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ABSTRACT: This supplemental information contains expanded mathematical descriptions, as well as the 

supplemental figures and tables, for the manuscript entitled: The effect of preprocessing and hyperparameter 

selection on machine learning applied to mass spectrometry imaging data. Mathematical descriptions are 

provided for the V-measure score. The figures and tables are: Schematic outlining the semi-synthetic data 

algorithm; example class membership maps generated using the semi-synthetic hyperspectral data generator; 

example results from the grid-search of the preprocessing-hyperparameter space, for the microarray (A) and 

semi-synthetic nylon (B) ToF-SIMS data sets; and results from the various multiple linear regression models 

for the microarray ToF-SIMS data set, trained using the various preprocessing methods and 

hyperparameters, with and without interactions. 
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V-measure score 
 

V-measure1 is an entropy-based measure of the overall performance of clustering algorithms. It is defined as 

the weighted harmonic mean of the homogeneity and completeness scores. Mathematically, this is given by 

𝑉ఉ =  
(1 + 𝛽) ∙ ℎ𝑐

𝛽ℎ + 𝑐
 

(7) 

where h is the homogeneity score, c is the completeness score and β is a constant that controls the 

weighting of h and c. 

The completeness score is a measure of how effectively the clustering has assigned a class (in this 

case, the polymer type) to a single cluster (in this case, a neuron on the SOM). This is defined as 1 if there is 

only one cluster, and otherwise given by 

𝑐 = 1 −
𝐻൫𝐾෩ห𝐶ሚ൯

𝐻(𝐾෩)
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Here, H(𝐾෩|𝐶ሚ) is the conditional entropy of the set of clusters 𝐾෩ given the set of classes 𝐶ሚ, and H(𝐾෩) is the 

entropy of the clusters. Further, n is the total number of samples, 𝑛௞  and 𝑛௖ are the numbers of samples 

corresponding to cluster 𝑘 and class 𝑐, respectively, and 𝑛௖,௞ is the number of samples in both class 𝑐 and 

cluster 𝑘. Note that we only sum over nonzero values for 𝑛௖,௞. 

Inversely, the homogeneity score measures how effectively the clustering has assigned a cluster to a 

single class. This is defined as 1 if there is only one class, and otherwise given by 

ℎ = 1 −
𝐻൫𝐶ሚห𝐾෩൯

𝐻(𝐶ሚ)
 

(11) 
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It can be observed that when the number of clusters approaches the number of samples in the data set 

(in this case, the number of pixels in the hyperspectral image), the homogeneity score approaches 1 and the 

completeness score approaches zero. The opposite is true as the number of clusters approaches 1. Therefore, 

the V-measure score attempts to avoid such extreme scenarios by using a harmonic mean of the two scores. 

The homogeneity score is more important than the completeness score for the SOM. This is because it is not 

necessarily undesirable for the SOM to assign multiple neurons to the same class, given its self-organizing 

and topology-preserving nature. As such, we only consider this score in our evaluations. Furthermore, to be 

consistent with other metrics used in our evaluation for which a smaller score is better, we convert the 

homogeneity to what we call heterogeneity, given simply as 1 − ℎ. In this form, a heterogeneity of zero is 

considered ideal.
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Figures and tables 
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Fig S1. Schematic outlining the semi-synthetic data algorithm. In Phase 1 (A), class membership maps are constructed by randomly assigning pixels to each 

class. In Phase 2 (B), the maps are completed by assigning nearby pixels to the same class, thereby increasing spatial autocorrelation. At the semi-synthetic data 

generation step (C), the 𝐶 class membership maps are used to construct a single semi-synthetic ToF-SIMS data cube from 𝐶 real ToF-SIMS data cubes.  
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Fig S2. Example class membership maps generated using the semi-synthetic hyperspectral data (Eq. 1-6 and 
Fig S1). Total number of classes, 𝐶, was 7 and 𝑇ଵ is the number of pixels assigned during Phase 1 of the 
algorithm, as a fraction of the total number of pixels, 𝑛. 𝜎௥ represents the scale factor for the Rayleigh 
distribution, which is used to calculate a new standard deviation, 𝜎௧, at each iteration, 𝑡. For each set of 
maps, we calculated the mean Moran’s I value and the spectral purity, 𝑆𝑃, defined in Eq. 2 in the main text. 
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Fig S3. Heterogeneity score for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data not normalized to TIC. In each case, square neurons with a toroidal 
SOM were used. Each plot compares the heterogeneity score as a function of training epochs, using either 
raw data or data encoded to 100 features using the CNNAE. Error bars show standard deviation of 3 
replicates, and the axis scales are logarithmic. 
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Fig S4. Heterogeneity score for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data encoded to 100 features by the CNNAE. In each case, square neurons 
with a toroidal SOM were used. Each plot compares the heterogeneity score as a function of training epochs, 
using either raw data or data normalized (per pixel) to TIC. Error bars show standard deviation of 3 
replicates, and the axis scales are logarithmic. 
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Fig S5. Jaccard index for a grid-search of the preprocessing-hyperparameter space for a range of SOMs of 
different sizes, trained using data scaled using different methods, for the microarray (A) and semi-synthetic 
nylon (B) ToF-SIMS data not normalized to TIC. In each case, square neurons with a toroidal SOM were 
used. Each plot compares the Jaccard index as a function of training epochs, using either raw data or data 
encoded to 100 features using the CNNAE. Error bars show standard deviation of 3 replicates, and the axis 
scales are logarithmic. 
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Fig S6. Jaccard index for a grid-search of the preprocessing-hyperparameter space for a range of SOMs of 
different sizes, trained using data scaled using different methods, for the microarray (A) and semi-synthetic 
nylon (B) ToF-SIMS data encoded to 100 features by the CNNAE. In each case, square neurons with a 
toroidal SOM were used. Each plot compares the Jaccard index as a function of training epochs, using either 
raw data or data normalized (per pixel) to TIC. Error bars show standard deviation of 3 replicates, and the 
axis scales are logarithmic. 
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Fig S7. Class scatter index (CSI) for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data not normalized to TIC. In each case, square neurons with a toroidal 
SOM were used. Each plot compares the CSI as a function of training epochs, using either raw data or data 
encoded to 100 features using the CNNAE. Error bars show standard deviation of 3 replicates, and the axis 
scales are logarithmic. 
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Fig S8. Class scatter index (CSI) for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data encoded to 100 features by the CNNAE. In each case, square neurons 
with a toroidal SOM were used. Each plot compares the CSI as a function of training epochs, using either 
raw data or data normalized (per pixel) to TIC. Error bars show standard deviation of 3 replicates, and the 
axis scales are logarithmic. 
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Fig S9. Topographic error (TE) for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data not normalized to TIC. In each case, square neurons with a toroidal 
SOM were used. Each plot compares the topographic error as a function of training epochs, using either raw 
data or data encoded to 100 features using the CNNAE. Error bars show standard deviation of 3 replicates, 
and the axis scales are logarithmic. 
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Fig S10. Topographic error (TE) for a grid-search of the preprocessing-hyperparameter space for a range of 
SOMs of different sizes, trained using data scaled using different methods, for the microarray (A) and semi-
synthetic nylon (B) ToF-SIMS data encoded to 100 features by the CNNAE. In each case, square neurons 
with a toroidal SOM were used. Each plot compares the TE as a function of training epochs, using either 
raw data or data normalized (per pixel) to TIC. Error bars show standard deviation of 3 replicates, and the 
axis scales are logarithmic. 
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Table S1. Standardized regression coefficients from MLR models of the microarray set, trained using the 
various preprocessing methods and hyperparameters, without interactions. Bolded entries were statistically 
significant at p<0.05. Stars represent significance levels: *p<0.05,**p<0.01,***p<0.001. Intercepts are 
shaded in grey, whereas coefficients are shaded using the color scheme shown. Note that coloring is relative, 
per model. 

 

Table S2. Standardized regression coefficients from MLR models of the nylon data set, trained using the 
various preprocessing methods and hyperparameters, without interactions. Bolded entries were statistically 
significant at p<0.05. Stars represent significance levels: *p<0.05,**p<0.01,***p<0.001. Intercepts are 
shaded in grey, whereas coefficients are shaded using the color scheme shown. Note that coloring is relative, 
per model. 
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Table S3. Standardized regression coefficients from MLR models of the microarray data set, trained using the various preprocessing methods and 
hyperparameters, as well as their interactions. Bolded entries were statistically significant at p<0.05. Stars represent significance levels: 
*p<0.05,**p<0.01,***p<0.001. Intercepts are shaded in grey, whereas coefficients are shaded using the color scheme shown. Note that coloring is relative, per 
model. 
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Table S4. Standardized regression coefficients from MLR models of the nylon data set, trained using the various preprocessing methods and hyperparameters, 
as well as their interactions. Bolded entries were statistically significant at p<0.05. Stars represent significance levels: *p<0.05,**p<0.01,***p<0.001. 
Intercepts are shaded in grey, whereas coefficients are shaded using the color scheme shown. Note that coloring is relative, per model. 
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