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Quantitative Traits and Selection

• Dramatic changes in phenotypes due to 
selection

• Many traits affected by large number of 
mutations
– Quantitative trait loci (QTL)

• Variance explained by individual markers 
will be small

• Genomic prediction -> Use large numbers of 
DNA markers to simultaneously track all 
QTL

• Increase efficiency of selection

Unselected Commercial

Zuidhof et al., 2014. Poultry Sci 93:2970-2982



Methods to ‘Genetically’ Evaluate Individuals

• Phenotypic Selection
– Low tech
– Simple to implement
– Works best when heritability is higher
– Must observe phenotype
– Still widely used in plant breeding

• Pedigree Breeding
– Can predict performance based on relatives

• Juvenile = parent average
• Requires pedigree recording

– Observed phenotypes increase accuracy
– Info on Mendelian sampling term from own records and progeny
– Efficiency less dependent on h2 than phenotypic selection
– More inbreeding than phenotypic selection at low h2 (BLUP)

y = Xb + Zu +e
• V(u)=I
• Individuals are assumed independent

y = Xb + Zu +e
• V(u)=A
• Covariance of lines from 

pedigree relationship matrix 
(A) 



The Genetic Marker Revolution

• As a result of sequencing animal and plant genomes, have a huge amount of 
information on variation in the genome 
– at the DNA level

• Most abundant form of variation are Single Nucleotide Polymorphisms (SNPs)



The Genomic Revolution

• Genotyping solutions available for most species

• SNP arrays 
– Accurate genotypes at specific positions

• Genotyping by (re)-sequencing
– Targeted and untargeted approaches

– Not quite as accurate but more flexible than chips

• Cost?

– ~ $15-100 AUD for 50,000+ markers



Methods to Genetically Evaluate Individuals

• Genomic Prediction
– Predict performance based on reference 

population (relatives?)
• Predict young individuals with only genotypes

– Decrease generation interval

– Requires genotyping

– Observed phenotypes increase accuracy

– Info on Mendelian sampling term from all 
individuals in reference

y = Xb + Zu +e
• V(u)=G
• Covariance of lines from 

genomic relationship matrix (G) 



Genomic Prediction



Why makes genomic prediction 
different to pedigree breeding?

The Mendelian Sampling Term



An individuals breeding value has two components

• 50% due to parent average component
– Prediction at birth is the average of two parents breeding value

• 50% due to Mendelian sampling component
– Individual’s deviation from parent average breeding value

– Sampling of parental alleles

– Reason for differences in:
• a pair of full sibs

• a pair of F2 in a bi-parental

– Cannot predict at birth/seed using pedigree alone

– Genetic gain driven by 
• Accuracy of and time taken to estimate of Mendelian sampling term

– Genomic prediction (GWP) provides information on which alleles 
received from parents

Daetwyler et al., 2007. J Anim Breed Genet 124: 369-376



What Mendelian sampling looks like in a inbred bi-
parental cross
• Diploid genetics

• Each individual has two gametes
• If individual is inbred these gametes are the same

10100111011100 10101010101111

10100111011100 10101010101111

A X B

F1

F2a

F2b

F2n



Factors affecting genomic prediction accuracy 

• Reference population size (Np)
• Heritability (h2)
• Number of effective chromosome segments (Me)

– Effective population size
• Linkage disequilibrium

– Genome length

• Number of QTL (if few)

• Dense genetic markers
Daetwyler et al., 2010. Genetics 185:1021-1031



Genomic Prediction

• Genomic selection exploits linkage disequilibrium
– Assumption is that markers are correlated with mutations (QTL) 

and have same effect across whole population

• Justified assumption as we now have dense marker maps

• Trace whole genome with markers
– Capture all mutations = all genetic variance

• Genomic selection avoids bias in estimation of effects due 
to multiple testing, as all effects fitted simultaneously   



Genomic Prediction Methods

• Mixed linear models 
– Often referred to as best linear unbiased prediction (BLUP) methods

– Two equivalent models: SNP BLUP and GBLUP (Habier et al., 2007. Genetics 
177:2389-2397)

• Bayesian models
– More flexible assumption on marker variances than BLUP

– Utilise Gibbs sampling

De los Campos et al., 2013. Genetics. 193: 327-345



Genomic prediction with BLUP
• SNP BLUP model

• GBLUP model
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SNP BLUP

• BLUP = best linear unbiased prediction (SNP-BLUP)

• Model:

• In BLUP we assume all SNP effects come from normal 
distribution with same variance          

– E(g) ~ N(0,g
2)
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Alternative prior assumptions for SNP effects

• BLUP assumes normally distributed 
QTL effects

• Does not match prior knowledge of 
distributions of QTL effects for 
some traits
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Alternative prior assumptions for SNP effects

• Students t distribution?
– BayesA

• Many zero effects and a proportion Students t distribution?
– BayesB

• Many zero effect and rest normal distribution
– BayesCpi

• Double exponential effects
– BayesianLASSO

• Multiple normal distributions
– BayesMulti, BayesR

De los Campos et al., 2013. Genetics. 193: 327-345



Bayesian Methods

• For some traits prior knowledge 
suggests t-distribution of effects

• How to incorporate this into our 
predictions?
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Bayesian Methods
• The t distribution can be presented 

as a two level hierarchical model

• Allow different variances for markers

• Assume a distribution of these 
variances

• Computationally easier to deal with 
than original form
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Bayesian methods

• Now lets allow different variances of marker effects
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Bayesian methods

• Now lets allow different variances of marker effects

• Two levels of models
– Data

– Variances of marker effects
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Bayesian methods – A word on priors

• Bayesian methods utilise priors

• A prior reflects the existing knowledge about the parameter 
to be estimated

• Priors affect results
– The stronger the prior, the more the influence



Bayesian methods

• Variances of chromosome segments

• Prior?

• We can choose v (degrees of freedom) and S2 (scale factor) so that the prior 
reflects our knowledge that there are many QTL of small effect and few of 
large effect
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Bayesian methods

• Variances of chromosome segments

• Posterior?

• But posterior cannot be estimated directly, dependent on gi!
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Bayesian methods

• Solution is to use Gibbs sampling
– Draw samples from the posterior distributions of parameters 

conditional on all other effects

– The average of these samples can be used as the estimates of 
the parameters



Bayesian methods

• Gibbs sampling scheme
– Parameters to estimate and their posteriors
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Bayesian methods

• Gibbs chain for 1000 cycles

– P(g1|y,,g≠1,g1
2,e

2)

“Burn in”



Validation of genomic selection
• Aim of genomic selection

– predict (young) selection candidates without phenotypes

• How to test or validate predictions?

• Test predictions in a population sample that is similar to 
selection candidates

• Key principle of validation
– Independence of reference and validation populations



Validation – Accuracy of genomic prediction

Reference Population
With genotypes and phenotypes

Validation Population
With genotypes and phenotypes

Selection Candidates 
without Phenotypes

Estimate Genomic Predictions

Predict

P
red

ict

Calculate accuracy as the correlation between
genomic breeding values and breeding values or 
phenotypes.



Prediction Accuracy
• Most commonly used:

– r = Pearson correlation(GEBV,phenotypes)
– Gives accuracy of a group of individuals

– Correlations have a standard error which depends on sample size and the 
magnitude of the correlation

• An approximation of this standard error was given by Fisher (see Fisher z transform)
• SE ~ 1/sqrt(N-3)

• For example with 31 individuals
– SE = 1/sqrt(31-3) = 0.189

• Individual accuracy
– Calculated using the prediction error variance from the diagonal of the coefficient 

matrix (GBLUP)



Two main ways to validate

• 1st way: Independent set of individuals
– Breeding values or phenotypes
– Dairy bull progeny test (e.g. Daughter trait deviations)

– Large progeny groups or many clones (plants)

– Different population

– Step 1: Estimate marker effects in reference population 

– Step 2: Predict highly accurate individuals and calculate accuracy

• 2nd way: ‘Classic’ cross-validation
– Step 1: Divide dataset into n subsets of individuals

– Step 2: Predict each subset using all other subsets 

– Step 3: Calculate accuracy in each subset and take mean across all subsets



Validation - Independence

• Always ask yourself this question: 

– If the validation individuals were selection 
candidates what data would be available?

– Then only use that data for reference!

• Independence of ‘data’, not independence in relationship 



Independence

• Validation individuals are not used in the reference 
population

• Validation phenotypes do not contribute to observed 
variables of reference pop
– E.g. excluded when calculating estimated breeding values

• Validation individuals do not have contemporaries of 
same age in reference



Target of prediction

• Validation population should be similar to selection 
candidates

• Similar relationship to reference as selection candidates
– Same number of generations removed

– Same breeds

– Same population

• Same SNP density
– Consider imputation error



Cattle: Performance of genomic prediction 
methods

Overall 
Type

Proportion 
Black Coat Milk Fat %

GBLUP 0.42 0.46 0.63

BayesA 0.38 0.59 0.73

Hayes et al., 2010. PLoS Genetics 6: e1001139

• 1200 Australian Holstein bulls

In traits with large QTL effects BayesA
performed better than GBLUP



Performance of genomic prediction methods

Many Mutations Fewer Mutations

• Many mutations, most methods perform the same
• Fewer mutations, methods that can differentially shrink marker effects are better

Daetwyler et al., 2013. Genetics. 193:347-365



Limitations of genomic selection

• Accuracy strongly related to relationship to 
reference population
– Accuracy decreases as relationship decreases

– Decay across generations

– Lower accuracy across breeds

– Low accuracy into novel germplasm

• Accuracy into new environments low
– Genotype-by-environment interactions

Habier et al., GSE 2010



Influence of relationships on prediction accuracy

• Relationship of validation to reference important contributor to 
accuracy

Daetwyler et al., 2013. Genetics. 193:347-365



Reference population design

• Which individuals/lines?

• The relationship of the reference population to the 
selection candidates affects accuracy of GEBV

• Need individuals close to those being predicted in 
reference

• At the same time, as diverse as possible so that many 
individuals/lines can be accurately predicted



Optimal breeding program design

• Predict GEBV with good accuracy in selection candidates with 
only a DNA sample

• Achieve higher accuracy earlier in life

• How does this change the optimal breeding program design?

• Breed from individuals as early as possible 



Genomic selection: dairy cattle

L

ir
G g

ΔG  genetic change
i  selection intensity
r  selection accuracy
σg  genetic std deviation
L  generation interval



Genetic Gain: US Dairy Cattle

Garcia-Ruiz et al., 2016. PNAS.
https://www.pnas.org/content/pnas/113/28/E3995.full.pdf

Large increases in genetic gain from genomic selection

Introduction of genomic selection



Genetic Gain: Pasture Grasses (Simulations)

Lin et al., 2016. The Plant Genome. 9:1

Large increases in genetic gain from genomic selection (GS)



Canola Genomic Prediction

• 200 spring canola lines 

• 60,000 genotyping-by-sequencing 
SNP markers

• Within-site GBLUP

Accuracy moderate to high across 22 key 
canola traits.

Fikere et al., 2020. Plants 9:719 


