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Abstract 

The two-dimensional (2D) hole gas at the surface of transfer doped diamond shows 

quantum mechanical interference effects in magnetoresistance in the form of weak 

localisation (WL) and weak antilocalisation (WAL) at temperatures below about 5 K. Here we 

use the quenching of the WAL by an additional magnetic field applied parallel to the 2D 

plane to extract the magnitude of the in-plane g-factor of the holes and fluctuations in the 

well width as a function of carrier density. Carrier densities are varied between 1.71 and 

4.35 x 1013 cm-2 by gating a Hall bar device with an ionic liquid. Over this range, calculated 

values of |𝑔| vary between 1.6 and 2.3 and the extracted well width variation drops from 3 

to 1.3 nm rms over the phase coherence length of 33 nm for a fixed geometrical surface 

roughness of about 1 nm as measured by atomic force microscopy. Possible mechanisms for 

the extracted variations in the presence of the ionic liquid are discussed. 
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I. Introduction 

 

Undoped diamond is a bona fide insulator. However, when the surface is terminated with 

hydrogen and exposed to air it develops a pronounced p-type surface conductivity through 

a process that is termed transfer doping.1 Transfer doping involves an electrochemical 

reaction between diamond and the ever-present water layer that leaves holes in the 

diamond valence bands and compensating OH- ions at the surface.2 As space charges, the 

holes are confined by a strong upward band bending to a narrow two dimensional (2D) well 

right below the surface. Typical carrier concentrations are 1012 to 1013 cm-2 and the width of 

the well depends self consistently on carrier density and lies in the range of 1 to 10 nm.3 

Because transfer doping does not involve the activation of an acceptor there is no carrier 

freeze-out and metallic conductivity is maintained down to at least 250 mK. Low 

temperature magnetoresistance measurements show that electrical transport in the hole 

accumulation layer exhibits quantum phenomena that are characteristic for a 2D quantum 

system and lead to a deviation from classical Drude conductivity. They are Shubnikov-de-

Haas oscillations,4 a strong hole-hole interaction (HHI), quantum interference effects that 

show up as weak localisation (WL),5 and weak antilocalisation (WAL) due to strong spin-orbit 

interaction.5 Using an ionic liquid (IL) as a gate dielectric we were able to increase the carrier 

density from 1.1 to 7.23 x 1013 cm-2 with a proportional increase in spin-orbit splitting from 

4.6 to 24.5 meV.6 This is the largest spin-orbit splitting observed to date for a 2D hole 

system and by far exceeds the atomic spin-orbit splitting of the valence electrons in 

diamond (∆!"#$%& 	= 	8	𝑚𝑒𝑉).7 Because the electric field in the highly asymmetrical 

confining potential increases with carrier density the enhanced spin-orbit splitting was 

ascribed to the Rashba effect. In particular, here it is ascribed to the Rashba effect cubic in 

wave vector k for reasons explained in ref. 8. 

 

With a strong spin-orbit interaction the holes in diamond are potential candidates for spin 

manipulation. While the Rashba effect provides the coupling of the carrier spin to an electric 

field, the strength of the coupling to a magnetic field, i.e. the carrier g-factor, was still 

missing. That gap was recently closed by us following Minkov et al.9 and measuring the low 

temperature magnetoresistance as a function of a magnetic field perpendicular to the 2D 

hole gas with an additional parallel field as a parameter.10 The analysis of the data yields for 
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the magnitude of the g-factor a value of 2.6± 0.1. In addition, the data showed additional 

effects due to variations in effective well width of 3 nm mean square roughness over a 

distance of about 30 nm.10 

 

Here we extend these measurements to hole concentrations that are tuned by an ionic 

liquid gate over the range from 1.71 to 4.35 x 1013 cm-2. The analysis gives a monotonically 

rising g-factor while the effective well width variation decreases with increasing carrier 

concentration. Mechanisms are discussed to rationalize these observations. 

 

II. Experiment 

 

A commercial IIa single crystal (001) diamond face was used to fabricate the Hall bar device. 

The surface was hydrogen terminated at approximately 850 °C in a microwave hydrogen 

plasma with a power of 1500 W for 10 minutes. In order to achieve saturation charge 

transfer doping, the sample was left in air for several days following the termination. A Hall 

bar with channel length and width of 200 µm and 40 µm, respectively, and palladium 

contacts was fabricated using standard photolithography and lift-off processing. The 

conducting regions are isolated from the rest of the surface by oxygen plasma exposure. The 

Hall bar device was gated using the ionic liquid 1-ethyl-3-methyl-imidazolium 

tris(pentafluoroethyl) trifluorophosphate [C2C1Im]+[FAP]- as a high capacity gate insulator. 

The IL is dropped on the channel of the device using a micropipette, ensuring coverage  on 

the gate contact as well (Figure 1a). The gate bias is applied above the IL melting point of 

236 K in order to ensure the full IL polarisation. After cooling below the melting point the 

polarisation is maintained and potentials on any of the contacts have no influence on the 

effective gate voltage. Magnetotransport measurements are performed using a Leiden 

Cryogenics dry dilution refrigerator with an integrated 9-1-1 T superconducting vector 

magnet. Longitudinal and Hall resistivity are measured at temperatures from 1.5 K to 20 K 

for perpendicular magnetic fields, 𝐵' up to 1T and gate biases between 0 and -3.0 V. 

Zeeman splitting and micro-roughness for each gate voltage are derived from 

magnetoresistance measurements at 2.5 K when in addition to 𝐵' a constant in plane field 

𝐵∥ between 0 to 1 T is applied in steps of 0.2 T.  
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III Results  

 

The analysis of the data follows the one used in our previous publications.5, 6, 10 As a first 

step, hole-hole interaction (HHI) is removed from 𝜌))  and 𝜌)* by applying a correction to 

the measured data according to Goh et al.11 and the procedure is explained in the 

supporting information (SI). From this corrected data the longitudinal conductivity 𝜎)), 

carrier concentration, and mobility, all as a function of gate voltage, are derived in the usual 

way. The sample exhibits metallic conductivity down to the lowest temperatures except for 

gate voltages of -1.5 and -2.0 V where a slight increase in longitudinal sheet resistivity is 

observed (Fig. 1c). For these two gate voltages the mobilities are noticeably lower than for 

the remainder of the gate voltages (Fig.1d) where mobilities are within the range reported 

consistently for air induced surface conductivity.12, 13 Since mobility and longitudinal 

resistivity are back to normal at -3.0 V gate voltage there is no apparent deterioration in 

sample properties with increasing gate voltage and no peculiar behaviour in 

magnetoresistance has been detected either. As intended, the carrier concentration 

increases linearly with gate voltage albeit with a slightly smaller slope compared to our 

earlier work as reflected in the ionic liquid capacitance of 2.2 µF/cm2 vs the previous 2.8 

µF/cm2.6 Other salient quantities such as diffusion constant, elastic scattering times, and 

mean free path are collected in the supplementary information. 

 

We turn now to the magnetoconductance data without application of a field component 

parallel to the 2D plane (see the 𝜎)) vs B curves for 𝐵∥ = 0 in Fig. 2). For the lowest carrier 

density without ionic liquid (w/o IL) the magnetoconductivity exhibits the drop in 𝜎)) 

around 𝐵' = 0 characteristic of weak localisation that is modified by the central, cusp-like 

peak due to weak antilocalisation. The WAL feature increases with gate voltage and thus 

carrier concentration until it is the dominant feature of the magnetoconductivity starting at 

Vg = -2.0 V. 

 

WAL is due to spin-orbit interaction which destroys the constructive interference necessary 

for WL. Spin-orbit interaction can ultimately even lead to a conductivity that exceeds the 

Drude conductivity due to the destructive interference of time reversed backscattering 

loops.14 WL is partly restored by coupling the spins to the external magnetic field which 
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accounts for the cusp-like appearance of WAL in the spectra. The magnetoconductance 

curves are fitted to the expression derived by Hikami et al.15 as given by Knap et al.16 for k3 

Rashba spin-orbit interaction. From the fits crucial parameters such as the phase and spin 

coherence lengths of the carriers and their spin-orbit splitting ∆+# are derived.  These 

quantities are collected in the supplementary information and ∆+# exhibits a linear increase 

with carrier density reported previously [6]. The increase is characteristic for spin-orbit 

interaction due to the Rashba effect because there is a direct connection between carrier 

density and electric field strength in the carrier confining quantum well on account of 

Gauss’s law: higher carrier densities result in more asymmetric quantum wells. 

 

Turning to the traces with parallel field component we observe a quenching of the WAL 

feature with increasing 𝐵∥. This is most apparent for the lowest carrier densities where WAL 

is still rather weak in the absence of 𝐵∥. Two factors contribute to this reduction, 

fluctuations in effective well width and the Zeeman effect.17, 18 They are accounted for in 

the Hikami formula for the change in conductance ∆𝜎 by two additional parameters ∆,  and 

∆+:9:  
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Here, 𝛹 is the digamma function and 𝐵. and 𝐵+# are characteristic fields that scale with the 

phase breaking inelastic scattering rate 1 𝜏.⁄  and the spin relaxation rate 1 𝜏+#⁄ 	due to spin-

orbit interaction according to 1 𝜏.⁄ = 4𝑒𝐷𝐵. ℏ⁄  and 1 𝜏+#⁄ = 4𝑒𝐷𝐵+# ℏ⁄  where D is the 

diffusion constant. 

 

Fluctuations in the well width means carriers that are backscattered and interfere after 

traversing time reversed loops are no longer confined strictly to a plane and will therefore 
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be susceptible to a magnetic field parallel to the 2D plane. This allows an additional 

Aharonov-Bohm phase to be involved. Hence ∆,=
√1
-
2
ℏ
4!5
6
𝐵∥- is added to 𝐵. in the above 

formula as an additional phase-breaking effective field that scales with 4
!5
6

, the product of 

the mean square well width fluctuations 𝑑-and the correlation length of the fluctuations 𝐿 

divided by  𝑙 , the elastic mean free path. 

 

The term ∆+=
7"#
82ℏ9

(𝑔𝜇:𝐵∥)- scales with the square of the in-plane Zeeman splitting 𝑔𝜇:𝐵∥ 

where 𝑔 and 𝜇: are the g-factor of the carriers and the Bohr magneton, respectively. The 

correction ∆+ is applied only to the singlet term (dependent on 𝐵. only) and not the triplet 

term (dependent on 𝐵.and 𝐵+#) in eq. 1.9  

 

All magnetoconductivity curves for 𝐵∥ = 0 were first fitted to eq. 1 with ∆,, ∆+ set to zero. 

From these fits the characteristic fields 𝐵.and 𝐵+# are derived which in turn yield the 

inelastic and spin-orbit scattering times and the spin-orbit splitting as a function of gate 

voltage and hence carrier density. All these values are collected in the supplementary 

information and they are in agreement with earlier data derived from the 

magnetoconductivity of the hole gas in diamond in the absence of 𝐵∥.5, 6 

 

Next, ∆,  and ∆+ were varied in eq 1. to fit the curves for finite 𝐵∥ while keeping 𝐵.and 𝐵+# 

fixed at the value previously determined for each gate voltage in the absence of 𝐵∥. 

Satisfactory fits were obtained as demonstrated by the solid lines in Fig. 2. for a selection of 

gate voltages. In Fig. 3, ∆,  and ∆+ so obtained are plotted vs 𝐵∥-. Both scale – the latter with 

some scatter – linearly with	𝐵∥- as required for eq. 1 to be applicable. From the slopes of 

linear regressions, the factors 𝑑-𝐿 and 𝑔 are calculated according to the above expressions 

and they are plotted as a function of carrier density in Fig. 4.  

 

The error bars were calculated using error progression from the standard deviations 

obtained in the fitting procedures or estimated as 5% for the diffusion constant D. D is 

directly traced to the Drude conductivity 𝜎9 and this error therefore reflects the precision of 

the conductivity measurement. However, we ascribe a considerably larger systematic error 
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of 20% to D that represents the uncertainty in identifying the conductivity at 30 K with the 

true Drude conductivity at the measurement temperature.  

 

IV. Discussion 

 

The use of magnetoresistance as a non-destructive method to characterize the roughness of 

2D systems was pioneered by Wheeler and coworkers.19-21 and it was taken up by Minkov et 

al.22 and Cabanas et al.23 with the theoretical underpinning provided by Mathur and 

Baranger.24 In these works the attenuation of weak localisation in the presence of an 

additional magnetic field parallel to the plane of the 2D system was taken as evidence for 

interface roughness in Si/SiO2 interfaces of MOSFET structures19-22 and of well width 

fluctuations in an AlGaAs heterostructure.19 In all cases the interpretation follows the one 

given here, namely the addition of a 𝐵∥ dependent phase breaking rate when the time 

reversed electron loops deviate from a strictly planar path and thus expose open loops to 𝐵∥ 

as well. Interface roughness or well width variations are extracted analoguously to the 

procedure described above and qualitative 21 as well as quantitative22 agreement between 

the interface roughness determined by magnetoresistance and atomic force microscopy has 

been reported. In one case, the interface roughness parameter was determined as a 

function of carrier density in the inversion channel of a gated MOSFET device.20 Here, 

despite an unchanged topological roughness, the apparent magnetoresistance roughness 

increased about twofold for an increase in carrier density by a factor of three. The authors 

ascribe that to the fact that the electron wavefunction is brought closer to the interface as 

the confining potential narrows with increasing carrier density and hence becomes more 

susceptible to the interface roughness. This is the opposite of what we observe and we shall 

come back to it below. 

 

The first to study the effect of interface roughness and Zeeman splitting on weak 

antilocalisation in the presence of a parallel field component were Minkov et al.9 and they 

derived g- factor and interface roughness for carriers in an InGaAs quantum well. Similar 

work on the 2D electron gas induced by the intrinsic polarisation of GaN at the AlGaAs/GaN 

interface was performed by Cabanas et al.23, for example. However, to our knowledge, this 
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is the first instance where both interface roughness or well width variation and in-plane g-

factor are systematically studied as a function of carrier density in a 2D hole gas. 

 

We start with the result for the in-plane g-factor as given in Fig. 4a. We tacitly presuppose 

that we are always talking about the magnitude of the g- factor in what follows and ignore 

for the time being the 20% systematic uncertainty alluded to above. It is satisfying albeit to 

be expected that the g-factor without IL agrees with that derived previously for an ungated 

device of otherwise identical properties.10 Once the IL is in place the calculated in-plane g-

factor increases monotonically from 1.3 to 2.3 as the carrier density is doubled from 2.2 to 

4.4 x1013 cm-2 thus bracketing the free-electron value of g = 2. Similar values were 

previously derived by the same method for electrons in the InGaAs quantum well (1.7 ± 

0.3),9 and 1.95 in an AlGaAs/GaN interface layer.23 In lieu of any relevant measurements or 

calculations of the g-factor for the valence bands of diamond we can only speculate about 

the origin of the variation in g-factor. Since any deviation from g =2 has to be a band 

structure effect, two closely related factors come to mind: band filling and hybridisation. As 

shown previously,3 the carriers in the hole accumulation layer of diamond occupy the 

lowest 2D band based on the first quantum state derived from the heavy hole valence band 

in bulk diamond. The next higher, empty band is that based on the lowest quantum state 

derived from the light hole valence band. These two bands eventually cross for sufficiently 

large k-vectors because the “light hole band” has an effective mass that is larger than the 2D 

mass of the “heavy hole band” for in-plane dispersion. Hence, any filling of the “heavy hole 

band” moves the Fermi wavevector kF closer to the crossing point and thus increases the 

hybridisation of the states that matter for transport. A change in hybridisation of the two 

bands as a consequence of varying carrier densities could give rise to changes in g-factor. 

However, there is a caveat. As the carrier density increases, the width of the confining 

potential decreases which in turn affects the quantisation energies of the “heavy” and “light 

hole” bands, i.e. their energy at k=0. That could, in principle, overcompensate the band 

filling effect and move the energies of the two bands at kF apart.  

 

Using a simple band calculation, based upon a triangular well approximation,25 the 2D hole 

dispersion of the light hole and heavy hole bands has been estimated, as shown in the 

supplementary information. For the carrier densities achieved in this experiment, the Fermi 
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wave vector is predicted to reside well below the crossing point so the extent of 

hybridisation of the two bands may be limited. However, the exact mechanism has to await 

a full calculation including the self-consistent solution of the Schrödinger and Poisson 

equations along the lines given in ref. 3. 

 

We now turn to the roughness parameter d2L as shown as a function of carrier density by 

the full circles in Fig. 4b. Again, our present result for the ungated device (open square) 

agrees with that of our previous publication (280 nm3).10 Because well width fluctuations 

beyond the scale of the phase coherence length Lf  are of no relevance to the analysis 

presented here we show by the red crosses in Fig. 4b. the roughness parameter divided by 

Lf. This should represent directly an effective mean square roughness and it is clear from its 

carrier dependence that geometrical surface roughness alone cannot explain our results 

because the latter would not depend on carrier density. Indeed, in ref. 10 we reported – 

measured by atomic force microscopy - a mean square surface roughness of dAFM
2 = 1.2 ± 

0.3 nm2 over a correlation length of the order of the phase coherence length Lf of about 30 

nm. Significantly, this is the value that our current data approaches from above as the 

carrier density increases. Hence it is obvious that the bulk of the measured roughness is due 

to fluctuations in well width rather than surface roughness. For the ungated device a 

fluctuation in well width of about 3 nm would be required to obtain the measured d2 of 

about 10 nm2 provided the two contributions, surface roughness and well width 

fluctuations, are uncorrelated and add geometrically. Well width fluctuations of about 3 nm 

could arise from lateral variations in carrier density by about one order of magnitude.3 This 

is in keeping with the requirement of spatially inhomogeneous carrier densities of a 

comparative level in order to interpret Shubnikov-de-Haas oscillations in the hole 

accumulation layer on (111) diamond.4 The reduction in well width fluctuation would then 

be the result of a more homogeneous carrier distribution as more holes are attracted to the 

2D layer with increasing gate voltage.  

 

Lateral inhomogeneities in carrier density may be traced to the haphazard transfer doping 

mechanism with its statistical distribution of OH- anions in the adsorbed water layer. We 

note that the above analysis does not consider the possibility that the introduction of the 

ionic liquid layer may modify the correlation length and magnitude of these doping 
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fluctuations in a manner which would effect the applicability of eq. 1. In Fig. 3, a linear fit 

was used to describe the dependence of the correction ∆,  on 𝐵∥- , consistent with eq. 1. 

However, for cases where the IL is in place, the experimental data may exhibit a non-linear 

lineshape. Additionally, we presently have no explanation for the substantial drop in g-

factor as the IL is placed on the device despite the very small change in carrier density. The 

above analysis considers only well width fluctuations that are short range, where 𝐿~	𝑙, 

which introduce an additional dephasing on the WAL but do not effect the lineshape of the 

corresponding magnetoconductance curves. It is possible that the introduction of the IL may 

modify the distribution of OH- anions, for example due to the distortion that may arise in 

the IL as it is cooled, causing deviations in the short-range fluctuations. The introduction of 

long-range correlations in the doping distribution would give rise to changes in the 

lineshape of the WAL magnetoconductance curves in a way that would modify the analysis 

presented here. The correlation length of doping fluctuations in the IL requires a more 

detailed investigation but this mechanism may illuminate the differing behaviour of the data 

obtained with and without the IL in place. 

 

V. Summary  

 

We have presented here what we believe to be the first systematic investigation of g-factor 

and well width fluctuations in the hole accumulation layer of diamond as a function of 

carrier density. The results were obtained by analysing the quenching of the weak 

antilocalisation feature in the low temperature magnetoresistance as a function of a 

magnetic field component parallel to the 2D hole gas while the carrier density was varied by 

an ionic liquid gate. For carrier densities between 2.27 and 4.35 x1013 cm-2 the magnitude of 

the in-plane g-factor increases monotonically from 1.3 to 2.3. The roughness parameter 

derived from the same measurements drops by a factor of three over the same range of 

densities and it is evident that initially the geometrical surface roughness as measured by 

atomic force microscopy contributes only marginally. The main contribution comes from 

variations in well width traced to lateral inhomogeneities in carrier density. The carrier 

inhomogeneity is smoothed out as more holes are pulled in by the gate voltage and the 

roughness parameter approaches within a factor of two the geometrical surface roughness. 

Variation of the correlation length of fluctuations in the doping distribution in the presence 
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of an ionic liquid, and indeed other commonly used adlayer materials such as transition 

metal oxides or gate dielectrics, are likely to influence the spin transport properties in the 

underlying hole gas.  
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Figure 1: (a) Optical image of the ionic liquid gated hall bar device. The two bright spots are 

reflections of the overhead light on the surface of the ionic liquid. (b) Hole sheet density as a 

function of gate voltage. (c) and (d) Hole sheet resistivity and mobility, respectively, as a 

function of temperature with gate voltage as parameter.  
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Figure 2: Longitudinal conductivity 𝜎)) as a function of 𝐵'with different applied in-plane 

fields 𝐵∥; (a) when the device is ungated, without ionic liquid; (b) to (e) with gate biases of    

-1.5 V, -2 V, -2.5 V, and -3 V, respectively. The open circles are the data points and the lines 

are the fits. 
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Figure 3: Parameters ∆+ and ∆,  as extracted from fits to the magnetoconductivity curves in 

Fig. 2 plotted vs 𝐵∥- for the gate voltages indicated in each frame; W/O IL: without ionic 

liquid. The lines are linear regressions to the data points.  
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Figure 4. (a) In-plane g-factor and (b) micro-roughness parameters d2L as calculated from 

the slopes of the lines in Fig 3 vs hole density. The error bars on each data point are the 

statistical errors. An overall 20% systematic error due to the uncertainty in the diffusion 

constant (see text) is indicated by the isolated error bar. The solid lines are guides to the eye 

and APL 2018 refers to the g-factor of ref. 10.   
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