
 1 

Supplementary Information 

 

G-Factor and Well-Width Fluctuations as a Function of Carrier 

Density in the 2D Hole Accumulation Layer of Transfer Doped 

Diamond 

 

Golrokh Akhgar,*1 Lothar Ley,1,2, Daniel L. Creedon,3 Alastair Stacey,3 Jeffrey C. McCallum,3 

Alex R. Hamilton4 and Christopher I. Pakes§1 

 

1 Department of Chemistry and Physics, La Trobe University, Victoria 3086, Australia 

2 Institute of Condensed Matter Physics, Universität Erlangen, Staudt-Str. 1, 91058 Erlangen, 

Germany 

3 School of Physics, The University of Melbourne, Victoria 3010, Australia 

4 School of Physics, University of New South Wales, Sydney, New South Wales 2052, 

Australia 

 

 

I. Determining the hole-hole interaction correction 

In 2D samples quantum corrections are due to the Weak Localisation and Weak Anti 

localisation and Hole-hole interaction (HHI). The conductivity corrections due to ∆𝜎!",	∆𝜎!#" 

and ∆𝜎$$% to the longitudinal conductivity is given by the equation below while Hall 

conductivity is not affected: 

 

              ∆𝜎&& = ∆𝜎!" +	∆𝜎!#" + ∆𝜎$$%    (S1) 

 

Starting with HHI correction; this intrinsic quantum correction to the resistivity does not 

connected to the phase coherent backscattering of electrons/holes (WL and WAL). The main 

comparison to magnetoconductivity effects is that HHI is independent of magnetic field and 
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it is the interaction of two different holes instead of interaction of a hole to itself. The 

theoretical framework of HHI is developed by Alshuler and Aronov [1] and it is originally based 

on electron systems, but similar approach can be used for p-type samples. We adopt method 

II by Goh et al. [2] to extract hole-hole interaction strength, 𝐾''. This is done by subtraction 

HHI correction term ∆𝜎$$% to the longitudinal conductivity from both 𝜌&& (B) and 𝜌&(	(𝐵) 

traces. This method of HHI correction is previously applied and described on H-terminated 

diamond devices [3]. The HHI correction term to the Drude conductivity is given by:  

 

∆𝜎$$% = 𝐾''𝐺)ln	 .
*!+,
ℏ
/     (S2) 

 

Where 𝐺) = 𝑒./πh, T is the temperature, 	𝐾'' is the dimensionless Coulomb interaction 

strength, and 𝜏 = 𝜎/𝑚∗/𝑝𝑒. is the transport relaxation time with p the areal hole density, 𝜎/ 

the Drude conductivity and 𝑚∗ the effective hole mass for dispersion in the plane of the 2D 

system. We adopt the value 𝑚∗ = 0.208𝑚) for the 2D heavy hole mass, [4] and equate 𝜎/ to 

𝜎&&(30	𝐾) to obtain 𝜏 from the longitudinal conductivity. The values of 𝜎/ and 𝜏 for different 

gate voltages are listed in Table SI. 

 

Figure S1 shows logarithmic dependence of the HHI correction. The 𝐾'' is determined by 

slope of ∆𝑅$ Vs ln	(𝑇): 

 

                                                        𝐾'' = − $122	42567×9""(;)<)
.>#

         (S3) 

 

where	Δ𝑅$(𝑇) = (𝑅$(𝑇) − 𝑅$(20	Κ))/𝑅$(20	Κ) under assumption that Hall resistivity at  

20	Κ approaches its Drude limit. 

 

𝐾'' are determined for each gate bias via the following process and listed in Table S1. Once 𝜏 

and 𝐾'' are evaluated, the 𝐵 independent ∆𝜎$$% is calculated from equation (S1) for all 

temperatures at each gate voltage. Then the corrected conductivity without HHI, 𝜎&&(𝐵, 𝑇, 𝑉?), 
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is calculated by subtracting the ∆𝜎$$%(𝐵, 𝑇, 𝑉?) from the original 𝜎&&@714AB7CC𝐵, 𝑇, 𝑉?D ≈

1
𝜌&&@714AB7C(𝐵, 𝑇, 𝑉?)G  (in the limit 𝜌&( ≪	𝜌&& which holds in all cases here). After subtraction, 

a corrected 𝜌&((𝐵, 𝑇, 𝑉?) =
9"$%&'()*&+

9"",	./**&01&+	
 , is also calculated. After subtraction of HHI from 𝜌&& (B) 

and 𝜌&(	(𝐵), the corrected 𝜌&(	(𝐵, 𝑇, 𝑉?) traces should collapse onto one single trace, 

otherwise, 𝐾'' should be systematically adjusted and ∆𝜎$$% should be recalculated until all 

𝜌&(	(𝐵) traces collapse onto one curve as it shows in Figure S2 [3]. The corresponding adjusted 

𝐾'' are listed in Table S1 for all gate biases. When the final 𝐾'' is established for all gate 

voltages, a similar 𝐾'' is used for HHI correction in each set of measurements with constant 

in-plane magnetic field. The remaining parameters in Table S1 are the hole mean free path, 𝑙 =

((2𝜋)D/.ℏ𝜎/)/(𝑒.𝑝D/.), the diffusion constant, 𝐷 = 𝑙./(2𝜏), and the transport magnetic 

field, 𝐵FB = ℏ/(2𝑒𝑙.). 

Figure S3 shows the corresponding magneto-resistivity data before (solid lines) and after 

(dashed lines) HHI removal.  

 

II.  Fitting magnetoconductivity data to 2D localisation theory 

The dominant spin-orbit interaction mechanism is k3 Rashba-like mechanism [5]. The 

corrected magnetoconductivity data ∆𝜎 for different temperatures are plotted in Figure S4 

and fitted to the k3 Rashba using eq. S4. The spin and phase characteristic fields 𝐵45 and 𝐵G 

are extracted for each gate bias from the fits. Phase and spin coherence lengths are calculated 

using 𝐿G = (ℏ/(4𝑒𝐵G))).I and 𝐿JK = (ℏ/(4𝑒𝐵JK))).I respectively and plotted in Figure S5 

for all gate biases.  The scale  𝐿G~	𝑇L).I, confirms the two dimensionality of this system. The 

variation of 𝐿JK with hole density if plotted in Figure S6(b). 

 

∆𝜎 = 7,

.M,ℏ
P𝛹 .D

.
+ N2ON(/

N
/ + D

.
𝛹 .D

.
+ N2O.N(/

N
/ − D

.
𝛹 .D

.
+ N2

N
/ − ln .N2ON(/

N
/ −

D
.
ln .N2O.N(/

N
/ + D

.
ln .N2

N
/R        (S4) 
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After fitting the magnetotrasport data, the phase relaxation time 𝜏G = ℏ (4𝑒𝐷𝐵G)⁄  

calculated and plotted in Figure S6(c) , it shows no dependency in gate bias and scales as 

𝜏G~	𝑇LD, showing the evidence for a scattering mechanism consistent with Nyquist 

dephasing as expected in a weakly disordered 2D system [2, 6]. The spin orbit interaction is 

calculated from ∆JK= ℏ (2𝜏𝜏JK)D .⁄⁄   where 𝜏JK = ℏ (4𝑒𝐷𝐵JK)⁄  is the spin relaxation time. 

∆JK is plotted as a function of density in Figure S6 (d).  

 

III. Fitting magnetoconductivity data in the presence of an in-plane magnetic field 

We performed magnetotransport measurements in the presents of constant B field. Constant 

in-plane B field, 𝐵∥, in the range of 0 to 1 T with steps of 0.2T is applied while sweeping the 

perpendicular magnetic field from -1 to 1T. The 𝐵G and 𝐵45 remains constant as a function of 

𝐵∥ for that reason we use the same 𝐵45 and 𝐵G that we extracte from the equation above at 

2.5K. and by following Minkov et. al. method [7] Zeeman splitting and interface roughness 

terms are extracted. This is done by adding Zeeman term to singlet terms of the equation S4 

and interface roughness to both singlets and triplets: 

 

∆𝜎 = 7,

.M,ℏ
P𝛹 .D

.
+ N2ON(/O∆*

N
/ + D

.
𝛹 .D

.
+ N2O.N(/O∆*

N
/ − D

.
𝛹 .D

.
+ N2O∆3O∆*

N
/ −

ln .N2ON(/O∆*
N

/ − D
.
ln .N2O.N(/O∆*

N
/ + D

.
ln .N2O	∆3O∆*

N
/R         (S5) 

 

∆Jand ∆B  is extracted for each gate bias and plotted as a function of	𝐵∥.. 

 

IV. Calculation of hole band dispersion 

The 2D dispersion curves of the heavy hole and light hole bands, calculated using the 

approach of ref [8] with a triangular well approximation, are given in  Figure S7.  The energy 

dispersion, 𝐸 = ℏ.𝑘./(2𝑚)𝑚7SS), where we have adopted the effective mass values of 

𝑚''
∗ = 0.208𝑚) and 𝑚2'

∗ = 0.288𝑚)  for the heavy hole and light hole respectively from Ref 

[4, 9] that are appropriate for the direction parallel to the surface of diamond. 
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Figure S1: ∆𝑅$ plotted as a function of temperature for all different gate biases. 

Demonstrating logarithmic dependence on T. The slope of these plots are used to calculate 

the value of 𝐾'' as explained in the text. 
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Figure S2:	𝜌&((𝐵) before and after HHI removal. Corrected traces of all temperatures are 

collapsed onto one trace after successful removal of ∆𝜎$$% from the measured 

magnetotransport data. 
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Figure S3: 	𝜌&&(𝐵) before and after successful removal of ∆𝜎$$% from the measured 

magnetotransport data. 
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Figure S4: Reduced magnetoconductivity (in units of 𝐺) = 𝑒. 𝜋ℎ⁄ ), at different temperatures 

plotted for all gate voltages. The black solid lines correspond to fits to equation 4. 
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Figure S5: Temperature dependence of the characteristic spin coherence lengths, 𝐿JK, (black 

circle) and phase coherence lengths, 𝐿G, (red square) with gate voltage Vg as parameter. The 

lines represent a 𝑇L).I fit for 𝐿G. 
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Figure S6: (a) Reduced magnetoconductivity, Δ𝜎 = 𝜎(𝐵) − 𝜎(𝐵 = 0) (in units of 𝐺) =

𝑒. 𝜋ℎ⁄ ), for different gate bias at 2.5 K; (b) spin coherence length 𝐿45 as a function of hole 

density; (c) temperature dependence of the dephasing time (𝜏G) plotted at different gate 

biases; the broken line indicates 𝜏G~	𝑇LD consistent with Nyquist dephasing; (d) tuning of the 

spin-orbit splitting strength, ∆JK, with  hole sheet density; the solid line is a linear fit to the 

data. The open squares represent the data obtained for the un-gated device in all figures. 
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Table S1: Summary of calculated parameters 

Gate Voltage, 𝑉?[V] w/o IL -1.5 -2.0 -2.5 -3.0 

Estimated Interaction 
strength, 𝐾'', obtained from 
the slope of normalised 𝜌&(/
𝐵(𝛺/𝑇) vs. ln(𝑇) 

0.396 0.554 0.309 0.436 0.578 

Interaction strength, 	
𝐾'', obtained from collapsing 
all 𝜌&(@714AB7C(𝐵) onto one 
curve (𝜌&(T5BB7UF7C(𝐵)) 

0.40±0.01 0.25±0.03 0.28±0.03 0.54±0.01 0.55±0.01 

Hole sheet density, p, before 
HHI removal [10D;𝑐𝑚L.] 
(20K) 

1.16 1.98 2.19 2.67 3.52 

Hole sheet density, p, after 
HHI removal [10D;𝑐𝑚L.] 1.17 2.27 2.92 3.55 4.35 

Drude conductivity, 𝜎/ 
[10LV𝛺LD] 
(30K) 

1.23  1.33  1.58  2.42  2.94  

Transport relaxation time, 
𝜏 [fs] 7.9 4.95 4.33 6.68 6.15 

Mean free path, 𝑙	[nm] 3.1±0.1 2.9±0.1 3.0±0.2 4.2±0.5 4.6±0.5 

Diffusion coefficient, 𝐷 
[10L;𝑚.𝑠LD] 0.9±0.1 1.0±0.1 1.1±0.1 1.7±0.2 2.1±0.2 

Characteristic transport field, 
𝐵FB  [T] 34.52 39.88 36.01 18.86 15.62 
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Figure S7: shows the 2D hole dispersion for lowest and highest density achieved in this 

experiment for 𝑘 in the (100) plane.  𝑘W = (2𝜋𝑝)	D/. is the Fermi wave vector where 𝑝 the 

areal hole concentration, and 𝐸W = 𝑝𝑒/𝜀)𝜀/ is the Fermi energy where 𝜀) is the permittivity 

of vacuum and 𝜀/ = 5.7	is the permittivity of diamond. 
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