Evolution of sequence-diverse disordered regions in a protein family: order within the chaos

SUPPLEMENTARY INFORMATION | DOI 10.26181/5E33788AD3B54

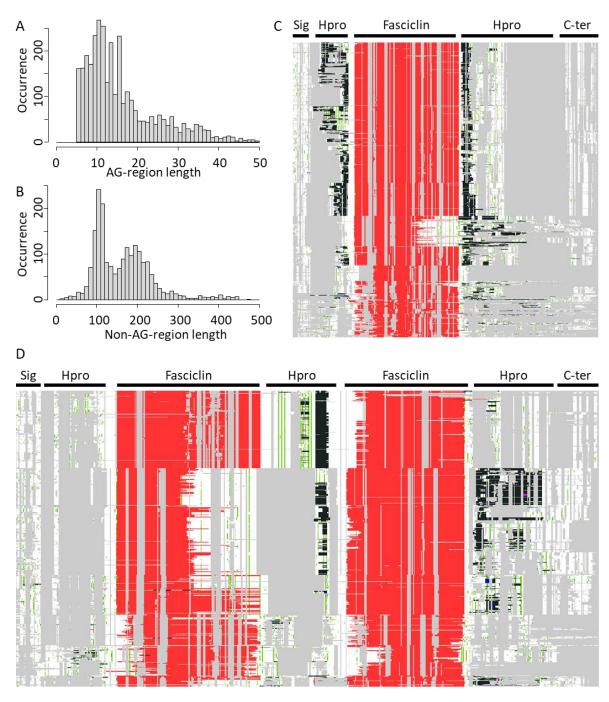
Supplementary Figures

Supp Figure S1 Occurrence of FLAs with ≥3 fasciclin domains	2
Supp Figure S2 Length of AG and non-AG regions and multiple sequence alignment for FLAs.	3
Supp Figure S3 Conservation of fasciclin domain sequence and structure.	5
Supp Figure S4 Bootstrap support for fasciclin domain phylogenies	6
Supp Figure S5 Fasciclin domain architectures across different taxonomic groups	8
Supp Figure S6 N-glycosylation sites of 1-fas and 2-fas FLAs	9
Supp Figure S7 All-vs-all matrix of Goodman and Kruskal's tau feature correlation measure	10
Supp Figure S8 Disordered region feature profile heatmaps	11
Supp Figure S9 Disordered region feature profile heatmaps averaged by UMAP cluster	12
Supp Figure S10 Inter-proline distance profile space projected by PCA	13
Supp Figure S11 Phylogeny of type R fasciclin domains	14
Supp Figure S12 Phylogeny of type O fasciclin domains	15
Supp Figure S13 Phylogeny of type F fasciclin domains	16
Supp Figure S14 Schematic representation of FLA members in selected species.	17
Supp Figure S15 Sequence space of fasciclin domains, projected by PCA	7

Supplementary Tables

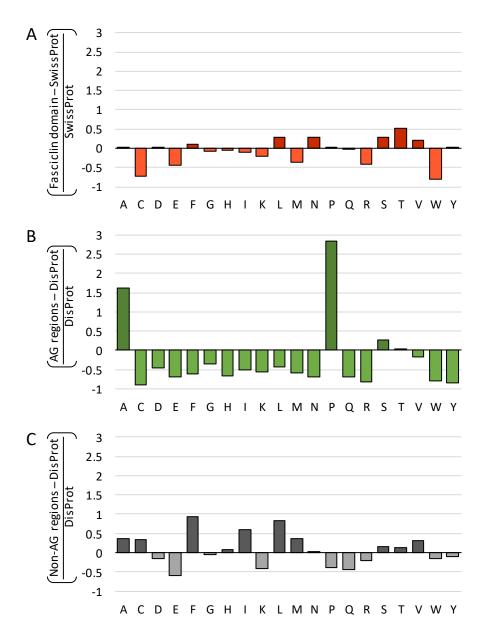
Supp Table S1 Fasciclin domain types and FLAs present in each species of the Phytozome dataset	
Supp Table S2 N-glycosylation and GPI anchor motif occurrence in different FLA types24	

Supplementary Data Files

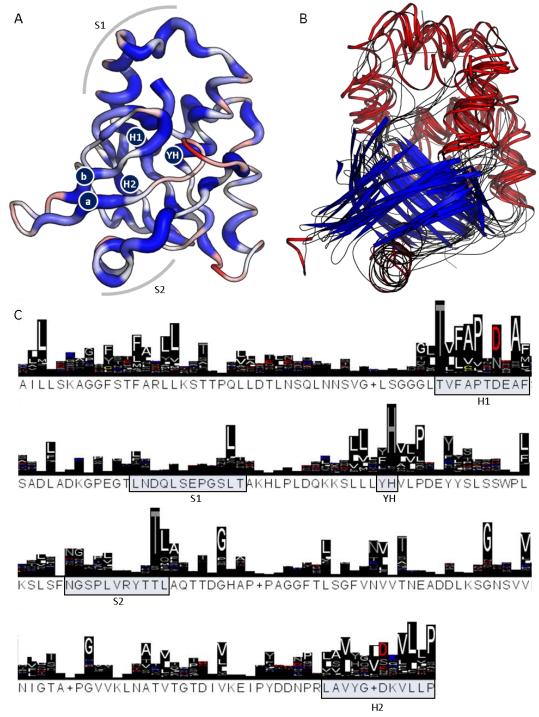

Supp data 1 Domain names and labels for all FLA fasciclin domains	25
Supp data 2 Fasciclin domain alignments	25
Supp data 3 Fasciclin domain phylogenies	
Supp data 4 Fasciclin analysis script	

Supplementary Figures

L-O-X	Alga	Dunaliella salina x3		
G-A-P	Monocot	Setaria viridis	Panicum hallii x2	
G-A-A	Rosid & monocot	Populus trichocarpa	Salix purpurea	Zea mays
Q-X-O	Alga	Chlamydomonas reinhardtii	Volvox carteri	
P-P-P-P	Alga	Dunaliella salina x2		
P-P-H	Rosid	Anacardium occidentale	Linum usitatissimum	
X-P-J	Superrosid	Kalanchoe laxiflora		
X-O-O-X-O-O	Alga	Chlamydomonas reinhardtii		
R-R-H	Asterid	Mimulus guttatus		
R-O-X	Alga	Micromonas pusilla		
R-O-P	Alga	Micromonas sp. RCC299		
R-H-P	Monocot	Brachypodium stacei		
Q-Q-Q-Q-Q	Alga	Porphyra umbilicalis		
Q-Q-Q-Q	Alga	Chlamydomonas reinhardtii		
Q-Q-Q	Alga	Chlamydomonas reinhardtii		
Q-Q-P	Alga	Porphyra umbilicalis		
Q-0-0	Alga	Volvox carteri		
Q-J-J	Basal eudicot	Aquilegia coerulea		
P-R-H	Asterid	Olea europaea		
P-P-P-X-X	Alga	Chlamydomonas reinhardtii		
P-P-O	Alga	Coccomyxa subellipsoidea		
P-O-O-P	Alga	Ostreococcus lucimarinus		
P-I-P	Rosid	Medicago truncatula		
O-X-Q-P	Alga	Dunaliella salina		
O-R-O	Alga	Micromonas pusilla		
O-O-P	Alga	Chlamydomonas reinhardtii		
0-0-0-P	Alga	Chromochloris zofingiensis		
O-K-P-P	Alga	Chromochloris zofingiensis		
L-P-P-O-O-P-P	Alga	Volvox carteri		
F-P-P	Rosid	Trifolium pratense		
F-F-F	Rosid	Prunus persica		
F-D-P	Rosid	Manihot esculenta		
E-C-X	Rosid	Brassica rapa		
FLA architecture	Таха	Species in which each d	omain structure is f	ound


Supp Figure S1 | Occurrence of FLAs with \geq 3 fasciclin domains.

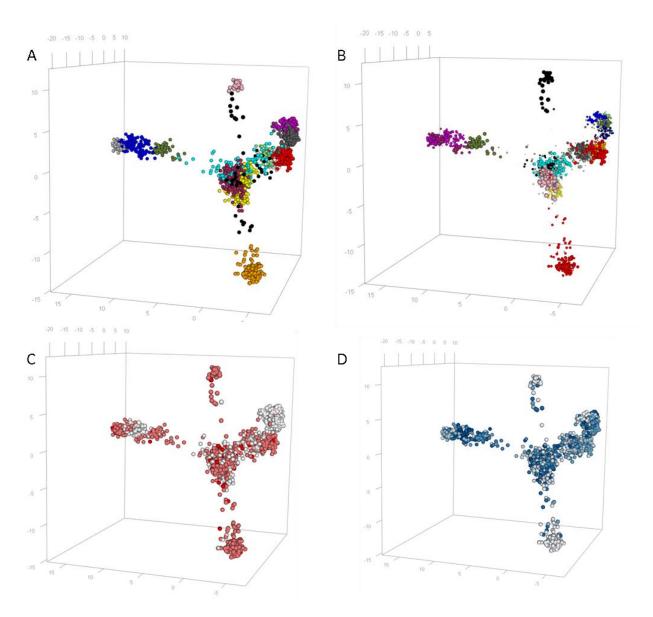
FLAs with \geq 3 fasciclin domains occurring in algae in yellow, those in vascular plants in grey with species name indicated. FLA architecture indicates the fasciclin domain type (A-R, Figure 3) as defined by sequence space clustering, X indicates fasciclin domains not assignable to a cluster. The arrangement and number of the fasciclin domain types within the FLA are indicated.



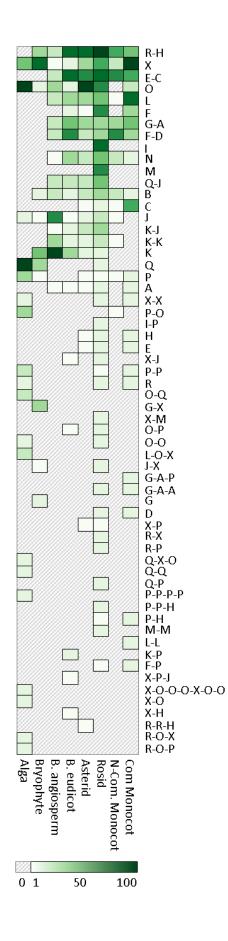
A) Length distribution in amino acids for AG regions. **B)** Length distribution in amino acids for non-AG disordered regions. FLAs containing **C)** a single fasciclin domain (998 sequences) or **D)** two fasciclin domains (806 sequences). Regions that match the Pfam fasciclin (PF02469) HMM in red, AG-regions in black (mainly restricted to the columns labelled 'Hpro'), PRP regions in purple, extensin regions in blue, other prolines in green, all other residues in white, and gaps in grey. Some sequences with particularly long N- or C-terminal disordered regions have been trimmed to fit. Note: there are <100 PRP and extensin motifs in panels C and D. Note: despite the presentation of regions outside of the fasciclin domains in the alignment, the certainty of these regions is very low.



Relative amino acid composition ratios for **A**) the fasciclin domains as compared to SwissProt 51, **B**) the AG regions as compared to DisProt 3.4, and **C**) the non-AG regions as compared to DisProt 3.4.



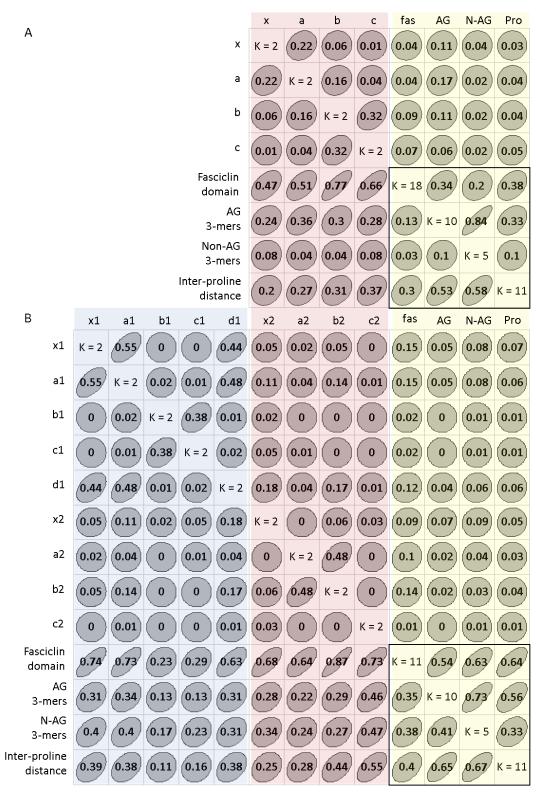
A) Sequence conservation across all 2644 FLA fasciclin domains in the Phytozome dataset is indicated by colour and width, mapped onto a representative homology model of the second fasciclin domain (based on PDB:1070) from *At*FLA1 (as per Figure 2A). Conserved residues in blue, variable residues in red. The two most-conserved *N*-glycosylation sites are indicated as "a" and "b" as in Figure 2A. The highly conserved H1, YH and H2 motifs characteristic of fasciclin domains are buried in the core of the structure as indicated. **B)** Structure conservation as an overlay of all structurally characterised fasciclin domains (PDBs: 1070; 5nv6; 1nyo; 5wt7; 1w7d; 2mxa). Beta strands in blue, alpha helices in red. **C)** Conservation sequence logo across 2644 FLA fasciclin domains.



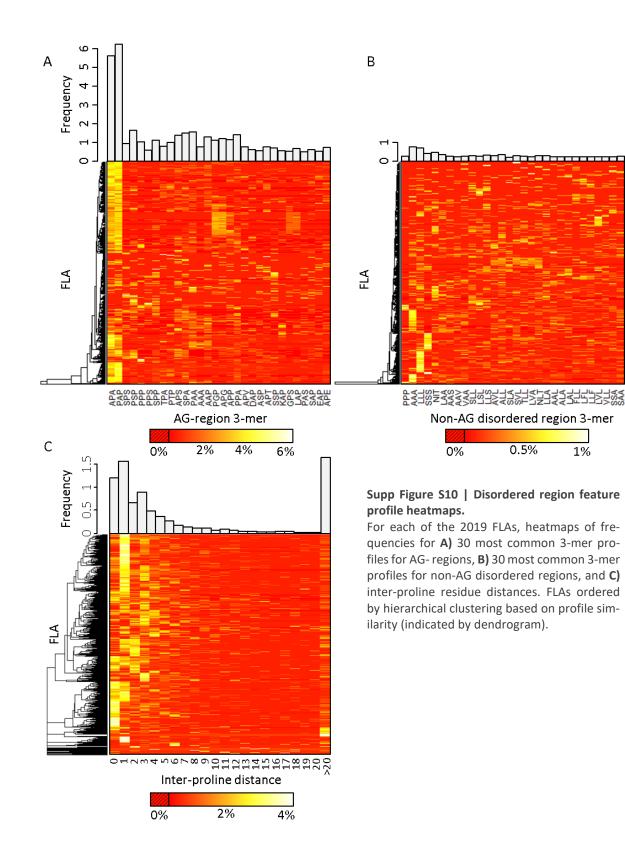
A) Maximum likelihood phylogeny of all fasciclin domain sequences. Nodes with <50% bootstrap support collapsed, making the tree uninterpretable (45% of nodes have bootstrap support <50%, with particularly low support for deep nodes). **B)** Maximum likelihood phylogeny of fasciclin domain sequences of type O. Nodes with <50% bootstrap support collapsed (demonstrating higher overall bootstrap support). FLAs with characterised function annotated. A more detailed phylogeny of FLA sequences with fasciclin domain type O is shown in Supp Figure S14. **C)** Histogram of the bootstrap values for nodes in the phylogenies of all fasciclin domain sequences (panel A). **D)** Histogram of the bootstrap values for nodes in the phylogenies of all fasciclin domain sequence sets separated by type. **E)** Mean bootstrap values across all nodes in each of the phylogenies: all fasciclin domains (panel A), or the fasciclin domain sets separated by types from Figure 3A.

Supp Figure S6 | Sequence space of fasciclin domains, projected by PCA.

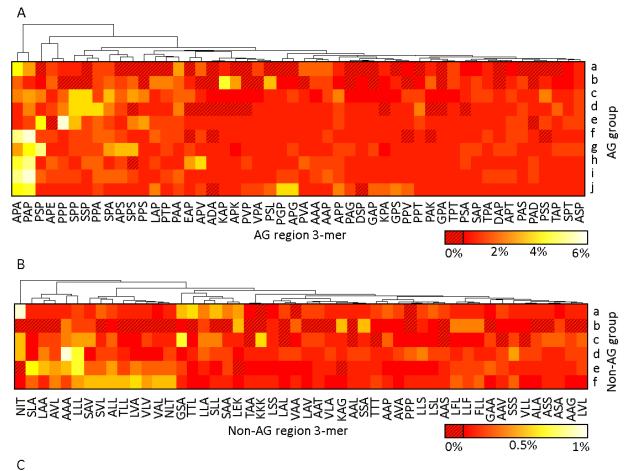
For each fasciclin domain, sequence biophysical properties projected by PCA. Coloured based on **A**) Bayesian clustering of PCA projection, **B**) HDBSCAN clustering of UMAP projection (cluster colours as per Figure 2A), **C**) number of fasciclin domains in the FLA, **D**) inter-proline distance.

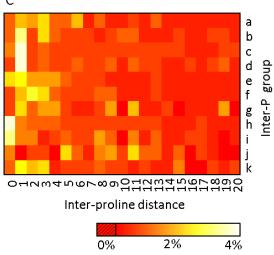

Supp Figure S7 | Fasciclin domain architectures across different taxonomic groups.

Relative proportion of domain architectures in different major taxonomic groups for the 60 most common domain combinations ordered by overall frequency of occurrence of each domain architecture.

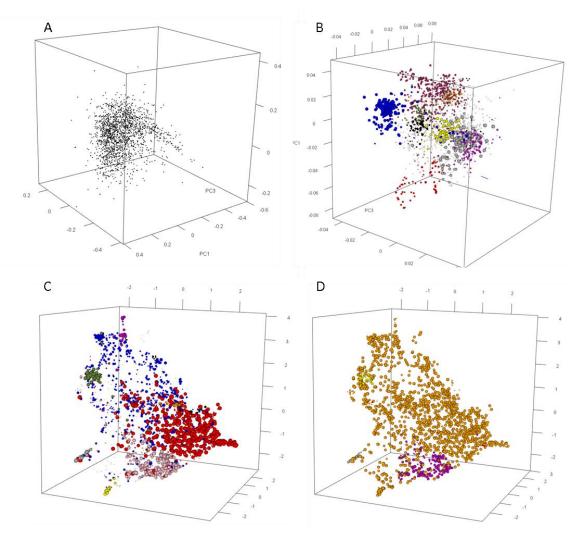


Supp Figure S8 | *N*-glycosylation sites of 1-fas and 2-fas FLAs.

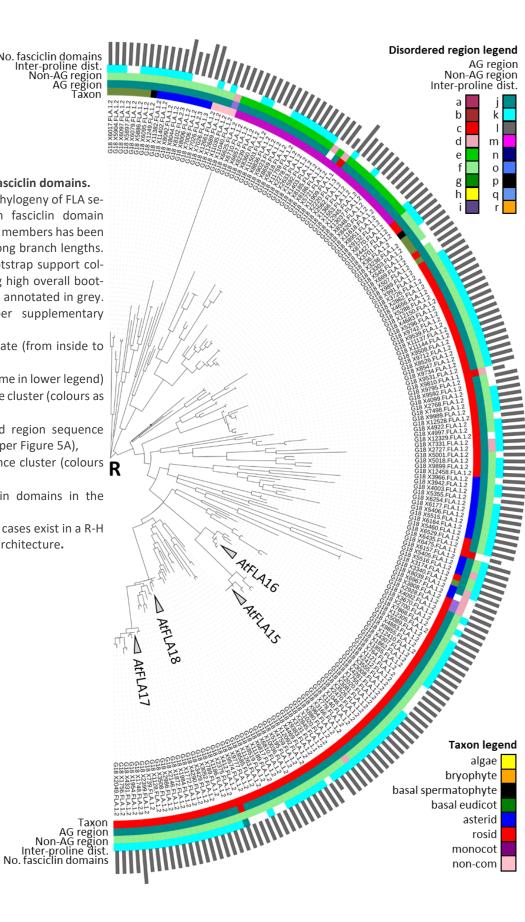

A) Presence of *N*-glycosylation sites for 1-fas FLAs. Overall proportion as bar chart above (darker bars indicate sites in the β -sheet characterised as *N*-glycosylated in other fasciclin domains) and presence/absence as heatmap below, where rows have been hierarchically clustered to indicate relative co-occurrence at each site. **B**) as above, but for 2-fas FLAs. **C**) All-vs-all matrix of Goodman and Kruskal's tau correlation measure for all 1-fas FLA sites. **D**) as above but for 2-fas FLAs. **E**) Locations of possible *N*-glycosylation sites in a fasciclin domain (model as in Figure 2A).



Supp Figure S9 | All-vs-all matrix of Goodman and Kruskal's tau feature correlation measure Correlation of *N*-glycosylation sites with fasciclin domain type, non-AG region cluster, AG-region cluster and inter-proline distance cluster for all **A)** 1-fas FLAs, **B)** 2-fas FLAs. Coloured with *N*-glycosylation sites of the first domain in blue, *N*-glycosylation sites of the second domain in red, and UMAP clusters in yellow. Black boxes highlight the sections equivalent to Figure 4G.



Supp Figure S11 | Disordered region feature profile heatmaps averaged by UMAP cluster.

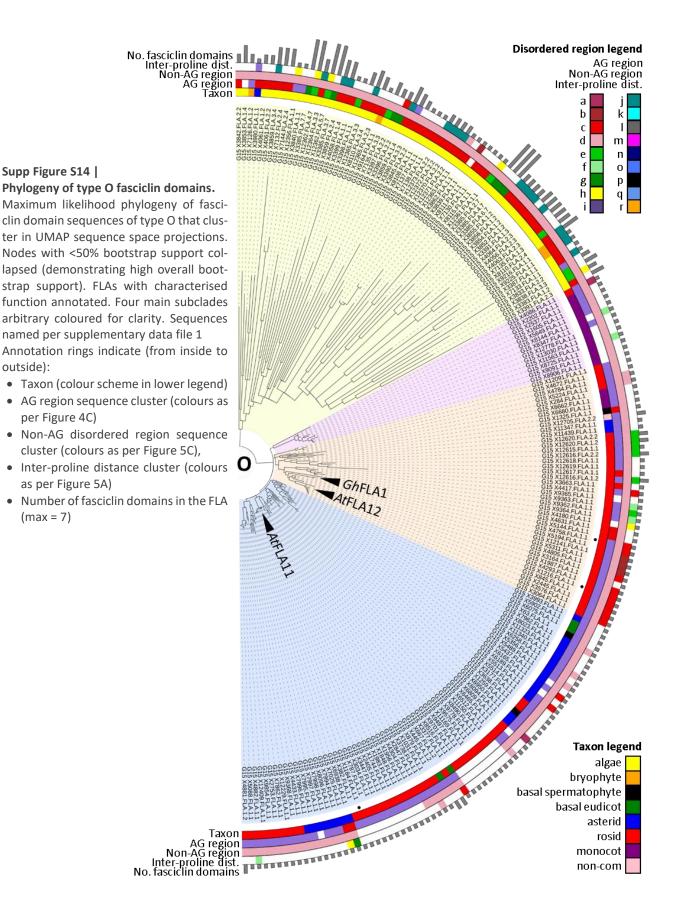

A) Relative occurrence of 3-mer sequences in AG regions as in Supp Figure S10A averaged by cluster (AG group aj) as in Figure 4D, columns arranged by hierarchical clustering (dendrogram above). **B)** Relative occurrence of 3mer sequences in non-AG disordered regions as in Supp Figure S10B averaged by cluster (non-AG group a-f) as in Figure 4E, columns arranged by hierarchical clustering (dendrogram above). **C)** Relative occurrence of interproline distances as in Supp Figure S10C averaged by cluster (inter-P group a-k) as in Figure 4F.

Supp Figure S12 | Inter-proline distance profile space projected by PCA.

A) For each FLA, distribution of inter-proline distances projected by PCA. No detectable clusters are identifiable by this method. **B)** PCA projection coloured by clusters identified by HDBSCAN clustering of UMAP projection of inter-proline residue distances (as in Figure 4F). **C)** UMAP projection coloured by HDBSCAN clustering of UMAP projection of AG region 3-mers (as in Figure 4C). **D)** UMAP projection coloured by HDBSCAN clustering of UMAP projection of non-AG region 3-mers (as in Figure 4D).

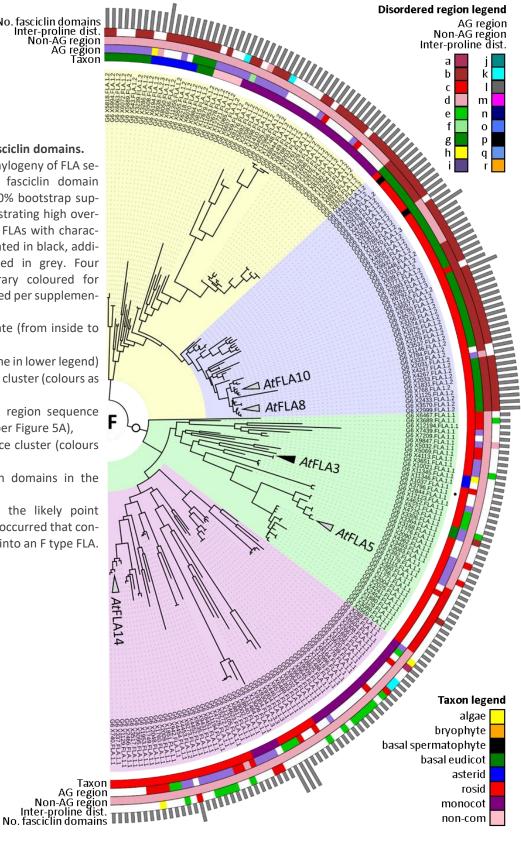
No. fasciclin domains Inter-proline dist. Non-AG region AG region Taxon

Supp Figure S13 |


Phylogeny of type R fasciclin domains.

Maximum likelihood phylogeny of FLA sequences that contain fasciclin domain type R. A clade of algal members has been omitted due to very long branch lengths. Nodes with <50% bootstrap support collapsed (demonstrating high overall bootstrap support). AtFLAs annotated in grey. Sequences named per supplementary data file 1.

Annotation rings indicate (from inside to outside):

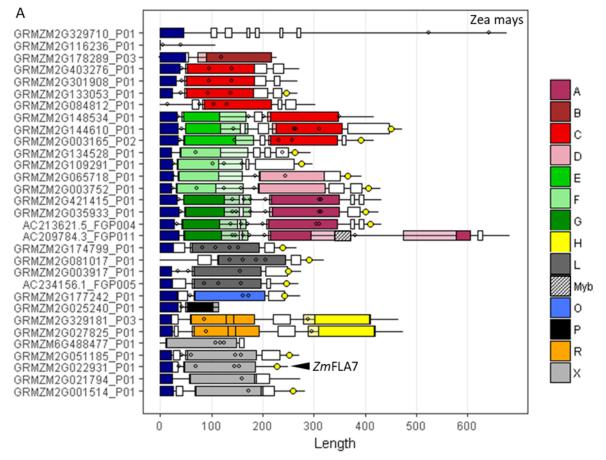

- Taxon (colour scheme in lower legend)
- AG region sequence cluster (colours as per Figure 4C)
- Non-AG disordered region sequence cluster (colours as per Figure 5A),
- Inter-proline distance cluster (colours R as per Figure 5C)
- Number of fasciclin domains in the FLA (max = 3)

Note that in almost all cases exist in a R-H two-fasciclin domain architecture.

outside):

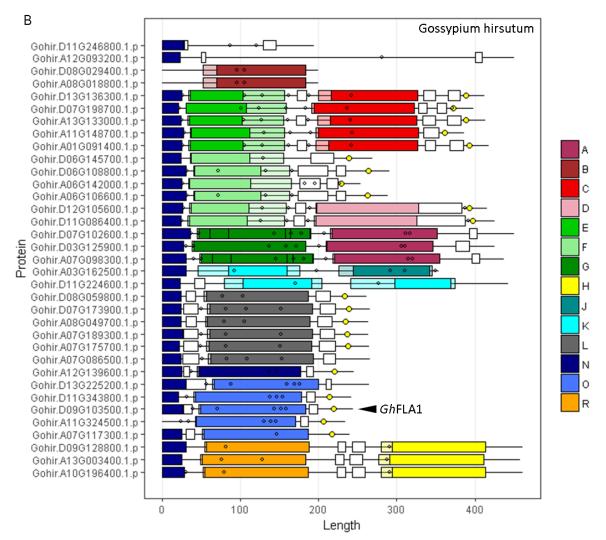
No. fasciclin domains Inter-proline dist. Non-AG region AG region Taxon

Supp Figure S15 |

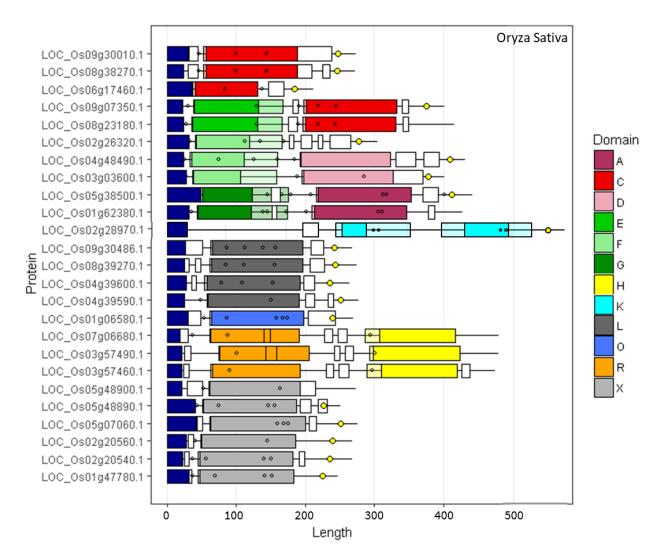

Phylogeny of type F fasciclin domains.

Maximum likelihood phylogeny of FLA sequences that contain fasciclin domain type F. Nodes with <50% bootstrap support collapsed (demonstrating high overall bootstrap support). FLAs with characterised function annotated in black, additional AtFLAs annotated in grey. Four main subclades arbitrary coloured for clarity. Sequences named per supplementary data file 1.

Annotation rings indicate (from inside to outside):


- Taxon (colour scheme in lower legend)
- AG region sequence cluster (colours as per Figure 4C)
- Non-AG disordered region sequence cluster (colours as per Figure 5A),
- Inter-proline distance cluster (colours as per Figure 5C)
- Number of fasciclin domains in the FLA (max = 3)

White circle indicates the likely point where the domain loss occurred that converted an F-D type FLA into an F type FLA.




FLA complement for A) Zea mays, B) Populus trichocarpa, C) Gossypium hirsutum, D) Oryza sativum, E) Brassica rapa (closest relative to Brassica carinata in Phytozome) and F) Eucalyptus grandis. Illustrated as in Figure 7.

Supp Figure S16B (see legend above)

Supp Figure S16C (see legend above)

A

в

С

D

Е

F

G

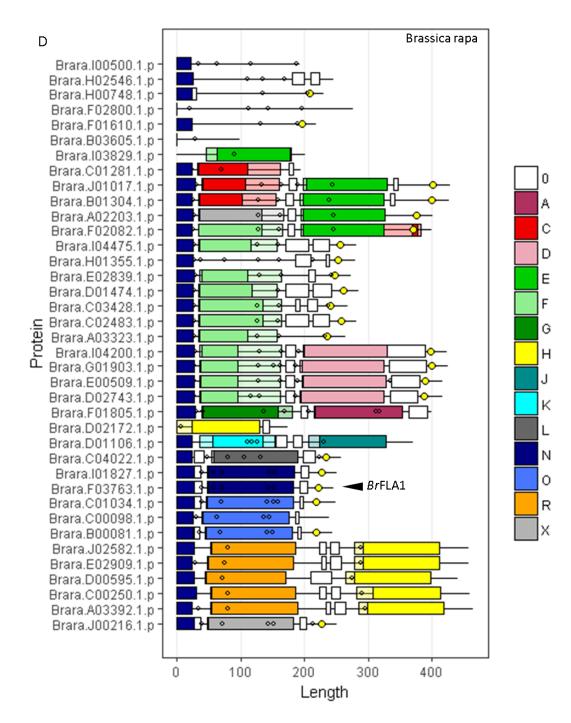
н

J

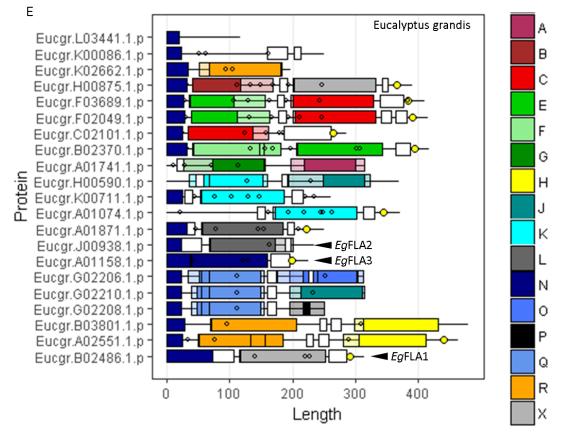
Κ

L

М


N O

Ρ


Q

R X

Supp Figure S16D (see legend above)

Supp Figure S16E (see legend above)

Supp Figure S16F (see legend above)

Supplementary Tables

Supp Table S1 | Fasciclin domain types and FLAs present in each species of the Phytozome dataset.

			-					_						-					-				
	Broad group	А	в	СD	E	F	G		ascio	lindo: JK			N	о	Р	Q	R	x	1-fas	2-fa	FLAs s ≥3-fas	Total	
Amaranthus hypochondriacus	basal eudicot		1	2 1	2	1		2	0	0 5		_	1	1	1	0	2	1	6	1(16	-
Amborella trichopoda	basal spermatophyte	2		1 1	1	1		1	0	1 4		0		2	0	0	1	0	6	(12	
Anacardium occidentale	rosid	1		3 1	2	3		6	0	4 1		0		2	3	3	5	11	18	14		34	
Ananas comosus Aquilegia coerulea	monocot	2 1	0	2 1 1	1 1	3 1		1 1	0 0	00		0	1 1	1 1	1 0	0 3	0 1	4	7 15	1		13 24	
Aquilegia coerulea Arabidopsis halleri	basal spermatophyte rosid		1	3 0	3	4		3	0	2 6		0	3	2	3	0	2	1	15	12		24	
Arabidopsis lyrata	rosid	1		2 2	2	4		4	0	2 1		0		2	0	0	4	0	9	10		19	
Arabidopsis thaliana columbia	rosid	0	0	22	2	5	0	5	0	2 2		0		2	0	0	5	0	10	1:	L O	21	
Boechera stricta	rosid		1	22	2	4		4	0	2 1		0		2	0	0	4	1	10	10		20	
Brachypodium distachyon Brachypodium stacei	monocot monocot		0	10 4 4 2	6 2	6 3	3 2	4	0 0	00		0		1 1	0	0	4	10 4	29 12	15		44 20	
Brachypodium sylvaticum	monocot		1	4 1	2	2		2	0	0 0		0		1	0	0	2	5	14	-		20	
Brassica oleracea capitata	rosid		1	3 3	5	8		7	0	1 0		0		2	0	0	7	1	17	1:		29	
Brassica rapa FPsc	rosid		1	4 4	5	11	1	6	0	1 1		0	2	3	0	0	5	2	17	14		32	
Capsella grandiflora	rosid		1	22	2	4	1	4	0	2 0		0		2	0	0	4	1	13	1		21	
Capsella rubella Carica papaya	rosid rosid		1 1	22 21	2 2	5 2		4	0 0	2 1 4 3		0		2 2	0 0	0 2	4	1 1	11 8	10 10		21 18	
Chenopodium quinoa	basal eudicot		0	3 2	3	4		3	0	2 5		0		1	0	0	3	3	14	10		23	
Chlamydomonas reinhardtii	algae		0	0 0	0	0		0	0	1 0		0		14	5	13	0	7	9	3		18	
Chromochloris zofingiensis	algae	0	0	0 0	0	0	0	0	0	0 1	L O	0	0	13	7	11	1	3	14	-	7 2	23	1
Cicer arietinum	rosid	1		2 1	2	1		3	10	53		0	1	1	1	1	3	2	16	12		28	
Citrus clementina	rosid		1	2 1 2 1	2 2	2		3 2	0	4 1		0		1	0	2 3	3 3	3	9 9	10		19	
Citrus sinensis Coccomyxa subellipsoidea C-169	rosid algae		1 0	2 1 0 0	2	2		2	0 0	4 1 0 0		0		1	0 5	0	0	3	3	10		19 5	
Cucumis sativus	rosid		1	3 1	2	3		2	0	4 1		0		2	0	1	2	3	10	10		20	
Daucus carota	asterid	2	1	3 1	3	1	2	3	0	44	1 2	0	1	2	0	2	3	1	9	12	2 1	22	1
Dunaliella salina	algae		0	0 0	0	0		0	0	0 0		0		6	11	1	0	5	2	:		10	
Eucalyptus grandis	rosid		1	3 0	3	1		2	0	2 3				2	1	3	2	1	8	10		19	
Eutrema salsugineum Fragaria vesca	rosid rosid	1 1	1	22 21	2 2	4 5		4	0 0	12		0	1 1	2 2	0 0	0 5	4	2	10 9	10 13		20 22	
Glycine max	rosid		1	5 2	4	4		6	28	5 5				3	5	2	6	2	38	24		62	
Gossypium hirsutum	rosid	3	2	52	5	6	3	3	0	1 3	6 6	0	1	5	0	0	3	0	18	15	5 0	33)
Gossypium raimondii	rosid		1	4 2	4	4		3	0	1 3		0		4	0	0	3	0	12	13		25	
Helianthus annuus Hordeum vulgare	asterid		1 0	32 63	4	2 3		6	0	4 3		0		5	1 0	2 0	6	3	13	18		31	
Kalanchoe fedtschenkoi	monocot basal eudicot		1	4 3	2	3		2	0 0	00		0		1 1	1	1	2 3	4	17 5	16		24 21	
Kalanchoe laxiflora	basal eudicot		1	4 5	4	5		4	0	5 4				1	2	3	4	1	5	23		29	
Lactuca sativa	asterid	2	1	32	3	2	1	5	0	3 3		0	1	3	1	2	4	2	12	14	1 O	26	j
Linum usitatissimum	rosid	2		6 0	6	5		3	0	2 5		10		2	2	0	3	1	24	15		40	
Manihot esculenta Marchantia polymorpha	rosid		0	3 1 0 0	3 0	1 0		2 1	0 0	53		16 0		1 1	1 2	3 2	2 1	0	21 6	12		34 14	
Marchantia polymorpha Medicago truncatula	bryophyte rosid		1	2 1	2	3		3	13	3 6		0		1	3	2	3	2	21	13		35	
Micromonas pusilla CCMP1545	algae		0	0 0	0	0		0	0	0 0		0		6	2	2	2	1	5	-		8	
Micromonas sp. RCC299	algae		0	0 0	0	0		0	0	0 0		0		2	3	1	1	3	3	2		6	
Mimulus guttatus	asterid		1	4 1	4	1		3	0	2 2		0		3	0	0	4	1	10	10		21	
Musa acuminata Olea europaea var. sylvestris	monocot asterid	2 2	1	5 1 1 1	4	5 1		3 6	0 0	00				2 9	0 1	0 1	3 5	1	12 18	12 10		24 29	
Oropetium thomaeum	monocot		0	4 2	1	2		3	0	0 0		0		1	0	0	3	4	9	10		17	
Oryza sativa	monocot		0	52	2	3		3	0	0 0		0		1	0	0	3	6	15	9		24	
Ostreococcus lucimarinus	algae		0	0 0	0	0	0	0	0	0 0		0		5	2	1	1	1	6		1	7	
Panicum hallii Dhana aluanda min	monocot		3	18 6 2 1	12	12		6	0	0 0		0		3	2	0	6	15	43	28		73	
Phaseolus vulgaris Physcomitrella patens	rosid bryophyte		1	2 1 0 0	2 0	2 0		3 2	19 0	33		0		1 3	3 0	1	3 2	3 3	24 16	13		37 18	
Populus deltoides	rosid		1	3 1	3	2		4	0	4 4		9		2	0	2	4	9	26	15		41	
Populus trichocarpa	rosid	5	2	62	6	4	4	6	0	12 6	5 4	18	4	4	2	6	11	32	53	39) 1	93)
Porphyra umbilicalis	algae		0	0 0	0	0		0	0	0 0		0		0	3	13	0	0	2	3		7	
Prunus persica	rosid	1		3 1 2 0	2 2	5		1	0	3 3		0	1 0	5	0	2	1	1 0	13	1		22	
Ricinus communis Salix purpurea	rosid rosid		1 1	20 21	2	1		1 4	0 0	20		11 11		0	0 0	1 3	1 4	6	15 20	16		19 37	
Selaginella moellendorffii	bryophyte		0	0 0	0	0		0	0	0 0		0		0	0	0	0	1	20		Ĺ	1	
Setaria viridis	monocot	2	1	6 1	4	3	2	2	0	0 0	5	0	0	1	1	0	2	5	16	8	31	25	j.
Solanum tuberosum	asterid	2		5 1	4	3		2	0	33				4	0	1	2	2	14	12		26	
Sorghum bicolor	monocot	1		2 0	2			0	0	0 0		0		0	0	0	0	4	4	3		7	
Sphagnum fallax Spirodela polyrhiza	bryophyte non-com	0 1		0 0 1 2	0 1	0 2		2 2	0 0	01		0		0 0	1 0	1 0	2	6 0	11 3		20 70	13 10	
Theobroma cacao	rosid	1		2 1	2	2		2	0	3 3		0		2	0	2	2	0	5 7	10		10	
Trifolium pratense	rosid		0	2 0	2	2			12	4 3				1	4	1	2	2	22	1(33	
Triticum aestivum	monocot	2		5 1	2		1		0	0 0				0	2	0	2	3	18	(24	
Vigna unguiculata	rosid	1		2 1	2		1		18	4 3				1	1	1	3	2	25	1:		36	
Vitis vinifera Voluov cartori	rosid	0 0	0	2 0 0 0	2 0	0	0	1 0	0 0	0 7				8	2 10	0 3	0 0	0	7		30 53	15	
Volvox carteri Zea mays	algae monocot		0	7 2	3	0 4		2	0	10				12 1	10	3	2	3 5	30	2		15 31	
Zostera marina	non-com	2		5 3	4		2		0	1 0				1	2	0	2	2	50	12		19	

	х	Α	В	С	D	X2	A2	B2	C2	GPI
R-H	0%	0%	2%	1%	0%	99%	0%	0%	0%	1%
х	51%	60%	70%	37%						55%
E-C	91%	90%	0%	0%	71%	75%	10%	0%	1%	86%
о	72%	82%	82%	45%						74%
L	60%	89%	0%	0%						84%
F	81%	71%	0%	3%						90%
F-D	100%	82%	0%	0%	76%	88%	5%	0%	0%	90%
G-A	100%	82%	0%	0%	76%	88%	5%	0%	0%	43%
1	0%	54%	81%	96%						91%
м	42%	84%	84%	84%						60%
Ν	93%	91%	100%	0%						87%
Q-J	2%	0%	0%	0%	0%	0%	63%	0%	0%	11%
В	0%	2%	0%	2%						0%
С	71%	0%	0%	0%						60%
J	0%	15%	0%	0%						29%
K-J	0%	0%	3%	0%	5%	0%	3%	0%	0%	0%
К-К	3%	0%	0%	0%	0%	0%	0%	0%	0%	0%
к	0%	0%	0%	0%						44%
Q	0%	4%	0%	17%						24%
Р	8%	0%	8%	0%						7%

Supp Table S2 | *N*-glycosylation and GPI anchor motif occurrence in different FLA types

Supplementary Data Files

Supp data 1 | Domain names and labels for all FLA fasciclin domains

Excel file for the 2644 fasciclin domains, names and annotation information. In order to keep names short for phylogenies, FLAs given arbitrary identifier numbers, and fasciclin domains within them indicated by their (e.g. ">x1234_FLA.2.3" -> Fasciclin domain cluster 1, arbitrary FLA identifier number 1234, FLA fasciclin domain 2 out of 3). Numbers and colours given for fasciclin, AG, non-AG and inter-proline clusters.

Supp data 2 | Fasciclin domain alignments

Zip file of multiple sequence alignments as fasta files for all 2644 fasciclin domains, as well as separately for each cluster A-R.

Supp data 3 | Fasciclin domain phylogenies

Zip file of phylogenies as newick files for all 2644 fasciclin domains, as well as separately for each cluster A-R.

Supp data 4 | Fasciclin analysis script Scripts of analyses in [R].