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Glossary/Key terms 
Term Definition 

Adventitious roots Roots which grow from an area of the plant other than the root 
zone (for example off the stem) and which may grow above the 
soil surface 

Anoxic soil conditions No or very low concentrations of dissolved oxygen 

Antecedent conditions Preceding conditions, e.g. the conditions prior to an 
environmental watering event. Can refer to the condition of the 
vegetation or to the flow conditions, e.g. wet or dry prior to an 
event 

Aquatic environments Relating to water, typically refers to inundated environments 

Biomass The quantity or weight of plant material, typically material that 
has been dried. Can refer to total biomass of a plant, or parts of a 
plant (e.g. below-ground roots or above ground stems and leaves) 

Community assembly rules Rules which determine the composition of species within a 
community 

Ecological level of organisation The way in which components of an ecosystem are organised, e.g. 
species, populations, communities and mosaics of communities 
(vegscapes) 

Ecosystem A biological community of interacting organisms (e.g. plants and 
animals) and their physical environment 

Ecosystem functions and processes The biological, geochemical and physical processes and 
components that take place or occur within an ecosystem 

Expected outcomes The outcomes predicted to occur in response to an environmental 
water action 

Extant vegetation Vegetation / species that are present at the time of a survey (as 
opposed to species present in the seed bank which may or may 
not be part of the extant vegetation) 

Germination The development of a plant from a seed or spore after a period of 
dormancy 

Heterogeneity The state of being diverse, e.g. a diverse range of plant 
communities 

Mesocosm An outdoor experimental system that examines the natural 
environment under controlled conditions 

Physiological response An automatic reaction that triggers a physical response 

Recruitment When a juvenile organism joins a population, e.g. when a seedling 
becomes established and has a high likelihood of surviving into 
adulthood 

Resilience The capacity to recover from disturbance 

Seed viability The ability of a seed to germinate under suitable condition 
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Term Definition 

Seedling establishment The process of germination and initial seedling growth, such as 
root development, to enable a seedling to acquire water and 
nutrients and increase the likelihood of surviving into adulthood 

Soil biota Organisms which live in the soil 

Tap root The main root of a root system which grows vertically downward 

Terrestrial environments In the context of this report this refers to floodplain environments 
which are dry. These environments may be inundated by flooding 

Traits / attributes A distinguishing quality or characteristic 

Vegscape A mosaic of vegetation communities 
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Executive Summary 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wetland and floodplain plants and communities are critical components of both aquatic and terrestrial 
ecosystems, suppling energy to support food webs, providing habitat and dispersal corridors for animals 
and birds, and contributing to other ecosystems processes such as nutrient and carbon cycling, water and 
sediment oxygenation. They are also beautiful parts of our river landscapes with attributes that underpin 
ecological, cultural, recreational, aesthetic and economic values. The value of wetland and floodplain 
vegetation is reflected in the Basin-wide Environmental Watering Strategy which lists maintaining the 
extent and improving the condition of forests and woodlands, shrublands and non-woody vegetation as 
expected outcomes. The diversity of plants, vegetation communities and mosaics of communities in 
Murray-Darling Basin wetlands and floodplains is tremendous. These take a myriad of structural forms, 
from floating ferns to ancient trees. Environmental water managers may seek to achieve a range of 
vegetation outcomes that reflect the diversity of functions and values supported by wetland and floodplain 
vegetation. 

For managers to achieve vegetation outcomes from environmental water a process of social, ecological and 
economic consideration is required. For example, i) stakeholder values need to be identified through 
consultation, ii) vegetation attributes that support these values need to be identified and used to set clear 
management objectives, iii) the appropriate management action(s) to achieve objectives need to be 
identified. Identifying actions will require an understanding of the effects or predicted effects of flow on 
vegetation responses; and consideration of how non-flow drivers (e.g. climatic conditions, grazing, invasive 
species) influence predicted vegetation responses to the application of environmental water. Lastly, iv) the 
effectiveness of the selected suite of management actions needs to be considered in relation to water 
resource availability scenarios and prioritisation of management actions for other objectives. 

Key outcomes  
• To achieve vegetation outcomes from environmental water, a process of social, ecological and economic 

consideration is required (1 and 2.1). 

• What are we watering for and why? We provide structure and knowledge to help refine objectives, define 
function and value, and select indicators across a range of spatial and temporal scales to inform 
environmental watering (2.1).  

• Understory vegetation outcomes are diverse, both spatially and over time. The response of plant 
communities to watering actions, vary from place to place leading to a diversity of outcomes from the same 
watering treatments spatially. Across the Basin, the variation in response to the same watering actions, leads 
to a diversity of vegscapes  (2.2 and 2.3). 

• Variability in vegetation responses are predicted to arise as a result of differences in location, recent flow 
conditions (e.g. water depth, time-since-last inundation, proportion time wet), vegetation structure, and 
medium to long term flow regimes (2.2 and 2.3).  

• Watering lignum once in every 1 – 3 years assists in greatest clump size which supports waterbird 
recruitment (2.3). 

• Woody recruitment is variable despite similarities in vegetation type and flooding frequency (2.3). 

• Eucalypt tree seedlings have different strategies to respond to watering treatments which reflect the 
distribution and likely inundation regime experienced by the species (2.4). 

• Constant inundation suppresses seedling growth, but may not lead to mortality (2.4).  

• Inter-flood dry periods are important for seedling growth, particularly development of roots which are vital 
for anchorage, stability, access to groundwater and the ability to tolerate dry periods (2.4). 

• Coolibah and black box seedlings are sensitive to the timing of floods relative to their age, with both species 
performing better under a later flood as opposed to an earlier flood (2.4). 
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As such, there is a need to clearly articulate the values that wetland-floodplain systems support, to improve 
predictive capacity based on an improved knowledge base and to provide rigorous evidence of the 
outcomes of environmental flows in achieving management goals and informing adaptive management.  

The EWKR vegetation theme sought to: 

1. Provide a framework and guiding principles to help define the process of ‘what are we watering for 
and why?’ to help refine objectives, define function and value, and select indicators across a range 
of spatial and temporal scales, given the myriad of potential vegetation outcomes; and 

2. Improve predictive capacity and the underlying knowledge base by determining drivers of 
responses to watering actions, for: 

a. Existing understory communities 

b. Seed bank diversity 

c. Woody seedling establishment 

d. Lignum structure 

The EWKR vegetation theme shows that there is incredible variation in local plant communities and 
associated seed banks in space and time. This is even though many wetland and floodplain species have 
wide distributions, are largely cosmopolitan species and are rarely considered endemic. The vegetation 
theme looked at what causes this variation and how to predict it, and we are beginning to be able to 
determine community assembly rules. We’re starting to be able to: i) identify what the significant drivers 
are; ii) determine their relative importance; and iii) understand their interactions.   

Location is overwhelmingly the most important predictor of local community composition, followed by 
recent flow conditions (e.g. preceding three months). After location and recent flow, the story becomes 
more complicated and interactions between factors play a role. For example, if a wetland has been dry over 
the medium term (3-10 years), then vegetation structure appears to be a key predictor of wetland 
community. In contrast, if a wetland has been wet over the medium term then the medium to long term 
flow regime becomes a key predictor of wetland community. Balancing wet-dry regimes is important for 
maximising abundance in wetland systems such as herb-fields. 

By understanding what the significant drivers are, their relative importance and how they interact, we are 
improving our capacity to predict expected outcomes to environmental watering events and can use those 
predictions to help plan or prioritise watering actions. 

Seedling establishment is a vulnerable stage for floodplain trees and understanding their specific watering 
requirements is important for the long-term survival of the species. The three eucalypt species displayed 
different growth strategies in response to the watering treatments. Understanding the likely mechanisms 
behind these strategies enables better predictions of outcomes and more targeted watering regimes. Other 
key outcomes include:  

i) constant inundation suppresses seedling growth in river red gum, black box and coolibah seedlings; 

ii) inter-flood dry periods are important for seedling growth, particularly the development of roots which 
are vital for anchorage and stability, access to groundwater and the ability to tolerate dry periods; 

iii) coolibah and black box are likely to be more sensitive to the timing of floods relative to their age, with 
seedlings from both species performing better under a later flood as opposed to an earlier flood. 

Maintaining lignum with structural qualities to support processes such as waterbird recruitment is likely to 
require flow regime characteristics, including flood-return-frequency in the range of 1 flow in every 1 – 3 
years. There is a strong association between lignum clump size and flood inundation category, with lignum 
clump size (volume) greatest in the most frequently inundated categories.  
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1 Vegetation Theme: Introduction 
Wetland and floodplain vegetation communities have a high intrinsic value and play a critical role in 
supporting a wide range of ecosystem functions, services and human values (Capon et al. 2013, Capon and 
Pettit 2018). Wetland and floodplain plants are critical components of both aquatic and terrestrial 
ecosystems through the supply of energy to support food webs, provision of habitat and dispersal corridors 
for fauna (Boulton and Brock 1999, Bornette and Puijalon 2011), and contribution to other ecosystem 
services such as nutrient and carbon cycling, riverbank stabilisation and water and sediment oxygenation 
(Boulton and Brock 1999, Aldridge and Ganf 2003, Brookes et al. 2005, Baldwin et al. 2013). Wetland and 
floodplain vegetation also support aesthetic and other social values, such as the provision of shade in 
important recreational sites. Many plants also have significant cultural value such as the use of sedge 
species for basket weaving (Clarke 2012).  

Throughout the world, changes to flow regimes resulting from river regulation, water extraction and other 
human activities (e.g. land clearing) have compromised many of these values (Davidson 2014, Kuiper et al. 
2014, Kingsford et al. 2015, Reis et al. 2017), leading to widespread efforts to restore floodplain and 
wetland vegetation through the delivery of environmental flows (Arthington 2012). Management of 
environmental water, however, is complex and presents many challenges (Harris and Heathwaite 2012, 
Bond et al. 2014).  

For managers to achieve vegetation outcomes from environmental water requires a process of social, 
ecological and economic consideration. For example, i) stakeholder values need to be identified through 
consultation, ii) vegetation condition attributes that support these values need to be identified and used to 
set clear management objectives, iii) the appropriate management action(s) to achieve objectives need to 
be identified. Identifying actions will require an understanding of the effects or predicted effects of flow on 
vegetation responses; and consideration of how non-flow drivers (e.g. climatic conditions, grazing, invasive 
species) influence predicted vegetation responses to the application of environmental water. Lastly, iv) the 
effectiveness of the selected suite of management actions needs to be considered in relation to water 
resource availability scenarios and prioritisation of management actions for other objectives. 

As such, there is a need to clearly articulate the values that wetland systems support, to improve predictive 
capacity and to provide rigorous evidence of the outcomes of environmental flows in achieving 
management goals and informing adaptive management.  

It is within this context that we designed our EWKR research program for the Vegetation Theme, with a 
focus on informing Basin-scale management. Due to other work that was underway at the time assessing 
the condition of long-lived woody vegetation (e.g. MDBA Basin-scale Stand Condition Model) we chose to 
focus our research efforts on non-woody vegetation and recruitment of long-lived woody vegetation.  

Non-woody vegetation 

Non-woody wetland and floodplain vegetation encompasses a variety of vegetation types, from submerged 
macrophytes to flow responsive herbs, grasses, sedges and rushes and tall reed beds. The water 
requirements of these diverse vegetation species and communities differ (Roberts and Marston 2011, 
Rogers and Ralph 2010), their functional values differ, and their key attributes differ (e.g. species diversity, 
structural complexity, cover). There was also emerging evidence of spatially distinct vegetation 
communities despite similar watering histories (LTIM and TLM data). This diversity and complexity present 
challenges when trying to make predictions or assess outcomes for non-woody vegetation, particularly at a 
Basin-scale.  

To help inform evaluation and predictive processes for non-woody vegetation we wanted to provide some 
context and structure around the types of vegetation responses that occur across different vegetation traits 
(e.g. compositional, structural and process), levels of ecological organisation (e.g. species, community, 
vegscape), and spatial and temporal scales. Using consistent methods, we also wanted to test the spatial 
diversity of responses (both extant and seed bank) at a Basin-scale, at sites with similar influence of 
flooding history (flood-return-frequency) and similar broad vegetation structure (non-woody wetlands, 
inland shrubland, inland woodland). In addition, we wanted to draw on the wealth of existing data to 
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explore relationships between non-woody vegetation responses and environmental factors such as flow 
and climate variables. 

Recruitment of long-lived woody vegetation 

Long-lived woody vegetation such as river red gum (Eucalyptus camaldulensis Dehnh.), black box 
(Eucalyptus largiflorens F.Muell.), coolibah (Eucalyptus coolabah Blakely & Jacobs) and lignum (Duma 
florulenta Meissner) are key structural components across the Basin and their importance is reflected in 
objectives in the Basin-wide Environmental Watering Strategy (MDBA 2014). Mature woody plants of these 
species can withstand varying degrees of stress associated with both floods and drought, through a wide 
range of physiological and morphological traits (Capon et al. 2016). Seedlings of these woody species, 
however, are considerably more vulnerable to the stresses associated with floods and droughts than their 
mature counterparts due to their smaller stature (Cooper et al. 1999; Gindaba et al. 2004). Seedling 
establishment, rather than seed supply or germination, is widely perceived to be the critical bottleneck 
determining population structure of floodplain tree species in arid and semi-arid regions (Streng et al. 1989; 
Hughes 1990; Cooper et al. 1999; Horton and Clark 2001; George et al. 2005; Maxwell et al. 2016). 

We wanted to better understand the relationships between seedling establishment of long-lived woody 
species and hydrological conditions through controlled mesocosm experiments. We also took the 
opportunity to record the occurrence of woody seedlings in the field to assess relationships with flood-
return frequency and vegetation structure. 

Research program 

The overarching research question for the Vegetation Theme was: What are the drivers of sustainable 
populations and diverse communities of water-dependent vegetation?  

This high-level aim was applied to two priority research topics: 

1. Diversity of non-woody (understory and wetland) plants. 

2. Recruitment of long-lived woody vegetation (river red gum (Eucalyptus camaldulensis Dehnh.), 
black box (Eucalyptus largiflorens F.Muell.), coolibah (Eucalyptus coolabah Blakely & Jacobs) and 
lignum (Duma florulenta Meissner)). 

The theme undertook four research components, supported by planning and coordination activities, to 
address the research topics and aims:  

• V1: Conceptualisation  

o How do we define vegetation response objectives to consider multiple trait responses, 
ecological levels of organisation, functions and values, and spatio-temporal scales? 

 Framework and guiding principles to develop robust and defensible objectives and 
identify SMART indicators 

• V2: Data integration and synthesis  

o What drives vegetation responses to watering actions? 

o How can we learn more from existing data? 

 Utilise existing long-term data sets to assess vegetation responses to flow 

• V3: Field site assessments and germination trials  

o What drives vegetation responses to watering actions? 

 Assess the influence of location, flood-return-frequency and vegetation structure 
on extant understory communities and seed bank diversity 

• V4: Seedling mesocosm experiments  

o What drives vegetation responses to watering actions? 
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 Improve the understanding of seedling establishment responses of three floodplain 
tree species to hydrological conditions 

• Theme planning, coordination and reporting 

o How do our learnings inform adaptive management? 

 Synthesise outcomes and learnings with respect to adaptive environmental water 
management 

In line with the ‘one-project’ approach of MDB EWKR, the research components aim to complement each 
other with the theme planning, coordination and reporting bringing together outputs in a holistic way. To 
assist with theme synthesis and to relate our research outcomes to different aspects of environmental 
water management, we placed our research priorities and questions within an adaptive management cycle 
(Figure 1).  

For further information about the research prioritisation process and background logic and rationale please 
refer to MDFRC (2016). 

 

 

Figure 1 MDB EWKR Vegetation Theme research questions aligned with the adaptive management cycle 
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2 Individual Research Activity Summaries 
2.1 V1. Conceptualisation – Vegetation outcomes: what are we seeking 

and why? 

2.1.1 Research Question and Summary 

The conceptualisation component sought to disentangle the question ‘what are we watering for and why?’ 
The term ‘water-dependent vegetation’ can mean many different. Over 800 plant species have been 
recorded in wetland and floodplain habitats across the Murray–Darling Basin (Campbell and Nielsen 2014), 
representing a range of life forms, from floating ferns to 600-year-old trees. Furthermore, these species 
combine to form a wide variety of distinctive communities and vegscapes which, in turn, provide a diversity 
of functions across multiple spatial and temporal scales. Human values associated with ‘water-dependent 
vegetation’ are also many and varied, depending on social, economic, cultural and political contexts. Given 
this complexity, we asked the question ‘How do we define vegetation response objectives to consider 
multiple trait responses, ecological levels of organisation, functions and values and spatio-temporal scales?’ 

In this component we sought to provide a framework and guiding principles to aid the development of 
objectives, indicators and management of water for vegetation outcomes. The framework is graphically 
represented in Figure 2. We propose four principles: i) alignment of vegetation management objectives, 
targets and indicators to broader ecological, socio-cultural and economic values; ii) the use of multiple 
scales and levels of ecological organisation; iii) temporal dynamics, the influence of nested flow regimes 
and long-term trajectories of change; and iv) non-flow modifying factors. 

 The framework and guiding principles encompass the diversity of vegetation responses at key levels of 
ecological organisation (individual, species, population, communities, landscape/vegscape), across multiple 
spatial scales and with respect to broad classes of trait response (i.e. compositional, structural, process). 
Our approach also clearly acknowledges the ecological, socio-cultural and economic functions and values 
associated with different vegetation responses, which typically drives the desire to protect regions or 
attributes, either explicitly or implicitly. The guiding principles also aim to incorporate an understanding of 
dynamics over time, including nested flow regime components and long-term trajectories of change, as 
well as the influence of non-flow drivers (Figure 2). We also provide a table of potential indicators relevant 
at these different hierarchical scales (see Appendix V1.1).  

As part of setting management objectives and planning environmental watering actions for vegetation 
outcomes, values need to be identified (ideally through a process of stakeholder consultation) and 
expected outcomes needs to be articulated. Information to support these expected outcomes and evaluate 
success requires a level of detail that; helps identify relevant attributes (traits) and indicators to measure 
success; defines the spatial scale; identifies the relevant timeframe over which to assess outcomes; and 
considers influences such as recent to longer-term flow regimes and non-flow modifiers which are likely to 
affect expected outcomes. Water managers instinctively undertake this process. This framework provides 
the structure to aid and document this process – to prompt the consideration of factors such as flow 
regime, grazing and exotic species pressure; to consider the types of attributes which support the expected 
outcomes and values (e.g. richness and diversity, or height and cover, or flowering and seed viability); and 
to consider the relevant spatial (e.g. a localised population or a larger mosaic of communities within a 
wetland complex) and temporal scales (e.g. an immediate physiological response to the application of 
water, successional communities over a six-month flood recession and drying, or multi-year events to build 
resilience or support seedlings through to establishment). 

For more information regarding the framework components refer to Appendices V1.1 to V1.4. 
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2.1.2 Water Management Application 

The concepts within this component feed directly into the planning stages of environmental water 
decisions (see Figure 1) at a range of management scales. The framework provides the structure to support 
managers to identify: i) more explicit vegetation management objectives that are linked to values; ii) 
relevant response attributes / traits to inform the selection of appropriate indicators to monitor; iii) 
expected time frames for measurable responses of relevant attributes / traits to inform target setting; and 
iv) appropriate spatial scale for measuring response. Clearly defining the vegetation response objective has 
implications for the design of flow regimes to meet these objectives, developing monitoring / research 
programs to detect relevant responses and in evaluating the outcomes of the delivery of environmental 
water. The identification of five key components within the framework (Figure 2), aids in the discussion and 
documentation around the planning process for environmental water decisions. 

The challenge now is to operationalise the framework and guiding principles and further develop them into 
useful decision support tools for water decision makers operating at a range of scales (e.g. local, regional, 
State-based, Basin-scale). There is a range of research and consultation which could help inform this 
process. In particular, we suggest: i) a workshop to test the utility of the framework with a diversity of 
water decision makers; ii) a review of existing processes to ‘scale-up’ information from plot to landscape 
scales from other disciplines; iii) development of a consistent classification systems for non-woody 
vegetation at a range of levels of ecological organisation; iv) research to better understand relationships 
between vegetation responses and the functions and values these support; v) better alignment or 
development of response indicators for different vegetation trait responses at different levels of ecological 
organisation and different spatial and temporal scales; vi) development of improved predictive capacity 
around response indicators, flow regimes and non-flow drivers.  

 

Figure 2 Vegetation response framework, incorporating five key components: 1) different levels of ecological 
organisation; 2) different trait responses at each of the levels of organisation; 3) ecological, socio-cultural and 
economic functions and values of different vegetation responses; 4) temporal dynamics including the influence of 
nested flow regimes on long-term trajectories of change; and 5) modifying effect of non-flow drivers. 
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2.1.3 Research Outcomes 

Environmental water managers may seek to achieve a range of vegetation outcomes that reflects the 
diversity of functions and values supported by wetland and floodplain vegetation. To evaluate the success 
of environmental water decisions, there needs to be clear articulation of the expected outcomes. This 
articulation needs to simplify the vast array of potential outcomes in a structured way that captures the 
value or function of that outcome – ‘what are we watering for and why?’. 

In this research component we propose four principles to guide the development of robust objectives and 
evaluation approaches for the adaptive management of environmental flows with respect to vegetation 
outcomes: i) alignment of vegetation management objectives, targets and indicators to broader ecological, 
socio-cultural and economic values; ii) multiple scales and levels of ecological organisation; iii) temporal 
dynamics, the influence of nested flow regimes and long-term trajectories of change; and iv) non-flow 
modifying factors. These principals are graphically represented as five key components – our framework 
(Figure 2): 1) different levels of ecological organisation (individual, species, population, community, 
landscape/vegscape); 2) different trait responses at each of the levels of organisation (e.g. compositional, 
structural, process); 3) ecological, socio-cultural and economic functions and values of different vegetation 
responses (e.g. habitat, regulating, production or information functions and values); 4) temporal dynamics 
including the influence of nested flow regimes on long-term trajectories of change (e.g. the recent flow 
regime pulse, short-term and longer-term regimes); and 5) modifying effect of non-flow drivers (e.g. land 
use, salinity, climate, invasive species). 

This research has identified key principles and components to guide the development of robust objectives 
and evaluation approaches for the adaptive management of environmental flows with respect to 
vegetation outcomes. Other outputs (e.g. Appendices V1.1 to V1.4) provide more detail around each of the 
principles and components. Further research could provide case-study examples and define relationships 
between specific vegetation outcomes and their associated function, value, spatial and temporal scales of 
relevance and key flow and non-flow drivers. 

This research component is conceptual and provides guidance to inform existing processes, such as 
discussions and documentation around planning for environmental water decisions. 

• What are we watering for and why? We provide structure to help refine objectives, define function 
and value, and select indicators across a range of spatial and temporal scales.  

 

Four individual research outputs were produced as part of this component and are provided in Appendices 
V1.1 to V1.4: 

• Paper: Campbell et al. (submitted), Blue, green and in-between; setting objectives for and 
evaluating wetland vegetation responses to environmental flows. (Appendix V1.1) 

• Conceptualisation Research Activity Report (Appendix V1.2) 

• Presentation: Campbell et al. 2016. Vegetation outcomes: what are we seeking and why? Australian 
Society of Limnology Conference, Ballarat, 27th September 2016 (Appendix V1.3) 

• Article: Grow with the flow, RipRap V40, 2017, pp 16-18, Australian River Restoration Centre, 
Canberra (Appendix V1.4) 
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2.2 V2. Data integration and synthesis 

2.2.1 Research Question and Summary 

The Data integration and synthesis component (DISC) addressed two of the broad EWKR research 
questions: 

• What drives vegetation responses to watering actions? 

o With a focus on non-woody vegetation, flow regimes and climate 

• How can we learn more from existing data? 

The aim of this component was to utilise existing long-term data sets to assess vegetation responses to 
flow. Long-term monitoring of wetland and floodplain complexes provides an opportunity to look at how 
vegetation responses relate to hydrological regimes across longer time frames and to interrogate the 
influences of precursor condition and historical legacies on these responses. This work relates to predicting 
expected outcomes to environmental watering events and using those predictions to help plan or prioritise 
watering actions. This component comprised several related phases: i) workshop and initial consideration 
of potential datasets and approaches; ii) collation and exploration of accessible data and iii) development 
of vegetation response models.  

This component summary focuses on the outcomes of the vegetation response model. For details of the 
other component phases refer to Appendices V2.1 to V2.2. A key outcome of the initial exploration of data 
(Appendix V2.2) from multiple wetland complexes was the influence of location – a finding supported by 
research in component V3 Field site assessments and germination trials.  

To develop vegetation response models, we explored the influence of hydrological and climatic conditions 
on the contrasting wet and dry floristic components of temporary semi-arid wetlands using understory 
plant species data collected from Hattah Lakes as part of The Living Murray program. We used the plant 
functional groups of Brock and Casanova (1997), to categorize species as wetland species and dryland 
species. A temporal hierarchy of antecedent conditions was considered from relatively recent (3 months), 
short term (4 months to 12 months) and medium term (1 year to 3 years) to longer term (30-year flood 
frequency). We investigated the relative importance of hydrological and climate variables on four wetland 
vegetation response metrics: i) native wetland plant species richness; ii) native wetland plant species 
abundance; iii) native dryland plant species richness; and iv) native dryland plant species abundance.  

The wetland response model found several hydrological indicators influenced the richness and abundance 
of inundation tolerant species. These were found to be: i) water depth, which had a negative effect on 
richness and abundance for both three month and three-year timeframes; ii) time-since-last inundation, 
which demonstrated a non-linear relationship with abundance; and iii) proportion time wet, with 
abundance maximised when plots were dry ~50% of the year. Recent to medium-term flow regimes were 
the most important in terms of explaining wetland vegetation responses. 

The main drivers affecting dryland plant richness and abundance were: i) recent inundation (mean depth 
and proportion time wet in the last three months) and ii) time-since last inundation, which again 
demonstrated a non-linear relationship. The recent regime was the most important in terms of explaining 
dryland vegetation responses. 

For detailed methods and results, refer to Appendices V2.1 and V2.2. 

This component also highlighted several the challenges associated with long-term data sets and the 
collation of datasets with different survey methods (see also Appendix V2.2). 

2.2.2 Water Management Application 

Response model outcomes provide additional evidence for the key drivers and timeframes for non-woody 
vegetation responses. This in turn helps to explain current vegetation conditions or helps to predict 
responses to regimes. Recent (last three months) and short to medium-term (last three years) regimes have 
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the strongest influence on non-woody wetland vegetation richness and abundance while longer term 
regimes are likely to have more of an interactive effect. Time-since-last inundation has a non-linear (hump-
shaped) relationship with abundance, indicating that abundance is maximised at an intermediate point; 
wetland plant abundance increases as water recedes (as time-since-last inundation increases); and as soil 
moisture decreases however, there comes a point when maximum abundance is reached, and abundance 
then decreases with increasing time-since-last inundation. For data modelled from Hattah Lakes, 
abundance was maximised when plots were dry approximately 50% of the time. In a nutshell, the results 
support the need to maintain wet-dry regimes in semi-arid wetland systems.   

While the model has been developed using understory data from wetland habitats at Hattah Lakes, there is 
good potential to test the transferability of the relationships identified here with other datasets. These may 
include data from other habitats at Hattah Lakes (e.g. floodplain understory data), from other locations 
using the same sampling methods (e.g. Lindsay-Mulcra-Wallpolla Islands and Chowilla Floodplain), or other 
location based or combined data sets (e.g. TLM icon sites, LTIM, EWKR field data). There is also the 
potential to test other defined vegetation responses, e.g. response metrics based on classifications such as 
life-form, life-history or functional group. 

This component also provided many learnings related to the analysis of existing data. In particular, we 
determined that to obtain more knowledge from existing vegetation datasets, there is an urgent need for: 
i) available and easily accessible complementary data, such as hydrology and mapping of inundation 
patterns, ii) good data management processes to enable access to data in comparable formats, and iii) 
analytical expertise and accepted methods for the analysis of data from different sources (with different 
survey methods and sampling effort). It is also worth noting that future projects seeking to analyse existing 
data would benefit from factoring in the potentially considerable amount of time required to source and 
clean data, transform and collate data (from potentially quite different original formats), consistently align 
metrics (e.g. plant species names, units, trait classifications) and quality check data. 

2.2.3 Research Outcomes 

This component has improved predictive capacity and the underlying knowledge base by helping to 
determine drivers of responses to watering actions for understory communities.  

• Understory vegetation outcomes are diverse, both spatially and over time. A diversity of responses 
(heterogeneity) is a Basin-scale outcome. Outcomes should be planned to encompass this diversity 
and assessed over time. 

• Variability in vegetation responses are predicted to arise as a result of differences in location, 
recent flow conditions (e.g. water depth, time-since-last inundation, proportion time wet), 
vegetation structure, and medium to long term flow regimes.  

A series of research outputs were produced at different stages of this component. A list of these outputs is 
provided below and, where practical, copies are provided in Appendices V2.1 to V2.2. Please also see 
Appendix V5.1, Theme data inventory. 

• Workshop and meta-data collation: Internal workshop notes (including copies of presentations) 
and database of potentially available vegetation datasets 

• Hattah Lakes Inundation Model validation: Worked with Andrew Keogh (MDBA) to incorporate on-
ground observations of inundation into the hydrodynamic model for Hattah Lakes 

• Dataset 1: Combined TLM understorey data (See Appendix V5.1, Theme data inventory) 

• Dataset 2: Hattah Lakes understorey wetland data (See Appendix V5.1, Theme data inventory) 

• Paper: James et al. (draft). Disentangling flow-vegetation relationships and antecedent legacies to 
inform environmental flows (Appendix V2.1) 

• Model: Vegetation response model which can be applied to different datasets 

• Data integration and synthesis research activity report (Appendix V2.2) 
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2.3 V3. Field site assessments and germination trials 

2.3.1 Research Question and Summary 

Understanding factors that structure plant assemblages is not only a key goal of ecology but is critical to 
informing sound conservation planning and management. Wetland and floodplain vegetation assemblages 
are strongly influenced by water regimes. In response to reduced water availability, environmental water is 
used to complement components of the natural water regime. A better understanding of how components 
of the water regime influence and interact with other factors to structure plant assemblages will help 
inform water management. 

The field site vegetation assessments and germination trials conducted in EWKR addressed the broad 
research question ‘What drives vegetation responses to watering actions?’ This study assessed the 
influence of regional location, flood-return-frequency and woody vegetation structure on extant and soil 
seed bank vegetation assemblages, lignum structure and woody seedling recruitment. There was emerging 
evidence to suggest location is a key driver of vegetation assemblages (LTIM and TLM data). The influence 
of location has important implications for the transferability of predications and prioritisation processes at 
the Basin-scale. Wetland vegetation is typically sensitive to hydrologic changes, and studies within wetlands 
have frequently found spatial patterns of seed bank species richness and density related to flood history 
(e.g. Holzel and Otte 2001, Capon and Brock 2006). Structural vegetation classes for this study were defined 
along an assumed canopy-cover gradient from none to low fringing cover in non-woody wetlands, to 
woody lignum cover in inland shrublands, to highest canopy cover in inland woodlands. The presence of 
overstory or perennial shrubs can influence extant vegetation, seed banks and woody recruitment through 
a variety of physical and chemical pathways that can be both positive and negative. These pathways 
include: competition for resources (water and nutrients), light availability / shading, climate regulation 
(canopy cover reduces air temperature and both canopy and litter reduces soil temperature), protection 
from grazing (e.g. lignum (James et al., 2015)) and eucalypt leaf litter potentially providing both physical 
and chemical barriers to germination (May and Ash, 1990; Moradshahi et al., 2003; Sasikumar et al., 2002). 
Due to the influence of the existing canopy, recruitment may not always occur in woodland environments 
and may occur in neighbouring open patches. 

A total of 180 sites were surveyed: four geographical regions (Mid-Murray, Lower-Murray, Macquarie 
Marshes and Narran Lakes) of the Murray-Darling Basin (MDB), three flood intervals (near annual, 1.5-3 
years, 3-5 years and 5-10 years) and three vegetation structural types (non-woody, inland shrublands and 
inland woodlands). Sites were surveyed on two occasions, in autumn 2017 and 2018. The hydrological 
phase of each wetland at the time of survey (e.g. inundated, flow recession, dry) varied between the 
wetlands.  

To explore the potential diversity within each site we germinated soil collected from field sites under both 
damp and submerged treatments for six months. We then assessed how extant understory communities 
and seed bank diversity differ between location, flood-return-frequency and vegetation structure. 

To address our overarching research priorities for both non-woody wetland vegetation, as well as woody 
seedling recruitment, we looked at the responses of these aspects separately. Due to the structural 
importance of lignum to processes such as waterbird breeding, we also looked specifically at the structural 
response of lignum.  

Woody seedlings were found to be sparse, patchily distributed across sites and variable in abundance 
among sites and between surveys. In 2017 and 2018, seedlings (<1.3m) were recorded at 24 – 29% of sites, 
ranging from a single individual to hundreds of seedlings. The patchy occurrence and variability in density 
can make it difficult to link a response in seedling density to changes in the environment, which are also 
variable in space and time. Consequently, there is no clear relationship with flood history, indicating we 
have a limited understanding of the full suite of conditions required to support seedling recruitment. This 
finding is supported by other research on floodplain eucalypt seedlings (Nerissa Haby, pers comm, 
unpublished data), and is likely to reflect, among other things, a limited understanding of the interactive 
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effect of other environmental conditions (e.g. grazing pressure, competition, shading etc.) and the need for 
surveys targeting seedling recruitment. 

There is no resident soil seed bank for floodplain eucalypts and, while unknown, it is considered unlikely 
that river cooba forms persistent seed banks (Roberts and Marston 2011). This was supported by the very 
minimal number of seedlings recorded in seed bank germination trials (in total one river cooba seedling 
and four river red gum seedlings were recorded across all 180 sites).  

There were notable differences between the structure of lignum across the Lower Murray, Macquarie 
Marshes and Narran Lakes (N.B. lignum isn’t a significant component of the vegetation in the Mid-Murray). 
The majority of lignum recorded at the Lower Murray is relatively small and sparse (in terms of volume as 
determined from measurements of height and width). Conversely, there are very large clumps of lignum at 
both the Macquarie Marshes and Narran Lakes, with more than 50 individual clumps ≥ 3m high, with the 
largest individual clump at Narran Lakes recorded as 4m high and 20m wide! There is a strong association 
between lignum clump size and flood inundation category, with lignum clump size (volume) greatest in the 
most frequently inundated categories (near annual to 1 in every 1.5-3 years).  

In terms of the non-woody vegetation response, there was an overwhelming influence of location on both 
the extant vegetation and seed bank communities, with each of the four locations having quite distinct 
assemblages. Within each location, there were also different influences on the understory vegetation 
response. For example, there was a strong relationship with flood frequency and the composition of soil 
seed bank communities at the Macquarie Marshes, a moderate relationship at the Mid Murray and only 
weak relationships at Narran Lakes and the Lower Murray. In relation to vegetation structure and soil seed 
bank communities, there were strong relationships at Narran Lakes and the Mid Murray but only weak 
relationships at the Macquarie Marshes and Lower Murray. 

For detailed methods and results please refer to Appendices V3.1 to V3.4. 

2.3.2 Water Management Application 

Outcomes from this component inform how environmental watering events might be undertaken, 
including considerations such as what are the key components of the flow regime or how should non-flow 
drivers be considered to achieve target responses. These outcomes can be used to better predict responses 
to environmental watering events and use those predictions to help plan or prioritise watering actions. 

Given the variability in woody seedling responses, specific, targeted surveys, including in neighbouring 
open patches, need to be undertaken where seedling recruitment is a key response outcome. No clear 
relationship with flood history suggests that other drivers are influential. Consideration should then be 
given to what might be limiting the success of recruitment, such as soil moisture and grazing pressure, as 
well as the extent of flowering and seed viability, and germination cues. 

Maintaining lignum with structural qualities to support processes such as waterbird breeding and fledging 
is likely to require flow regime characteristics, including flood-return-frequency in the range of 1 flow in 
every 1 – 3 years. Further analysis of lignum structural responses with inundation mapping and additional 
hydrology metrics, such as depth and duration, will aid refinement of the characteristics required. Further 
consideration of where these flow characteristics do not support desirable structural qualities (such as 
certain sites within the Lower Murray) will help to identify potential non-flow drivers limiting responses. 

The overwhelming influence of location highlights the diversity of understorey communities in space and 
time at a landscape scale. This has implications for water management decisions in terms of prioritising 
areas for inundation to maximise the potential diversity at a Basin-scale. There will inevitably still be trade-
off questions that arise in long-term planning such as should we maximise the extent of inundation to 
potentially maximise diversity spatially or should we build up resilience and temporal diversity at a more 
limited suite of locations? Basin-scale management should aim to be equitable and representative of many 
vegetation types in a range of areas over time (cumulative spatial representativeness across multiple 
years), while retaining the flexibility to build resilience and temporal diversity at identified locations 
(targeted, multi-year watering’s). The key is to balance outcomes over time. 
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2.3.3 Research Outcomes 

This component has improved predictive capacity and the underlying knowledge base by helping to 
determine drivers of responses to watering actions, for: i) understory communities; ii) seed bank diversity; 
iii) woody seedling establishment; and iv) lignum structure. This component assessed the influence of 
regional location, flood-return-frequency and woody vegetation structure on extant and soil seed bank 
vegetation assemblages, lignum structure and woody seedling recruitment. 

• Understory vegetation outcomes are diverse, both spatially and over time. A diversity of responses 
(heterogeneity) is a Basin-scale outcome. Outcomes should be planned and assessed over time. 

• Variability in vegetation responses are predicted to arise as a result of differences in location, 
recent flow conditions, vegetation structure, and medium to long term flow regimes.  

• Watering lignum annually to 1 in every 1.5 – 3 years assists in greatest clump size which supports 
waterbird recruitment. 

• Woody recruitment is variable despite similarities in vegetation type and flooding frequency. 

 

Several research outputs were produced as part of this component. A list of these outputs is provided 
below and, where practical, copies are provided in Appendices V3.1 to V3.5. Please also see Appendix V5.1, 
Theme data inventory. 

• Methods and site selection: Field Assessment Experimental Design report (Appendix V3.1) 

• Dataset 1: Extant field site assessment (See Appendix V5.1, Theme data inventory) 

• Dataset 2: Seed bank germination trials (See Appendix V5.1, Theme data inventory) 

• Presentation: Campbell et al 2018. From the four corners of the Basin: assessing vegetation 
responses to flow regimes. Ecological Society of Australia conference, Brisbane, 25-29 November 
2018. (Appendix V3.2) 

• Paper: Campbell et al (draft). Vulnerability of resilient systems to the Anthropocene (target journal 
Global Change Biology) (Appendix V3.3) 

• Field site assessment and germination trials Research Activity Report (Appendix V3.4) 
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2.4 V4. Seedling mesocosm experiments 

2.4.1 Research Question and Summary 

Seedling establishment is a vulnerable stage for floodplain trees and is a well-known bottle-neck to the 
spatial and temporal dynamics of woody floodplain species. Watering requirements for seedling 
establishment are different to adult trees, largely due to their initial reliance on soil water availability from 
the unsaturated zone of the soil profile (until roots establish and access groundwater). One of the key 
vulnerabilities facing floodplain tree seedlings is the influence of flooding. Flooding is important for the 
establishment of seedlings because it creates moist soil conditions suitable for germination, alleviates 
moisture stress, extirpates potential competitors and promotes seedling growth. Flooding, however, may 
also cause stress. Flooding can restrict access to atmospheric carbon dioxide (CO2) and oxygen causing 
anoxic soil conditions and depleted soil biota. While some species are adapted to survive periods of 
flooding by elongating leaves and/or stems to maintain an emergent canopy above the waterline, and/or 
increasing biomass allocation to adventitious roots, other species are less adapted or incapable of adjusting 
growth, which will likely result in seedling mortality.  

This component addressed the question ‘What drives vegetation responses to watering actions?’, with a 
focus on the response of woody floodplain seedlings. Specifically, this research sought to improve the 
understanding of flow requirements for seedling establishment, including an understanding of whether 
responses varied with seedling age. Three floodplain tree species were examined including river red gum 
(Eucalyptus camaldulensis), black box (Eucalyptus largiflorens) and coolibah (Eucalyptus coolabah). Five 
watering treatments were applied reflecting different intra-annual flow regimes: i) constant dry, ii) constant 
wet, iii) an early wet, iv) a late wet and v) multiple wet events.  

We measured individual trait responses such as seedling height, root length and biomass. Some traits, such 
as height, demonstrated a strong species effect, with river red gum seedlings consistently growing taller 
than black box and coolibah respectively under all watering treatments. Other traits, such as root length, 
demonstrated a strong treatment effect, with root length being severely constrained in the constant wet 
treatment for all species. Other traits, such as leaf count, demonstrated an interaction, or species-specific 
effect. For example, black box responded to a few the watering treatments by developing large numbers of 
small leaves.  

Collectively, responses of plants traits of each species indicate some broad differences in overall species’ 
establishment strategies. Different strategies were observed for the three species, and these reflect the 
distribution and likely inundation regime experienced by the three species.  

River red gum displayed an opportunistic strategy, capturing resources quickly. River red gum seedlings put 
on height quickly and produced a single dominant stem with few, larger leaves. River red gum seedlings 
have a greater likelihood of being flooded again soon; putting on height quickly is likely to be advantageous 
in terms of outcompeting other species, such as grasses, and surviving subsequent flooding. 

Black box displayed a drought stress strategy. These seedlings produced a multi-stemmed branching 
structure with lots of small leaves (with a total leaf area like river red gum). Black box seedlings are most 
likely to experience drying stress. The multi-stemmed branching structure and small leaves may be 
adaptations that have been selected for by drought (e.g. maximise water use efficiency) and or grazing 
pressure. 

Coolibah displayed a conservative strategy, with seedlings putting comparatively more effort into root 
length as opposed to height. This is likely to reflect the unpredictability of the floodplain environments that 
coolibah typically occurs in and their reliance on groundwater as adult trees, a finding of the Queensland 
floodplain vegetation component of EWKR (DSITI and DNRM 2017). 

While the three species displayed different growth strategies, there were also several common responses:  

• Constant inundation suppresses seedling growth in all three species.  

• Inter-flood dry periods are important for seedling growth, particularly the development of roots.  
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• Coolibah and black box are likely to be more sensitive to the timing of floods relative to their age, 
with both species performing better under a later flood as opposed to an earlier flood. 

2.4.2 Water Management Application 

The outcomes from this component directly relate to the management of water for seedling establishment 
of woody floodplain trees.  

Understanding seedling establishment responses of different woody species, including their growth 
strategies, enables watering events to be targeted to traits associated with seedling establishment for 
species, such as root length or height. 

While constant flooding suppresses growth, seedlings were observed to be very flood tolerant. Inundation 
will not always lead to mortality, particularly if the inundation depth is insufficient to overtop seedlings. If 
seedling encroachment is an issue and the control of seedlings (mortality) locations is a desirable 
management outcome, the implication is that flooding needs to occur very early in their life to improve the 
likelihood of mortality, especially if these seedlings have established in habitats where drying stress is likely 
to be lesser, e.g. lake beds, creeks etc. 

Inter-flood dry periods were determined to be important for growth, particularly the development of roots, 
in all three species. Root length and biomass were significantly suppressed under constant flooding. While 
it is unclear what the long-term impacts may be on the development of tap roots, we hypothesise that 
prolonged waterlogged conditions during early seedling establishment may lead to suppression of long tap 
roots and greater development of surface roots. Well-developed tap roots are vital for access to 
groundwater as well as anchorage and stability as an adult tree. Consequently, seedlings establishing under 
prolonged waterlogged conditions may be less tolerant of subsequent drying. 

Both black box and coolibah seedlings performed better under a later flood as opposed to an earlier flood. 
The implications for management are that if you’re designing watering events for coolibah or black box 
establishment, then allow a dry period (of ~ 6 months) post germination before providing top up flows. This 
comes with the caveat that individual site conditions, such as soil type, soil moisture, temperature and 
rainfall will influence the need for flow up inundation. 

2.4.3 Research Outcomes 

This component has improved predictive capacity and the underlying knowledge base by helping to 
determine drivers of responses to watering actions, for woody seedling establishment.  

• Eucalypt tree seedlings have different strategies to respond to watering treatments which reflect 
the distribution and likely inundation regime experienced by the species (2.4). 

• Constant inundation suppresses seedling growth, but may not lead to mortality (2.4).  

• Inter-flood dry periods are important for seedling growth, particularly development of roots which 
are vital for anchorage, stability, access to groundwater and the ability to tolerate dry periods (2.4). 

• Coolibah and black box seedlings are sensitive to the timing of floods relative to their age, with 
both species performing better under a later flood as opposed to an earlier flood (2.4). 

 

Several research outputs were produced as part of this component. A list of these outputs is provided 
below and, where practical, copies are provided in Appendices V4.1 to V4.6. Please also see Appendix V5.1, 
Theme data inventory. 

• Literature review: Durant et al 2016. Recruitment of long-lived floodplain vegetation: literature 
report (Appendix V4.1). 

• Methods document: Durant et al 2016. Recruitment of long-lived floodplain vegetation: mesocosm 
study experimental design (Appendix V4.2). 
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• Dataset: Seedling mesocosm experiments (See Appendix V5.1, Theme data inventory) 

• StorySpace video, http://ewkr.com.au/valiant-vegetation/  

• Presentation: Durant et al 2018. Early, late or constant – what are long-lived woody floodplain 
seedlings looking for? 58th Australian Freshwater Sciences Society Congress, Adelaide, 23-28 
September 2018 (Appendix V4.3). 

• Article: Giving woody seedlings a fighting start, RipRap V40, 2017, pp 19-20, Australian River 
Restoration Centre, Canberra (Appendix V4.4). 

• Paper: Campbell et al (draft), Contrasting establishment strategies amongst three dominant tree 
species of Australian floodplains (Appendix V4.5). 

• Seedling Mesocosm Research Activity Report (Appendix V4.6) 

http://ewkr.com.au/valiant-vegetation/
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3 Theme Synthesis 
What are the implications and ‘big picture’ outcomes that can be drawn together from all the research 
undertaken in the EWKR vegetation theme? 

Returning to the adaptive management cycle and the EWKR research questions (Figure 1) we can consider 
how our findings can be used to inform adaptive water management and further research (Figure 3). 

 
Figure 3 MDB EWKR Vegetation Theme outcomes aligned with the adaptive management cycle 

Plan: The framework (Figure 2, Appendices V1.2 to 1.4) and guiding principles (section 2.1, Appendix V1.1) 
help to address the question ‘What are we watering for and why?’ The concepts feed directly into the 
planning stages of environmental water decisions at a range of management scales. As part of setting 
management objectives and planning environmental watering actions for vegetation outcomes, values 
need to be identified (e.g. more large trees will provide habitat for animals) and expected outcomes needs 
to be articulated (e.g. a 20% increase in seedling recruitment).  

Information to support the development of objectives and expected outcomes and to evaluate success 
requires a level of detail that; acknowledges the value of the outcome (from ecological function to cultural 
value); helps identify relevant attributes (traits) and indicators to measure success; defines the spatial 
scale; identifies the relevant temporal timeframe over which to assess outcomes; and considers influences 
such as recent to longer-term flow regimes and non-flow modifiers which are likely to affect expected 
outcomes. Water managers instinctively undertake this process. This framework provides the structure to 
aid and document this process – to prompt the consideration of factors such as grazing and exotic species 
pressure; to consider the types of attributes which support the expected outcomes and values (e.g. 
richness and diversity, or height and cover, or flowering and seed viability); and to consider the relevant 
spatial (e.g. a localised population or a larger mosaic of communities within a wetland complex) and 
temporal scales (e.g. an immediate physiological response to the application of water, successional 
communities over a six-month flood recession and drying, or multi-year events to build resilience or 
support seedlings through to establishment). Table 1 provides potential examples of vegetation 
management objectives and their associated function/value; ecological level of organisation (ELO) and 
relevant spatial scale; traits and indicators; potentially appropriate flow regimes; other potential drivers; 
and trajectories of change. 

Other research in the EWKR vegetation theme (sections 2.2 to 2.4) sought to improve predictive capacity 
and the underlying knowledge base by determining drivers of responses to watering actions, for i) 
understory communities; ii) seed bank diversity, iii) woody seedling establishment and iv) lignum structure. 
By understanding what the significant drivers are, their relative importance and how they interact, we are 



 

MDB EWKR Vegetation Theme Research Report  18 

improving our capacity to predict expected outcomes to environmental watering events and can use those 
predictions to help plan or prioritise watering actions. 



 

MDB EWKR Vegetation Theme Research Report  19 

Table 1 Potential application of the framework and guiding principles 

Objective Function / Value Ecological Level of 
Organisation  

(inc. spatial relevance) 

Traits and indicators  

(inc. temporal relevance from 
watering event) 

Flow regimes  

(inc. temporal relevance) 

Other drivers and 
antecedent conditions 

Trajectories 

Maintain health of a 
culturally significant 
tree 

Cultural significance 

 

Individual plant 

Relevant spatial scale: 
local 

Process – physiological 
responses to flow 

Structure – canopy  

Relevant indicators: 
new tip growth (weeks to 
months), water status 
(instant/ continuous), 
canopy extent and 
density (across years) 

Flow pulse to short-
term 

Relevant temporal 
scale: months to years, 
periodically reviewed 
based on tree health  

e.g. fire, insect damage, 
surrounding land-use, 
long-term flow regime 

Maintenance flows to 
maintain current health 
(assume current health 
is good or above) 

More frequent recovery 
flows (where seek to 
improve / restore 
condition) 

 

Provision of lignum 
habitat to support 
waterbird recruitment 

Provision of required 
structural attributes 

Support successful 
recruitment of 
waterbirds 

Population 

Relevant spatial scale: 
landscape 

Structure – clump size 

Process – viability, 
physiological responses 
to flow  

Relevant indicators: 
Height and width (across 
years), visual colour and 
viability (weeks to months, 
across years), leaf 
production (weeks to 
months), water status 
(instant/continuous) 

Would also want to 
monitor indicators of 
waterbird outcomes 

Flow pulse (immediate 
response) to short-term 
(maintain vegetation 
attributes between 
recruitment events) 

Relevant temporal 
scale: months to years, 
periodically reviewed 
based on vegetation 
condition and 
recruitment success 

e.g. grazing, salinity, 
access to groundwater 
and groundwater 
quality 

 

Other drivers will also 
affect recruitment 
success, such as 
predation, food 
resources, disease, 
surrounding land-use 

Based on current 
condition of lignum 
habitat 

Maintenance flows – 
maintain current 
condition 

Recovery flows – seek 
to improve / restore 
condition 

 

N.B. Other drivers and antecedent conditions are likely to be site specific. Relevant spatial and temporal scales are not prescriptive and will relate to the scale of the watering action and the 
contiguousness of the vegetation. Indicators are examples only – the selection of indicators will need to include budgetary considerations. 
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Do: Multiple research components within the EWKR vegetation theme addressed the question ‘What drives 
vegetation responses to watering actions?’. We can consider our results in terms of the priority research 
topics: i) understorey diversity, iii) recruitment of long-lived woody vegetation and ii) survival and condition 
of long-lived woody vegetation. 

Understorey: Our data, and data from other projects such as LTIM and TLM, indicate there is 
incredible variation in local plant communities and seed banks in space and time. This is even though 
many wetland and floodplain species have wide distributions, are largely cosmopolitan species and 
are rarely considered endemic. As ecologists and water managers we’re trying to determine what 
causes this variation and to predict it. From our research in EWKR we are starting to be able to 
determine community assembly rules. We’re starting to be able to: i) identify what the significant 
filters are; ii) determine their relative importance; and iii) understand their interactions.   

Location is overwhelmingly the most important predictor of local community composition, followed 
by recent flow conditions (e.g. preceding three months) in terms of determining community 
responses. After location and recent flow, the story becomes more complicated and interactions 
between factors play a role. For example, if a wetland has been dry over the medium term, around 3-
10 years, then vegetation structure appears to be a key predictor of wetland community. In contrast, 
if a wetland has been wet over the medium term, around 3-10 years, then the medium to long term 
flow regime becomes a key predictor of wetland community.  

By understanding what the significant filters are, their relative importance and how they interact, we 
are improving our capacity to predict expected outcomes to environmental watering events and can 
use those predictions to help plan or prioritise watering actions. 

Recruitment of long-lived woody vegetation: Seedling establishment is a vulnerable stage for 
floodplain trees and understanding their specific watering requirements is important for the long-
term survival of the species. Seedlings are often sparse and patchily distributed in the landscape, 
making it difficult to draw clear relationships between distribution and flow regime. So, in addition to 
collecting records of occurrence in the field, we also ran a mesocosm experiment looking at the 
effects of different watering treatments. The three eucalypt species displayed different growth 
strategies in response to the watering treatments. Understanding the likely mechanisms behind 
these strategies enables better predictions of outcomes and more targeted watering regimes. Other 
key outcomes include: i) constant inundation suppresses seedling growth in all three species; ii) inter-
flood dry periods are important for seedling growth, particularly the development of roots which are 
vital for anchorage and stability, access to groundwater and the ability to tolerate dry periods; iii) 
coolibah and black box are likely to be more sensitive to the timing of floods relative to their age, 
with seedlings from both species performing better under a later flood as opposed to an earlier 
flood. 

Survival and condition of long-lived woody vegetation: While this research topic wasn’t a main 
priority for the EWKR vegetation theme, data was collected around the structural condition of 
lignum. Maintaining lignum with structural qualities to support processes such as waterbird breeding 
and fledging is likely to require flow regime characteristics, including flood-return-frequency in the 
range of 1 flow in every 1 – 3 years. There is a strong association between lignum clump size and 
flood inundation category, with lignum clump size (volume) greatest in the most frequently 
inundated categories. Further analysis of lignum structural responses with inundation mapping and 
additional hydrology metrics, such as depth and duration, will aid refinement of the characteristics 
required. 

Evaluate: In line with adaptive management principles we wanted to consider how lessons from EWKR 
could be incorporated into future research or monitoring, particularly in terms of comparing patterns at 
larger spatial and temporal scales. In particular, we determined that to obtain more knowledge from 
existing vegetation datasets, there is an urgent need for: i) available and easily accessible complementary 
data, such as hydrology and mapping of inundation patterns, ii) good data management processes to 
enable access to data in comparable formats, and iii) analytical expertise and accepted methods for the 
analysis of data from different sources (with different survey methods and sampling effort).   



 

MDB EWKR Vegetation Theme Research Report  21 

In a nutshell: 

• To achieve vegetation outcomes from environmental water requires a process of social, ecological 
and economic consideration (1 and 2.1). 

• What are we watering for and why? The framework will assist managers to refine objectives, define 
function and value, and select indicators across a range of spatial and temporal scales (2.1).  

• We are starting to determine community assembly rules: i) identify what the significant filters are; 
ii) determine their relative importance; and iii) understand their interactions. By improving the 
underlying knowledge base we are improving our predictive capacity (2.2, 2.3, 2.4).  

• Understory vegetation outcomes are diverse, both spatially and over time. The response of plant 
communities to watering actions, vary from place to place leading to a diversity of outcomes from 
the same watering treatments spatially. Across the Basin, the variation in response to the same 
watering actions, leads to a diversity of vegscapes  (2.2 and 2.3). 

• Variability in vegetation responses are predicted to arise as a result of differences in location, 
recent (e.g. preceding three months) flow conditions (e.g. water depth, time-since-last inundation, 
proportion time wet), vegetation structure, and medium to long term flow regimes (2.2 and 2.3).  

• Watering lignum once every 1 – 3 years assists in greatest clump size which supports waterbird 
recruitment (2.3). 

• Woody recruitment is variable despite similarities in vegetation type and flooding frequency (2.3). 

• Eucalypt tree seedlings have different strategies to respond to watering treatments which reflect 
the distribution and likely inundation regime experienced by the species (2.4). 

• Constant inundation suppresses seedling growth, but may not lead to mortality (2.4).  

• Inter-flood dry periods are important for seedling growth, particularly development of roots which 
are vital for anchorage, stability, access to groundwater and the ability to tolerate dry periods (2.4). 

• Coolibah and black box seedlings are sensitive to the timing of floods relative to their age, with 
both species performing better under a later flood as opposed to an earlier flood (2.4). 
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4 Management relevance 
Wetland and floodplain vegetation outcomes are influenced by flow as well as factors such as climatic conditions, grazing pressure and invasive species. The 
priority for and effectiveness of environmental flows will depend on Resource Availability Scenarios (Table 2). Impacts on vegetation condition and resilience are 
cumulative and the severity of risks under each of the Resource Availability Scenarios will depend on the sequence of scenarios in preceding years.   

Table 2 Potential vegetation outcomes, risks, key considerations and knowledge requirements under four different resource availability scenarios 
 

Resource Availability Scenarios 
   

 
Very dry Dry Moderate Wet to Very Wet 

BWES 
Management 
objective 

Avoid irretrievable loss of or damage to, 
environmental assets 

Ensure environmental assets maintain 
their basic functions and resilience 

Maintain ecological health and resilience Improve health and resilience of water 
dependent ecosystems 

Scale Site, reach Site, reach, segment Site, reach, segment, catchment Site, reach, segment, catchment, basin 

Potential 
vegetation 
outcomes 

Limited wetland or river reach scale 
outcomes. Maintenance of a limited 
extent or number of local communities. 
Small-scale promotion of seed bank 
germination. 
 
No or limited river floodplain 
connectivity, potential drying of all 
floodplain wetlands.  

Maintenance of a limited extent or 
number of local communities. Small-scale 
promotion of seed bank germination.  

Potential opportunities for dispersal and 
connections between habitats (e.g. river 
to wetlands, wetlands to floodplain). 
Opportunities to promote woody 
recruitment, if the resource availability 
scenario is likely to be maintained for 
multiple years.  

Potential opportunities for ‘recovery’ 
flows (sequential flows across multiple 
years) to improve condition. Potential to 
inundate high elevation floodplain 
habitats. Opportunities for dispersal. 
Opportunities to promote connected 
‘vegscapes’ (large, connected habitats) 

Risks Encroachment of invasive species (native 
and non-native) 
 
Impacts of grazing pressure 
 
Failure to complete life cycles and set 
seed (short-lived species) 
 
Loss of condition (long-lived woody 
vegetation) 
 
Loss of inundation-dependent 
macrophytes 
 
Plant and seed bank death across 
successive very dry scenarios.  

Encroachment of invasive species (native 
and non-native) 
 
Impacts of grazing pressure 
 
Failure to complete life cycles and set 
seed (short-lived species) 
 
Loss of condition (long-lived woody 
vegetation) 
 
Loss of inundation-dependent 
macrophytes  

Dispersal of invasive species via 
hydrochory 
 
Woody recruitment is promoted but 
can’t be sustained 
 
For vegetation communities above the 
flood level the same risks as for the very 
dry and dry scenarios still apply. 

Dispersal of invasive species via 
hydrochory 
 
Prolonged duration and depth may lead 
to loss of condition or death (long-lived 
woody vegetation) 
Sediment deposition may bury 
macrophytes and seed banks 
 
Increased grazing pressure as 
populations boom in response to 
available resources 
 
For vegetation communities above the 
flood level the same risks as for the very 
dry and dry scenarios still apply. 
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Resource Availability Scenarios 

   

 
Very dry Dry Moderate Wet to Very Wet 

Key considerations Prioritise watering of critical habitat and 
refuges (^see note for definition) with 
reference to ‘natural/optimal’ flood 
frequency 
 
Evidence of altered processes (e.g. degree 
of deviation from altered flow regimes, woody 
encroachment) 
 
Inundation duration to enable 
completion of life-cycles (e.g. short-lived 
species and high temperature/evaporation) 
 
Condition of vegetation prior to 
inundation and feasibility of multi-year 
watering (e.g. commitment to deliver 
multiple events to very highly stressed woody 
vegetation, where only one event may cause 
additional shock/stress) 
 
Extent of non-flow pressure (e.g. grazing, 
invasive species) 

Prioritise watering of critical habitat and 
refuges (^see note for definition) with 
reference to ‘natural/optimal’ flood 
frequency 
 
Evidence of altered processes (e.g. degree 
of deviation from altered flow regimes, woody 
encroachment) 
 
Inundation duration to enable 
completion of life-cycles (e.g. short-lived 
species and high temperature/evaporation) 
 
Condition of vegetation prior to 
inundation and feasibility of multi-year 
watering (e.g. commitment to deliver 
multiple events to very highly stressed woody 
vegetation, where only one event may cause 
additional shock/stress) 
 
Extent of non-flow pressure (e.g. grazing, 
invasive species) 

Connections between habitat types (e.g. 
river to wetlands, wetlands to floodplain) 
 
Timing of flows to link with or trigger key 
phenological events (e.g. flowering, seed 
set, seed fall) 
 
Timing of follow up flows to support 
woody recruitment  

Ability to support lateral connectivity to 
high floodplain regions 
 
Ability to create connected ‘vegscapes’ 
 
Flow-promoted movement of invasive 
species 
 
Upper tolerance limits of flow duration 
(long-lived woody vegetation) 
 
Impacts of extended duration (e.g. 
supressed seedling root development) 

Knowledge 
requirements 

Location of critical habitats (^see note for 
definition) at landscape scales  
 
Characteristics and attributes of different 
critical habitat types 
 
Minimum durations for different habitat 
types 
 
Critical thresholds (minimum and maximum) 
for long-lived woody vegetation (including 
minimum thresholds where watering may 
have perverse or ineffective outcomes) 
 
Interactive impact of non-flow pressures 
(e.g. grazing, invasive species) 

Location of critical habitats (^see note for 
definition) at landscape scales  
 
Characteristics and attributes of different 
critical habitat types 
 
Minimum durations for different habitat 
types 
 
Critical thresholds (minimum and maximum) 
for long-lived woody vegetation (including 
minimum thresholds where watering may 
have perverse or ineffective outcomes) 
 
Interactive impact of non-flow pressures 
(e.g. grazing, invasive species) 

Relationship between phenology and 
flows for key species 
 
Hydraulic requirements for dispersal  

Characteristics and attributes of key 
‘vegscapes’ 
 
Dispersal mechanisms of key invasive 
species 
 
Extent and impact of sediment 
deposition on extant macrophytes and 
seed bank communities 
 
Upper tolerance limits of flow duration 
(long-lived woody vegetation; known for 
some species)  

^ Critical habitat and refuges for vegetation may include sites that support critical functions, sites of high cultural significance, sites (extant and seed banks) which support rare or threatened plants / communities / vegscapes 
or are representative of a unique vegetation type. Refining and clearing defining what is meant by critical habitat and refuges and a process for prioritising vegetation outcomes (in conjunction with other 
outcomes) for environmental watering is a knowledge gap. 
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5 Knowledge Status 
Through our research we have identified several recommendations and considerations for future work. 
These are discussed under six different topics below.  

1. Objectives and targets for non-woody vegetation: 

While the conceptualisation component developed a framework and guiding principles to aid the 
development of objectives, indicators and management of water for vegetation outcomes, there are still 
challenges associated with operationalising the framework. Potential research includes: 

• Workshop the utility of the framework with water managers  

• Develop consistent classification systems for non-woody vegetation at a range of levels of 
ecological organisation 

• Better alignment or development of response indicators for different vegetation trait responses at 
different levels of ecological organisation and different spatial and temporal scales 

• Better understand relationships between function and value for different vegetation responses 

• Develop decision support tools or evaluation processes to aid in the evaluation of successful 
outcomes for understory vegetation, particularly at the Basin-scale 

2. Improve predictive capacity: 

Dr Cassie James, along with the EWKR vegetation theme, has developed a vegetation response model to 
assess the main drivers affecting plant species richness and abundance. To date, this model has been 
developed for one habitat type (wetlands) at one location (Hattah Lakes). Initial work in this component, 
particularly through the workshop held in November 2015, identified many potential data sets and 
identified a strong willingness from data custodians to see this data further utilised. Further research could 
test the models transferability to other locations and to other response metrics, and hence determine the 
transferability of predicted outcomes and key drivers between different locations and situations: 

• Where data is available define, develop and test different vegetation response metrics to 
incorporate structural and process responses or responses at difference levels of ecological 
organisation (e.g. seedling recruitment, strata, communities) 

• Explore the development of environmental metrics (currently hydrological and climate) relevant to 
different spatial scales 

• Explore the inclusion of additional environmental metrics (e.g. soil type, soil moisture, canopy 
cover/condition) 

• Test the response model in different habitat types and different locations: 

o For example, floodplain understory data for Hattah Lakes 

o Data from other TLM icon sites, LTIM, and EWKR 

The suitability of datasets may depend on the availability of good hydrological data at relatively fine scales. 

Other considerations and lessons where highlighted throughout the DISC project. In relation to some of the 
lessons learnt from analysing existing data, there is a need for: i) available and easily accessible 
complementary data, such as hydrology and mapping of inundation patterns, ii) good data management 
processes to enable access to data in relatively consistent formats, and iii) analytical expertise and accepted 
methods for the analysis of data from different sources (with different survey methods and sampling 
effort). It is also worth factoring in the potentially considerable amount of time required to source data, 
transform and collate data (from potentially quite different original formats), consistently align metrics (e.g. 
plant species names, units, trait classifications) and quality check data. 

3. Further determine community assembly rules 
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Data from the field and germination component highlighted the overwhelming influence of location on 
community composition. There are, however, other drivers within locations and within vegetation / flood 
inundation categories. Quite a lot of complementary data was collected in the field that has not been 
analysed in full (e.g. the potential influence of tree density and condition, site disturbance etc.) as well as 
data that would enable structural responses to be assessed (e.g. individual plant height data). Further 
analysis of the existing data would enable additional drivers of vegetation responses to be determined. 

• Additional data analysis:  

o Determine relationships between response metrics and explanatory variables 

o Analyse according to different response metrics  

 Define, develop and analyse different vegetation response metrics to incorporate 
structural and process responses or responses at different levels of ecological 
organisation (e.g. seedling recruitment, strata, communities) 

In the future, re-assessment of field sites, including soil seed banks, could be undertaken to collect 
additional vegetation response data to different environmental conditions, for example surveys in a 
different season or specifically following inundation. 

4. Continue to understand trait and strategy responses of different species under different flow scenarios and 
the interactive effect of non-flow drivers: 

The seedling mesocosm component investigated the trait and strategy responses of river red gum, black 
box and coolibah to different watering treatments. Valuable extensions to this work would include 
assessing the influence of non-flow drivers such as salinity (soil and groundwater), soil type, soil 
compaction and grazing.  

Assessing the effect of seedling provenance would also be a valuable extension. In the current project, the 
same source of seed (commercially accessed) was used for each species. Repeating the experiment, with 
seed collected from different locations within the Murray-Darling Basin, would test the effect of seed 
provenance on seedling establishment and provide details of the variability of responses within species 
from different locations. 

Understanding the trait and strategy responses for a range of wetland and floodplain plant species would 
assist the targeted delivery of water for the promotion or suppression of specific species. Experiments 
could be undertaken on a range of key species, including exotic species where an understanding of their 
trait and strategy responses may influence environmental water management decisions. Trait and strategy 
responses may include requirements for dispersal, relationships between phenology and flow, impacts of 
sediment deposition and critical thresholds to flow metrics such as duration.   

5. Limits to resilience and key vulnerabilities (e.g. climate change) 

Wetland and floodplain systems are known to be resilient, with wetland and floodplain plants 
demonstrating characteristics that enable them to persist in these ‘boom and bust’ environments. 
Throughout this project, however, there have been discussions regarding the limits to resilience and the 
ability of plant species to adapt to changes such as increased extreme events (e.g. temperature and 
rainfall). Research investigating limits to resilience and key vulnerabilities for plant species would improve 
our understanding of the likely risks and effects associated with aspects such as climate change. 
Understanding the effects and risks would inform the use of environmental water in potentially mitigating 
the impacts. 

6. Basin-wide inundation mapping and hydrodynamic modelling 

To accurately predict vegetation responses to flow regimes, adequate flow metrics at appropriate scales 
need to be available, such as modelled estimates of inundation depth and duration at plot scales for 
specific time periods (e.g. at time of sampling, 3 months prior, 1 year prior etc.). Continued and increased 
investment in Basin-wide inundation mapping and hydrodynamic / hydrology modelling would be very 
valuable. 

7. Identification of critical habitat types 
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Inevitably, and particularly under very dry and dry water resource availability scenarios (refer Table 1), 
there needs to be a prioritisation process to select outcomes and sites for the delivery of environmental 
water. Protecting or prioritising critical habitat is often listed as a desirable outcome under very and dry 
water resource availability scenarios. However, under what criteria do we define ‘critical habitats’ and 
where do they exist? Critical habitat and refuges for vegetation may include sites that support critical 
functions, sites of high cultural significance, sites (extant and seed banks) which support rare or threatened 
plants / communities / vegscapes or are representative of a unique vegetation type. Refining and clearing 
defining what is meant by critical habitat and refuges and a process for prioritising vegetation outcomes (in 
conjunction with other outcomes) for environmental watering is a knowledge gap. 
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