000 genotyping-by-sequencing SNP markers
- Within-site GBLUP

Accuracy moderate to high across 22 key canola traits.



Fikere et al., 2020. Plants 9:719