Arabinogalactan-proteins of *Zostera marina* L. contain unique glycan structures and provide insight into adaption processes to saline environments

Lukas Pfeifer¹, Thomas Shafee², Kim L. Johnson^{2,3}, Antony Bacic^{2,3} and Birgit Classen^{1*}

Affiliations:

¹ Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany

² La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Sciences, La Trobe University, Melbourne, Victoria 3086, Australia

³ Sino-Australia Plant Cell Wall Research Centre, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China

Corresponding author:

Birgit Classen, Pharmaceutical Institute, Department of Pharmaceutical Biology, Christian-Albrechts-University of Kiel, Gutenbergstr. 76, 24118 Kiel, Germany

Phone: +49-431-8801130

e-mail: bclassen@pharmazie.uni-kiel.de

Contents

upplementary Tables	3
Supplementary Table S1. Tissue-specific neutral monosaccharide composition of HMFs	3
Supplementary Table S2. Tissue-specific neutral monosaccharide composition of AGPs	3
Supplementary Table S3. Mass and volume of whole plant AGPs	3
upplementary Figures	4
Supplementary Figure S1. Mass spectrum of the uronic acid reduced sample	4
Supplementary Figure S2. Comparison of inferred Z. marina and A. sativa glycans	5
Supplementary Figure S3. Sequences with diagnostic motifs highlighted.	6
Supplementary Figure S4. Domain families of all chimeric AGPs.	8
Supplementary Figure S5. Most common chimeric AGP domain architectures	9
Supplementary Figure S6. Phylogeny of GT31 family members.	10
Supplementary Figure S7. Phylogeny of GT14 family members.	11
Supplementary Figure S8. Phylogeny of arabinosyltransferases families	12
Supplementary Data Files	13
Supplementary Data S1. Classical HRGPs from MAAB (signalP filtered)	13
Supplementary Data S2. Chimeras by clan (signalP filtered)	13
Supplementary Data S3. Enzyme trimmed alignments and trees	13

Supplementary Tables

Suppler	mentary	Table S1	l. Tissue-spe	cific neu	tral monos	acchari	de compos	sition of	HMF	ſs
Manteal		achamida	acomposition	of high	malagular	waight	fractions	(IIII)	from	7

Neutral	l Z. n	narina	Z. marin	ia Z	Z. marine	a .	Z. marin	a	
<i>marina</i> i	in % (mol mol ⁻¹).								
Neutral	monosaccharide	composition	of high	molecular	weight	Tractions	(HMF)	from	L.

Neutral	Z. marina	Z. marina	Z. marına	Z. marina
monosaccharide	whole plant	leaves	rhizome	root
	(n=3)	(n=1)	(n=1)	(n=1)
Gal	31.0 (± 0.8)	33.6	29.6	30.9
Ara	29.5 (± 1.7)	28.9	30.7	18.6
Rha	7.1 (± 0.1)	2.3	8.5	13.0
Man	6.8 (± 0.5)	12.0	4.9	6.5
Glc	12.5 (± 0.6)	14.2	17.1	13.5
Xyl	$11.7 (\pm 0.8)$	9.0	9.2	15.8
Fuc	$1.4 (\pm 0.8)$	-	-	1.7

Supplementary Table S2. Tissue-specific neutral monosaccharide composition of AGPs

Neutral monosaccharide composition of AGPs from the different organs of Z. marina in % (mol mol^{-1}).

Neutral	Z. marina	Z. marina	Z. marina	Z. marina
monosaccharide	whole plant	leaves	rhizome	root
	(n=3)	(n=3)	(n=3)	(n=3)
Gal	43.0 (± 0.4)	49.2 (± 0.8)	41.1 (± 4.2)	48.6 (± 0.9)
Ara	41.1 (± 0.5)	38.8 (± 1.0)	38.9 (± 2.1)	32.9 (± 0.7)
Rha	6.1 (± 0.0)	2.3 (± 0.1)	8.8 (± 1.1)	9.0 (± 1.0)
Man	4.6 (± 0.3)	3.8 (± 0.5)	3.6 (± 0.3)	2.1 (± 0.8)
Glc	$3.0 (\pm 0.7)$	4.7 (± 1.0)	7.1 (± 1.9)	6.4 (± 0.9)
Xyl	2.2 (± 0.5)	$1.2 (\pm 0.1)$	0.5 (± 0.3)	1.0 (± 0.4)

Supplementary Table S3. Mass and volume of whole plant AGPs

Determination of absolute molecular weights and hydrodynamic volumes of different whole plant AGPs from *Z. marina* (kDa)

Sample	Absolute molecular mass (main peak*)	Hydrodynamic volume (main peak*)
Z. marina	240.0 (± 0.3 %)	47.0
Z. marina UR	165.2 (± 0.2 %)	40.7
Z. marina Ox	164.1 (± 0.4 %)	12.8

*main peak has a minimum mass recovery of 30% (m m⁻¹) UR, uronic acid reduced; Ox, oxalic acid hydrolysed.

Supplementary Figures

Supplementary Figure S1. Mass spectrum of the uronic acid reduced sample.

Mass spectrum and fragmentation pattern of C6-di-deuterated 4-OMe Glc in the uronic acid reduced sample of *Z. marina* whole plant AGP after alditol acetate analysis. In green the origins of the five most intense fragments, aside from the acetyl-group (m/z = 43.0), are indicated.

Supplementary Figure S2. Comparison of inferred Z. marina and A. sativa glycans.

Comparison of **a** *Z. marina* AGP (as presented in the main text) and **b** *A. sativa* AGP based on linkage-type analysis results from ²⁵.

а

Supplementary Figure S3. Sequences with diagnostic motifs highlighted.

Sequences identified by MAAB in *Z. marina* with diagnostic motifs highlighted and shown by MAAB class ³⁰. Signal peptide in green, GPI anchor in purple and motifs used for classification of sequences are AGP motifs ([ASVTG]P, [ASVTG]PP, [AVTG]PPP) in cyan, Extensin motifs (SP3, SP4, SP5) in red and cross-linking motifs ([FY]XY, KHY, VY[HKDE], VxY, YY) in dark blue and PRP motifs (PPV[QK], PPVx[KT] and KKPCPP) highlighted brown. The total number of sequences identified in each class is shown in brackets. * indicates putative alternative start site.

Class 1: GPI-AGPs (5)

>KMZ66553.1 hypothetical protein ZOSMA_294G00050

MAIIPRYLQHLAVFFVFISVLFATTLA<mark>QALTDQ<mark>SP</mark>LASTQPPSTSQL<mark>SP</mark>TFSA<mark>SPTPTP</mark>TS<mark>SP</mark>SAT<mark>TP</mark>ASLPP<mark>TP SP</mark>SAAS<mark>TP</mark>TI<mark>SPTPSPSP</mark>SAVSTSTI<mark>AP</mark>TLPPLAA<mark>SP</mark>LSD<mark>GP</mark>SGLS<mark>SP</mark>AE<mark>SPRS<mark>SGSSSLVGCTGVGFAALVLTL</mark> T</mark></mark>

>KMZ65764.1 hypothetical protein ZOSMA_30G00450

MAITRTAISLFSIFLLASTSIFAQ<mark>SP</mark>ATAP</mark>TLPPPAPVAS<mark>TPPP</mark>ISVS<mark>SPP</mark>SVVA<mark>TPPP</mark>VSAAPPMMVS<mark>TPP</mark>MS<mark>A PVP</mark>MAAE<mark>VP</mark>SVE<mark>TP</mark>VD<mark>SP</mark>VAD<mark>TP</mark>DEAM<mark>VP</mark>EASMPASPVP</mark>SSF<mark>AP</mark>NIPNPEG<mark>SAGSTGAKMNVVGLMGLVGAAAML</mark> I

>KMZ63928.1 hypothetical protein ZOSMA_38G00360

MTHRSILTVVFLLSIIASLHDAAVFTSAADSPTTSPSPASPPPTATATAPTTTTTTSVPPPTATPPTTNVTAVQP PTA<mark>TP</mark>PTTNVTAVQPPTATAP</mark>TTSSITTPAASPTTTAAPATPPTTNVTPISAPVS<mark>SPPTPPTPAP</mark>TTI<mark>TPAP</mark>SLP VE<mark>VPAPAP</mark>TKSKKKPSLPL<mark>APSPSP</mark>DSINLAPSSEAPGSISDDFLAADTA<mark>DAATGGNGVVGFGLLVVSLLVAVV</mark> >KMZ59493.1 hypothetical protein ZOSMA 68G00800

MGIRIQVTLIAFAILFATVIAQQAPASAPTSTPGSVS<mark>SPP</mark>SVS<mark>SP</mark>SSLS<mark>SPP</mark>SIS<mark>SPP</mark>SLSS<mark>AP</mark>SS<mark>SPP</mark>SMAPPS

DQ<mark>AP</mark>S<mark>AP</mark>MTPEALASSG<mark>SP</mark>GS<mark>AP</mark>SISQEN<mark>NAASFAASWIGAAGSVALVMAYAF</mark>

>KMZ56883.1 hypothetical protein ZOSMA_8G00260

MAAAPTFSFSAMLLHLLFLFLSLSVFSQA</mark>KMA<mark>SP</mark>ISAISA<mark>AP</mark>AFLPE<mark>AP</mark>SSLL<mark>SP</mark>YPSY<mark>SP</mark>TL<mark>SP</mark>DGSMQPEFP<mark>T</mark> PRAEGV<mark>AP</mark>TTSIITSVQ<mark>SPP</mark>NPDTM<mark>VP</mark>EAGDDDGFFVL<mark>AP</mark>VGYSASIAADTS<mark>SASSRVVAIRLIVVFLVLKSSLI</mark> LLLVSTFSC

Class 4: non-GPI-AGPs (4)

>KMZ70582.1 hypothetical protein ZOSMA_199G00190

MASHNLLWLLIIACFCSSLSTTTYAQSQSA<mark>SP</mark>VTLPVAPVIPVS<mark>SPPPP</mark>KTLASTPTTSSPLA<mark>SP</mark>VIPVS<mark>SPPPP</mark>KTLASTPTSSPLASPTLPVAPVLPVS<mark>SPPPP</mark>KILASTPTSSPLASPTLPVSLPPALPITPAP KTLASTPTS<mark>SPLASP</mark>TLPVAPVLPVS<mark>SPPPP</mark>KILASTPTPPPS<mark>SPSP</mark>IIQ<mark>TPSPPP</mark>VLSLPPVSLPPALPITPAP AALAITPAVSPSPAADSPLAETPALAPAP</mark>VHPKHKHKHRRWHRRKHRRHKKHHVM<mark>APAPAP</mark>IPP<mark>SPPSPPAPP</mark>EF DDYTID<mark>GPSPAP</mark>TDLSGGTSIHGIYKHGRRLSEGLRLTNFILIPFLLFLF

>KMZ62892.1 hypothetical protein ZOSMA_43G00740

>KMZ58528.1 hypothetical protein ZOSMA_76G00830, partial

MKQKWELAWFLVACDVLLFSTLMDFPIVCGGSKGKALSPAPKVISSTLTEPTVPSISPLPSLLPSPLFSTVPMI PNVSPPISRLHMPPVPIAPTIPNVSPSSLPLISPSLVPIVSEIPNVSPPSLPQFSPSLVPMVSEIPNVSHSSLLP SPPETPITSTISNVSPSSLLPPSPSLLPMTPITSNISPPLLHPPSPLLPIPAKILNSSPPQLSLFSPPPASTAST APNFSPSSLLPHSPLLPIPVTKPNLSHPPLPLLNPPLALTTSTPPKVSPPLLPLPSPPVTIAPTVHNVSTPFLPH NPSHFLKQPPVQNISTPPLLSSPFPVLIVPPLHNISAPLFPSPPLAHIAPTIENIPSLVPPSFPLGRSPSQQDRS SSAPIDRHPRRTLDSPPARPKNSIPTQSSPSHSPSLAPDASTSAGTASHLSHNHHSPVRGSVPVSSPKPPKSLTY SPLGSHTRFPNRSKLLHSSSAAPNSHHHQSRNTSSISP

>KMZ57387.1 hypothetical protein ZOSMA_86G00220

MDHRSVATVGLLMCIVAMSVGVHAMSPASASAPTTITSEISPTSESSPVADTPSSPTVIESPPTPAPVVDAIPDS PPSMEVNSPPTPAPVVDTIPPTVSIPDSPPPMEVNSPPTPPPVVDAIPPTVSIPDSPPPMEINSPPTPAPVVVTS SPDSPPFVENSPPTPAPVVNAAPPPMSSLPDSPPPVENSPPTPAPVVDAAPPPMSSLPDSPPFVENSPPTPAPIV APATPPPITSLPDTPPPVVASVPRSGAPVVASAPRSVLVPTSAPLSPPTPAASPPTTILSSPVPAPVEVTPDGSP FVDAPAPSSTSVAPSLSEAFPPGPSPDPAIFADDTARGVKENPMIAGAVITMLMLMSSFAVVFF

Class 2: CL-EXT (1)

>KMZ72364.1 hypothetical protein ZOSMA_166G00640

MTEGRDGPERGRRRRKFLPSI*MVAAFAVVLVVTTNVGVVSGDPYTYSSPPPPYNYESPPPPYKYESPPPYKY

Class 20: Shared Bias, high EXT (SPn & Y) (1)

>KMZ74158.1 hypothetical protein ZOSMA_133G00070

MRKITASFFLILTLAALASPGDS</mark>ADSAKLIGVAECADCGNNAFGSFKGINVAVVCNSEINLVDFKEVAVGEFAGD GKLSLQLPTTIVDKKCFAHVRSLSKTNPCPTFQNLDNFILSLSSDDQSVYVFGNSDGKVSFSRAACAQKTFWK<mark>YF</mark> YFKCPNHPW<mark>FKY</mark>LPYCNPPPSNPPP<mark>VYK</mark>NPPP<mark>VYK</mark>NPPP<mark>VYK</mark>NPPP<mark>VYK</mark>NPPP<mark>VYK</mark>NPPPCNPPPYKKP<mark>VYKSPF FVHK<mark>SPPF</mark>VHKNPPPCNPPPYKKPVDKNP<mark>SP</mark>YKPPVHN<mark>TPP</mark>MHMKPP<mark>SP</mark>KYN<mark>PPVHK</mark>P<mark>AP</mark>CN<mark>TP</mark>IHKPPMFKLPP IYKPPVY<mark>VP</mark>KHPKTTTSN</mark>

Class 21 Shared Bias, high SPn (1)

>KMZ66204.1 hypothetical protein ZOSMA_2G02140

Class 24: <15% motif HRGP (3)

>KMZ58455.1 hypothetical protein ZOSMA_76G00110

MKPCVVSLFVIAAISLQIILVAPLVCGRTLQDFDDQKA<mark>VY</mark>HNSPPKTSHSGSHSSHSKGSSFP<mark>SPP</mark>HQGGCAK<mark>TP</mark> SHSSSSS<mark>TP</mark>KPRDGSYG<mark>TP</mark>T<mark>TP</mark>SHGSRSAT<mark>TP</mark>AT<mark>TPP</mark>TSSHAT<mark>TP</mark>T<mark>TP</mark>SHST<mark>TP</mark>SHTT<mark>TPATP</mark>SIPGFPSIT ATCDFWRTHPSMIFGILGQWSNIGNLFGFPATSIFGRNPS<mark>VP</mark>QALGNARNDGYGALFREGTASLLNSMANPSFPL TTQVVRDRFNQALSSEKTASAEAQRFRLANEGA

Supplementary Figure S4. Domain families of all chimeric AGPs.

Pfam domains found in sequences containing at least 1 AG region and a predicted signal peptide. For those sequences with multiple Pfam domains, only the largest domain is counted.

Supplementary Figure S5. Most common chimeric AGP domain architectures.

Architectures in Z. marina with domains coloured by their Pfam family (see Fig. 5b). AG regions in white.

Supplementary Figure S6. Phylogeny of GT31 family members.

Members from *Z. marina* (ZM accession numbers, highlighted with black circles), *Arabidopsis thaliana* (AT). Clades labelled as in ³¹. Genes with known function indicated. * Note: although QMAP8 is described as a β -1,6 GalT in the published literature, unpublished data suggests that it may be a β -1,3 GalT.

Supplementary Figure S7. Phylogeny of GT14 family members.

Members from *Z. marina* (ZM accession numbers, highlighted with black circles), *Arabidopsis thaliana* (AT). Clades labelled as in ³². Genes with known function indicated.

Supplementary Figure S8. Phylogeny of arabinosyltransferases families.

a Phylogeny of GT61 family members from *Z. marina* (ZM accession numbers, highlighted with black circles), *Arabidopsis thaliana* (AT). Clades labelled as in ³³. Genes with known function indicated. **b** Phylogeny of GT77 family members from *Z. marina* (ZM accession numbers, highlighted with black circles), *Arabidopsis thaliana* (AT). Clades labelled as in ³⁶. Genes with known function indicated.

Supplementary Data Files

DOI:10.26181/5e8c491575d77

Supplementary Data S1. Classical HRGPs from MAAB (signalP filtered)

Unaligned sequences of HRGPs as fasta file

Supplementary Data S2. Chimeras by clan (signalP filtered)

Unaligned sequences of chimeric AGPs as fasta files, organised by clan of the globular domain

Supplementary Data S3. Enzyme trimmed alignments and trees

Multiple sequence alignments of enzymes as fasta files and phylogenetic trees as newick files