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Quantitative Traits and Selection

« Dramatic changes in phenotypes due to
selection

« Many traits affected by large number of
mutations

— Quantitative trait loci (QTL)

« Variance exPIained by individual markers
will be smal

* Genomic prediction -> Use large numbers of
B_IN_f\ markers to simultaneously track all

* Increase efficiency of selection
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Zuidhof et al., 2014. Poultry Sci 93:2970-2982



Methods to ‘Genetically’ Evaluate Individuals

» Phenotypic Selection

— Low tech y=Xb + Zu +e
— Simple to implement * V(u)=I
— Works best when heritability is higher  Individuals are assumed independent

— Must observe phenotype
— Still widely used in plant breeding

« Pedigree Breeding

— Can predict performance based on relatives y=Xb + Zu +e
« Juvenile = parent average « V(u)=A
* Requires pedigree recording

ob 4 ohenot ) » Covariance of lines from
— JDServed phenotypes increase accuracy pedigree relationship matrix
— Info on Mendelian sampling term from own records and progeny (A)
— Efficiency less dependent on h? than phenotypic selection

— More inbreeding than phenotypic selection at low h? (BLUP)



The Genetic Marker Revolution

» As aresult of sequencing animal and plant genomes, have a huge amount of
information on variation in the genome

— at the DNA level

* Most abundant form of variation are Single Nucleotide Polymorphisms (SNPs)
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The Genomic Revolution

Genotyping solutions available for most species

SNP arrays

— Accurate genotypes at specific positions

Genotyping by (re)-sequencing
— Targeted and untargeted approaches
— Not quite as accurate but more flexible than chips

Cost?
— ~$15-100 AUD for 50,000+ markers




Methods to Genetically Evaluate Individuals

 Genomic Prediction

— Predict performance based on reference
population (relatives?)
* Predict young individuals with only genotypes

o y=Xb + Zu +e
— Decrease generation interval . V(u)=G
: : » Covariance of lines from
— Requires genotyping genomic relationship matrix (G)

— Observed phenotypes increase accuracy

— Info on Mendelian sampling term from all
individuals in reference



Genomic Prediction

[ Reference population h ("Selection candidates N

L i ! \.‘f\\‘; 1
llﬁl'?. \a\i T
ll'.\
Known )
genotypes Marker
and phenotypes ' enotypes
Ealisa yP A 13 yYP J
""-».\
/;redi:tion equation )
Genomic breeding value =
Wl}f]"' WIX;!*WI ) }
- " /i_ _\_\\
| Selected breeders
T
i'?z "\Sk.i b
o -Ir' -
o |'Irq:‘~u F{, C \-{_{
it~
[ "'ih_“\ﬁ..' ;
Using genomic
breeding values
0 B

Michael E. Goddard & Ben J. Hayes
Nature Reviews Genetics 10, 381-391 (June 2009)



Why makes genomic prediction
different to pedigree breeding?

The Mendelian Sampling Term



An individuals breeding value has two components

BLUP

* 50% due to parent average component
— Prediction at birth is the average of two parents breeding value \ \
—

§
%%

a;

* 50% due to Mendelian sampling component
— Individual’s deviation from parent average breeding value
— Sampling of parental alleles
— Reason for differences in:

GWP

e a pail’ of full sibs before selection
 a pair of F2 in a bi-parental
— Cannot predict at birth/seed using pedigree alone 4 Ap

— Genetic gain driven by
» Accuracy of and time taken to estimate of Mendelian sampling term

— Genomic prediction (GWP) provides information on which alleles
received from parents
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Daetwyler et al., 2007. J Anim Breed Genet 124: 369-376



What Mendelian sampling looks like in a inbred bi-
parental cross

* Diploid genetics
* Each individual has two gametes
e Ifindividualis inbred these gametes are the same

A X B
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Factors affecting genomic prediction accuracy

Nph?
N, h% + M,

T =

N

« Reference population size (Np)
 Heritability (h?)
* Number of effective chromosome segments (Me)

— Effective population size
 Linkage disequilibrium
— Genome length

* Number of QTL (if few)

» Dense genetic markers
Daetwyler et al., 2010. Genetics 185:1021-1031



Genomic Prediction

Genomic selection exploits linkage disequilibrium

— Assumption is that markers are correlated with mutations (QTL)
and have same effect across whole population

Justified assumption as we now have dense marker maps

Trace whole genome with markers
— Capture all mutations = all genetic variance

Genomic selection avoids bias in estimation of effects due
to multiple testing, as all effects fitted simultaneously



Genomic Prediction Methods

* Mixed linear models
— Often referred to as best linear unbiased prediction (BLUP) methods

— Two equivalent models: SNP BLUP and GBLUP (Habier et al., 2007. Genetics
177:2389-2397)

* Bayesian models
— More flexible assumption on marker variances than BLUP
— Utilise Gibbs sampling

De los Campos et al., 2013. Genetics. 193: 327-345



Genomic prediction with BLUP
+ SNP BLUP model
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SNP BLUP

 BLUP = best linear unbiased prediction (SNP-BLUP)
* Model:

V4
y=ul,+) Xg +e
i=1

 |In BLUP we assume all SNP effects come from normal
distribution with same variance

— E(9) ~ N(0,54?)

————————



Alternative prior assumptions for SNP effects

« BLUP assumes normally distributed
QTL effects

* Does not match prior knowledge of
distributions of QTL effects for
some traits
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Alternative prior assumptions for SNP effects

« Students t distribution?
— BayesA
« Many zero effects and a proportion Students t distribution?
— BayesB
« Many zero effect and rest normal distribution
— BayesCpi
* Double exponential effects
— BayesianLASSO

* Multiple normal distributions
— BayesMulti, BayesR

De los Campos et al., 2013. Genetics. 193: 327-345



Bayesian Methods

* For some traits prior knowledge
suggests t-distribution of effects

* How to incorporate this into our
predictions?

Density
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Bayesian Methods

The t distribution can be presented
as a two level hierarchical model

Allow different variances for markers

Assume a distribution of these
variances

Computationally easier to deal with
than original form

Density

04

0.3

0.2

0.1

0.0

-10

10




Bayesian methods

 Now lets allow different variances of marker effects
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Bayesian methods

« Now lets allow different variances of marker effects

« Two levels of models
— Data

P(g,pu|y)oc P(y|g, 1)P(g, 1)

— Variances of marker effects

P(o,|g)xP(g |o,)P(o,)



Bayesian methods — A word on priors

» Bayesian methods utilise priors
A prior reflects the existing knowledge about the parameter
to be estimated

 Priors affect results
— The stronger the prior, the more the influence



Bayesian methods

« Variances of chromosome segments
P(o, | g)x P(g;|o,)P(c,)

* Prior? SZ/ZZ /

« We can choose v (degrees of freedom) and S? (scale factor) so that the prior
reflects our knowledge that there are many QTL of small effect and few of
large effect

Meuwissen et al., 2001. Genetics. 157: 1819-1829



Bayesian methods

« Variances of chromosome segments
2 2 2
P(Ggi | gl) oC P(gl | O-gi)P(Jgi)

 Posterior?

2
A (4.012+n,,0.002+g,'g,)

« But posterior cannot be estimated directly, dependent on g;!



Bayesian methods

« Solution is to use Gibbs sampling

— Draw samples from the posterior distributions of parameters
conditional on all other effects

— The average of these samples can be used as the estimates of
the parameters



Bayesian methods

* Gibbs sampling scheme

— Parameters to estimate and their posteriors
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Bayesian methods
* Gibbs chain for 1000 cycles

_ P(g1 |yvlvl’g¢1 ’6912’Ge2)
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Validation of genomic selection

« Aim of genomic selection
— predict (young) selection candidates without phenotypes

* How to test or validate predictions?

« Test predictions in a population sample that is similar to
selection candidates

« Key principle of validation
— Independence of reference and validation populations



Validation — Accuracy of genomic prediction

Estimate Genomic Predictions

Reference Population Validation Population
With genotypes and phenotypes With genotypes and phenotypes

1

Calculate accuracy as the correlation between
genomic breeding values and breeding values or
phenotypes.

Selection Candidates
without Phenotypes




Prediction Accuracy

 Most commonly used:
— r = Pearson correlation(GEBV,phenotypes)
— Gives accuracy of a group of individuals

— Correlations have a standard error which depends on sample size and the
magnitude of the correlation

» An approximation of this standard error was given by Fisher (see Fisher z transform)
« SE ~ 1/sqrt(N-3)

» For example with 31 individuals
— SE =1/sqrt(31-3) = 0.189

 Individual accuracy

— Calculated using the prediction error variance from the diagonal of the coefficient
matrix (GBLUP)



Two main ways to validate

« 1stway: Independent set of individuals

— Breeding values or phenotypes
— Dairy bull progeny test (e.g. Daughter trait deviations)
— Large progeny groups or many clones (plants)

— Different population
— Step 1: Estimate marker effects in reference population
— Step 2: Predict highly accurate individuals and calculate accuracy

« 2"d way: ‘Classic’ cross-validation
— Step 1: Divide dataset into n subsets of individuals

— Step 2: Predict each subset using all other subsets
— Step 3: Calculate accuracy in each subset and take mean across all subsets



Validation - Independence

« Always ask yourself this question:

—If the validation individuals were selection

candidates what data would be available?
— Then only use that data for reference!

* Independence of ‘data’, not independence in relationship



Independence

* Validation individuals are not used in the reference
population

« Validation phenotypes do not contribute to observed
variables of reference pop
— E.g. excluded when calculating estimated breeding values

 Validation individuals do not have contemporaries of
same age in reference



Target of prediction

« Validation population should be similar to selection
candidates

« Similar relationship to reference as selection candidates
— Same number of generations removed
— Same breeds
— Same population

« Same SNP density

— Consider imputation error



Cattle: Performance of genomic prediction
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Figure 1. Proportion of black phenotype. Bull with 95% black (A) and bull with 5% black (B)
doi 10.1371/journal pgen.1001 139.g001

1200 Australian Holstein bulls

In traits with large QTL effects BayesA
performed better than GBLUP

Overall Proportion . °

GBLUP 0.42 0.46 0.63
BayesA 0.38 0.59 0.73

Hayes et al., 2010. PLoS Genetics 6: €1001139



Performance of genomic prediction methods

traitl trait2
PLS - —e— PLS —e—
BayesSSVS - ——i BayesSSvVS - —6—
BayesC |- —e—i BayesC |- e
BayesBl |- —e—i BayesBl [ —e—
BayesAl [~ =i BayesAl - i
Lassol |- —e—i Lassol [~ —e—
Lasso2 |- —— Lasso2 - —e—
Ridge [- —e— Ridge [~ —e—
GBLUP [ ——i GBLUP [ —e—i
BLUP - —p—i BLUP ——i
Average [~ —— Average [~ ——
] 1 1 l 1 1 l I 1 1 l 1 1 1
0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6
Many Mutations Fewer Mutations

« Many mutations, most methods perform the same
« Fewer mutations, methods that can differentially shrink marker effects are better

Daetwyler et al., 2013. Genetics. 193:347-365



Limitations of genomic selection

» Accuracy strongly related to relationship to
reference population
— Accuracy decreases as relationship decreases
— Decay across generations
— Lower accuracy across breeds
— Low accuracy into novel germplasm

* Accuracy into new environments low
— Genotype-by-environment interactions

Milk yield

| BayesB =
™ G-BLUP =
N P-BLUP ~

Habier et al., GSE 2010

065 049 0.249 0.1249

amax



Influence of relationships on prediction accuracy

« Relationship of validation to reference important contributor to
accuracy
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Daetwyler et al., 2013. Genetics. 193:347-365



Reference population design

Which individuals/lines?

The relationship of the reference population to the
selection candidates affects accuracy of GEBV

Need individuals close to those being predicted in
reference

At the same time, as diverse as possible so that many
individuals/lines can be accurately predicted



Optimal breeding program design

* Predict GEBV with good accuracy in selection candidates with
only a DNA sample

 Achieve higher accuracy earlier in life
« How does this change the optimal breeding program design?

« Breed from individuals as early as possible



Genomic selection: dairy cattle

AG genetic change

i selection intensity

r selection accuracy

og genetic std deviation
L generation interval

Accuracy

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Second crop
daughters

First crop
daughters
Breeding age

~Traditional estimated breeding values

=Genomic estimated breeding values

2 4 6
Year of Age




Genetic Gain: US Dairy Cattle
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Introduction of genomic selection

Large increases in genetic gain from genomic selection

Garcia-Ruiz et al., 2016. PNAS.
https://www.pnas.org/content/pnas/113/28/E3995.full.pdf




Genetic Gain: Pasture Grasses (Simulations)

Standard Deviation of The Genetic Gain
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Large increases in genetic gain from genomic selection (GS)

Lin et al., 2016. The Plant Genome. 9:1



Canola Genomic Pred

« 200 spring canola lines

Iction

« 60,000 genotyping-by-sequencing

SNP markers
 Within-site GBLUP

Accuracy moderate to high across 22 key

canola traits.
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Fikere et al., 2020. Plants 9:719



