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Abstract

In prey species, it is often the case that individuals give alarms when they are threatened. In
birds, such signals are frequently vocal signals which alert conspecifics to the presence of a
threat. The responses to these calls by receivers may include fleeing to cover or approaching
to mob the predator. Although most birds do give alarm calls when threatened, not all
species do. We used Australian arid-zone bird species (n = 171) to test the hypothesis that
alarm calling behaviour is determined by ecological, behavioural, and morphological
characteristics. Eighty-nine percent of birds analysed possessed an alarm call, highlighting
the prevalence of this behaviour. Our study found three variables — number of food types
eaten, mobility, and breeding system — that were associated with predicting alarm calling
behaviour in these species. The correspondence of alarm calling with these key life history
attributes provides insight into benefits of having alarm calls and the evolutionary processes

that have given rise to this behaviour.
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Introduction

The use of vocalisations to warn of a nearby threat is common in birds (Marler 1955;
Magrath et al. 2015). Such alarm calls function to alert conspecifics to the presence of
danger, and encourage flight (termed ‘flee alarm calls’) or recruit help to harass the predator
(‘mobbing alarm calls’; Klump and Shalter 1984; Magrath et al. 2015; Carlson and Griesser
2021). The calls produced may be acoustically distinct sounds only used in alarm contexts,
such as the flee alarm calls of White-browed Scrubwrens (Sericornis frontalis; Leavesley and
Magrath 2005), Superb Fairy-wrens (Malurus cyaneus; Magrath et al. 2007), and several
other Australian passerines (Jurisevic and Sanderson 1994). Calls may also be multi-
functional and used for contacting group members or during territorial disputes (Wheatcroft
2015). In some species, calls have been identified as functionally referent, such as the
different vocalisations given by Pale-winged Trumpeters (Psophia leucoptera; Seddon et al.
2002) and Siberian Jays (Perisoreus infaustus; Griesser 2008) in response to predator
behaviour or location. Noisy Miners (Manorina melanocephala) give a ‘chur’ call to perched
predators and an aerial alarm call to flying predators (Holt et al. 2017).

Flee and mobbing signals can differ in their function, intended receivers, and acoustic
structure. Flee alarm calls are usually in response to aerial predators (reviewed in Magrath et
al. 2015) and are high-pitched with gradual on- and offset, making the caller difficult to
locate (Marler 1955). These calls communicate to nearby conspecifics that a predator has
been sighted and elicit escape or freezing (Klump and Shalter 1984). Mobbing signals are
typically given to stationary or terrestrial predators (reviewed in Magrath et al. 2015), are
low-pitched and harsh-sounding, and the caller is easier to locate. Mobbing calls may have
multiple functions (reviewed in Carlson and Griesser 2021), with two key purposes being to
communicate detection to the predator, and to recruit conspecifics to harass it (Klump and

Shalter 1984). Alarm calling among adult conspecifics has received much attention, but less
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is known about parent-offspring alarm communication (Kleindorfer et al. 1996; Colombelli-
Négrel et al. 2010; Suzuki 2011). The begging calls of nestlings can be loud and may attract
predators, and parents may alarm call to their young to provoke silence (e.g. White-browed
Scrubwrens; Platzen and Magrath 2004).

Although alarm calling is widespread among birds, not all species give alarm calls
(Goodale and Kotagama 2005; Griffin et al. 2005; Butler et al. 2017). Despite the widespread
occurrence of alarm calls, it is not known whether there are ecological or behavioural traits
that predict whether a species would or would not give alarm calls. To our knowledge,
whether life history traits can be used to predict the likelihood of possessing an alarm
vocalisation has not been investigated. This study presents a first look for evidence of these
potential processes. It has previously been demonstrated that individuals or species may be
more likely to produce a warning vocalisation in certain situations, such as when kin are
nearby (e.g. Siberian Jays; Griesser and Ekman 2004) or in particular habitats (e.g. Common
Starlings Sturnus vulgaris; Devereux et al. 2008). A species’ morphology and other traits
may impact their vulnerability to predation and could be an indicator of alarm calling
behaviour.

Interactions between life history traits and vulnerability to predation are complex as
possessing a certain trait can both increase and decrease predation risk (Caro 2005). The
influence of individual morphology is particularly strong. Predators tend to feed on prey
animals that are smaller than them (Cohen et al. 1993) and prey animals with a bigger body
size have a lower risk of predation (Gotmark and Post 1996). Smaller species therefore suffer
a higher predation risk, however, there is a trade-off to consider here as smaller prey may be
more difficult for predators to detect, harder to catch, and be less profitable (Gotmark and
Post 1996; Roth and Lima 2003). Animals living in groups face similar trade-offs. Here, ease

of detection is a factor as larger groups of animals may be easier to find (Jackson et al.



78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

2005), however they also confer a higher degree of protection than smaller groups. More
group members increase the overall level of vigilance (the ‘many-eyes hypothesis’; Caraco et
al. 1980) and decrease the probability of any one individual being eaten (the ‘dilution effect’;
Foster and Treherne 1981). Groups are more successful at defending against predators
(Kruuk 1964), and group cohesion can cause confusion (Neill and Cullen 1974).
Cooperatively-breeding animals live in social groups of genetically related individuals
(Emlen 1991). Enhanced survivorship is one hypothesis for the evolution of cooperative
breeding (Emlen 1991). If nest helpers increase the overall group size, this in turn may
increase aforementioned anti-predator benefits and enhance the helper’s own survivorship
(Doerr and Doerr 2006).

Detection by predators is also impacted by habitat. Prey animals are easier to sight in
open habitats compared to closed, thus predation risk is greater when individuals are more
exposed (Caro 2005). However, predators also become easier to identify in open habitats,
allowing animals more time to utilise defences (Devereux et al. 2006). Flight initiation
distance (FID), the distance at which animals commence anti-predator behaviours when
approached, is a life history trait (Weston et al. 2012), however, this can be affected by
numerous factors including habitat and group size (Fernandez-Juricic etal. 2002; Caro 2005),
as well as individual characteristics such as sex, age, and quality (Weston et al. 2012).
Blumstein (2006) reported a positive correlation between FID and body size, however studies
on brain size have given conflicting results (Guay et al. 2013; Moller and Erritzee 2014), thus
the link here is unclear. In general, species that allow predators to get closer before escaping
have ahigher predation risk, as they may leave escape too late (Weston et al. 2012).

In the present study we focused on birds of the Australian arid zone (Fig. 1), which is
typically defined as the area in which mean annual rainfall divided by evaporation (the

moisture index) is less than 0.4 (Byrne et al. 2008). This area is home to approximately 230
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bird species (Reid and Fleming 1992). The two main vegetation types in the arid zone are
spinifex grassland and Acacia shrubland (Morton et al. 2011). Desert habitats are
characterised by variable rainfall and low soil fertility resulting in periods of drought and a
lack of nutrients (Morton et al. 2011), which make survival in this climate difficult. Predators
of birds in thearid zone are common and include, among others, numerous species of raptors
(family Acciptridae and Falconidae), owls (family Strigidae and Tytonidae), snakes
(suborder Serpentes), goannas (Varanus spp.), and Dingoes (Canis lupus dingo), as well as
feral Cats (Felis catus) and Red Foxes (Vulpes vulpes), both of whom are introduced (Letnic
et al. 2005; Moseby et al. 2009).

Arid-zone birds form a useful starting point for the current type of research. The arid
zone is the largest biome in Australia (Byrne et al. 2008), thus any species with a distribution
falling within this large proportion of the country had the potential to be included in the
analysis. Most of the species included in the analysis do not occur exclusively within the arid
zone, however, it is assumed that their alarm calling behaviour (cf. call structure) would be
the same regardless of their geographic location. Our objective was to determine if alarm
calling and, in particular, use of a distinct alarm call to communicate with adult conspecifics,
was more prevalent in species demonstrating certain characteristics related to morphology,

habitat, diet, breeding, and migration.

Methods

Data collection

Species list

The Atlas of Living Australia (https://spatial.ala.org.au) was used to obtain the list of species
included in this analysis. The Képpen climate classification (all classes) layer was added to

the map of Australia, and the four desert regions selected (Fig. 1). The area report function
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generated a list of all records of species found in this defined region and the bird list was
exported. Records with a taxon rank other than species or subspecies were removed as these
records were not specific enough to provide useable data. All raptors, nocturnal birds, waders
and seabirds were removed from the dataset (Table S1). Records at the taxon level of
subspecies were added to the corresponding species data to obtain a total number of records
per species. Species with 100 or more records in the entire desert area were included in the
analysis, resulting in a list of 171 species spanning 49 families across 10 orders (Table S2).
Predictor variables

Predictor variables used in the analysis were obtained from an online database of life history
traits of Australian birds (https://dx.doi.org/10.6084/m9.figshare.1499292; Garnett et al.
2015). This extensive database of all Australian bird species and subspecies contains
comprehensive information on a wide variety of life history traits, as well as details on
taxonomy, distribution and conservation. There are 15 broad categories included in the
database, eight of which (phylogeny, Australian population status, conservation status, legal
status, distribution, climate metrics, and two categories used for organising the list) are not
relevant to our investigation. Variables related to the remaining seven categories (taxonomy,
morphology, habitat, food, behaviour, breeding, and mobility) have been included in this
study. Eleven traits were selected for the present analysis and are described in Table 1. Six of
these came directly from Garnett et al. (2015), while two new categories were created by
combining information contained within the database: feeding gregariousness and mobility.
The information for the final three categories - number of feeding habitats, number of
breeding habitats, and number of food types - was obtained by counting the habitats and food
types listed in the dataset as being utilised by each individual species. Data relating to the
entry atspecies level were used for all variables. These twelve variables were chosen as they

could eachpotentially contribute to the likelihood of alarm calling. Following the procedure
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described below, we considered our dataset with all variables and omitted species with
missing data from our analysis. Flight initiation distance (FID) was considered relevant
during pilot work, but it was also the most limiting variable resulting in a substantial
reduction in species included in our analysis (N=63). We repeated our analytical approach
after excluding FID in order to consider a more complete dataset (N=144), and we report on
this analysis.

Vocal alarm information

Information on alarm calling behaviour was obtained from the Handbook of Australian, New
Zealand and Antarctic Birds (HANZAB; see Table S2 for complete reference list). For each
species, the sections on social behaviour and vocalisations were examined for mention of
anti-predator responses. Species were first grouped into two broad categories: those recorded
as possessing a vocal alarm signal and those with no mention of a vocal signal used in alarm
communication. Our criterion for inclusion was a published account of calls given in alarm
contexts. For the latter group (N=18), a literature search was undertaken to rule out false
negatives. Given that some of these species are understudied, we stipulate that our
characterisation reflects reported accounts rather than definitive statements of alarm calling
behaviour. Sounds made only during distraction displays, or only during distress (i.e., capture
or handling) werenot considered vocal alarm signals. For each species, vocalisations were
further classed according tothe context in which these signals are used. A summary of the
alarm call categories used in the present study is given in Table 1. For distinct alarm calls, it
was also noted if the vocalisation was intended for conspecific adults or offspring.

Data analysis

We modelled separately whether the occurrence of a vocal alarm call, a functionally distinct
alarm call, or a distinct alarm call directed to adults, was related to our set of predictor

variables (Table 1). We used a time-calibrated phylogeny of extant bird species (Jetz et al.
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2012) from the site https://birdtree.org, which utilise the genome-based phylogenies of

Hackett et al. (2008). We limited the phylogenies to the 144 species in our final dataset and
extracted a single random tree for use in our analyses (Fig. 2). Prior to each regression
analysis, we considered the extent of multi-collinearity among the predictor variables using
the vif function in the car package (Fox and Weisberg 2011) in the R statistical environment
(R Core Team 2020). The vif function estimates the variance inflation factor and facilitates
the determination of multi-collinearity in our predictor variable. We inspected the GVIF
values adjusted for the number of coefficients in the model. Based on this, we removed body
length from our set of predictor variables in all analyses. Continuous predictor variables were
centred, scaled, and transformed to ensure they met the assumption of normality. We ran
separate phylogenetic generalised mixed models for binary data using the phyloglm function
from the phylolm package (Ho and Ane 2014). We report results for the o parameter as an
estimate for phylogenetic signal (Ives and Garland 2010), whereby small values indicate an
effect of shared ancestry. The significance of predictor variables was determined through
inspection of model coefficients and associated z-scores and p-values. The effects of
significant continuous variables were explored graphically by plotting their effect on the
occurrence of the category of alarm calling under investigation, fitting a logistic regression
curve in each case. For categorical variables, we present the relative proportion of species

performing the relevant category of alarm call by level of the categorical variable.

Results

Vocal alarm signalling

Around ninety percent (89.5%) of bird species used in this analysis possessed a vocalisation
to signal alarm to conspecifics (Fig. 3a). Of those species, three-quarters (74.5%) had avocal

signal only used in alarm communication and not in any other contexts (‘distinct’ plus ‘both’;
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Fig. 3b), and 88.6% of these birds are known to have a call used specifically to communicate
with adult conspecifics (Fig. 3c¢).

Regression analysis

We first considered the presence of a vocal alarm call as the dependent variable (Fig. 3a).
The results of phylogenetic generalised linear regression are summarised in Table 2 and
indicate an effect of the number of food types and mobility. Although starting from a high
proportion, the data suggest that vocal alarms are more likely as the number of food types
increases (Fig. 4a), while a higher proportion of the more mobile species possess an alarm
call than local dispersers and partial migrants (Fig. 5a). Our second analysis used the
occurrence of a distinct alarm call as the dependent variable (Fig. 3b), with results of the
phylogenetic generalised linear regression summarised in Table 3. Here, breeding system
was the only significant predictor and indicates that a higher proportion of cooperative
breeders use a distinct alarm call than non-cooperative breeders (Fig. 5b). Our final analysis
used the occurrence of a distinct alarm call directed to adults as the dependent variable (Fig.
3¢), with results of the phylogenetic generalised linear regression summarised in Table 4.
The probability of species possessing a distinct alarm call directed to adults increases as
species consume a greater number of food types (Fig. 4b), while a significant relationship
due to breeding system suggests that cooperative breeders are more likely to possess a
distinct alarm call to adults than non-cooperative breeders (Fig. 5¢). Estimates of
phylogenetic signal from the models (using the parameter o) were close to zero and suggest

correlations in trait values between species (Tables 2-4).

Discussion
Our analysis found that most species were known to possess a vocal alarm signal, and most

of these species had at least one vocalisation used only in alarm contexts. Overall, these
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distinct calls were used to communicate with conspecific adults, with few species possessing
distinct calls forparent-offspring alarm communication. Alarm calling was prevalent among
a diverse group of species, indicating that it is intrinsically valuable. Although ancestral state
reconstruction was not our goal, we speculate that alarm calling is ancestral and has

been lost sporadically. Exploration of the data occurred in the context of phylogenetic
relatedness and at three levels: presence of a vocal alarm call, presence of a call used only in
alarm contexts (regardless of intended receiver), and possession of a distinct alarm call
specifically directed at adult conspecifics. The number of food types and mobility were
identified as predictors of the occurrence of a vocal alarm (level 1). Body size approached
significance and should be considered in future work. Analyses at the second level showed
that only breeding system could be used to predict the presence of a distinct alarm call, while
at the third level, number of food types and breeding system showed significance.

Species eating more diverse food types were more likely to have a vocal alarm call
and a distinct alarm call directed specifically to adults. In contrast, another diet-related
variable that we analysed (number of feeding habitats) was not a significant predictor of
alarm calling. Research linking diet and anti-predator behaviour is uncommon, however it is
known from other studies that predator risk varies based on foraging location. The risk of
predation by Eurasian Sparrowhawks (Accipiter nisus) is known to decrease with increasing
foraging height (Gotmark and Post 1996), and Selés (1993) reports that ground-foraging
species were more vulnerable than those that foraged among vegetation. Our analysis implies
no relationship between number of feeding habitats utilised and number of food types eaten.
Data from Garnett et al. (2015) include species at both ends of this spectrum — dietary
specialists foraging in numerous habitat types, and generalists foraging in few. Therefore, we
suggest future work on the influence of diet should change the focus from where birds eat, to

instead investigate what they eat and the behaviours they exhibit while eating. The literature
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linking foraging habitat, group size and foraging efficiency of birds to predation risk is
extensive (e.g. Thiollay and Jullien 1998; Elchuk and Wiebe 2002; Dias 2006; McCabe and
Olsen 2015). However, no research connecting only diet type and vulnerability to predators
could be found, thus it is unclear why birds with a generalist diet are more likely to possess a
distinct alarm call than dietary specialists. Behaviour displayed while foraging is one
potential answer as different food types must be collected using different methods, e.g.
sallying for insects compared to head-down pecking. Our analysis has not considered the
individual food items eaten by arid-zone birds and has instead used a simple summation of
the total number of food types eaten by each species as listed in Garnett et al. (2015), with
the maximum possible number being ten. If in future studies the specific type of food,
diversity of foraging behaviour exhibited, and subsequent foraging location were analysed,
this would undoubtably provide more information on the link between food types and alarm
calling (G6tmark and Post 1996).

Our analysis suggested that nomadic species are more likely to possess an alarm call
than both sedentary species (local dispersers) or partially nomadic species (some individuals
leave the breeding area). It is difficult to predict how different levels of mobility can affect
predation risk. Studies on this interaction focus mainly on migratory ungulates, such as Elk
(Cervus elaphus; e.g. Hebblewhite and Merrill 2007) and Moose (4lces alces; e.g. Singh et
al. 2012). Populations that undergo such large-scale migrations tend to experience a lower
predation risk than residents, however, other factors such as human presence and habitat
structure also have a considerable influence (Hebblewhite and Merrill 2007; Robinson et al.
2010). Contradictory evidence suggests that dispersing populations suffer higher predation
levels as they are unfamiliar with the terrain, and this can hinder escape (Nelson and Mech
1991). Perhaps it is unfamiliarity with the local environment that prompts nomadic bird

species to be more likely to possess an alarm call. We consider the link between alarm call
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behaviour and mobility to be worthy of further research. For convenience, we collapsed
information about national movements from Garnett et al. (2015) into a single categorical
variable. However, many species exhibited movement in more than one category, and a key
factor determining movement strategies within and between species is likely to be the
availability of resources. These lead to the interesting possibility of population differences in
the use of alarm calls.

The relationship between body mass and giving a distinct call to adults approached
significance. Nonetheless, we consider it worthy of further consideration. The results show
an expected negative relationship which suggests that larger birds are less likely to possess
these calls. Larger animals are preyed on by fewer predator species and experience fewer
predation attempts, thus their overall predation risk is much reduced compared to smaller
species (Caro 2005; Valcu et al. 2014) and we therefore predict less of a need to develop an
alarm call to warn adult conspecifics. Large prey animals suffer less predation due in part to
a limitation on predator size and ability, and because larger animals are better able to
defend themselves physically (Cohen et al. 1993; Caro 2005). G6tmark and Post (1996)
report a clear link between predation risk and body size whereby predation risk increased
with body mass until about 40g, then declined as mass increased above this point. The
smallest species experienced a lower risk than slightly larger species because they were
harder to catch and less profitable. This does not appear to be a factor in our results, as the
smallest species have the highest probability of alarm calling to adults.

Birds that breed cooperatively were more likely to have a distinct vocal alarm call,
and more likely to have an alarm call directed to adults. Research into cooperative breeding
has a long history, and the behaviour is well-studied in birds (e.g. Stacey and Koenig 1990;
Koenig and Dickinson 2004). Leighton (2017) analysed connections between vocal

repertoire and social system in avian species and found that cooperative breeding was a
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significant predictor of repertoire size. Importantly, cooperative breeders possessed
significantly more alarm calls than non-cooperative breeders. Cooperative breeders live in
social groups where helpers are often genetically related to the breeding individuals they are
assisting (Emlen 1991). Although bonds or kinship are clearly not necessary precursors for
signalling predator presence to others (Smith 1986), in the majority of cooperatively
breeding avian species, nearby conspecifics are likely to be relatives (Emlen 1991; Griesser
et al. 2017) which could be an extra force driving the prevalence of distinct alarm calls
intended for adults in this group. An additional aspect to consider is whether species live in
kin groups outside of the breeding season (Russell 2000; Griesser et al. 2017). This was
beyond the scope of the current study but could potentially contribute to alarm call
prevalence.

Most species included in this study are known to give a vocalisation used in alarm
contexts, with only 18 of the 171 species analysed having no record of possessing an alarm
call (Table S2). While the primary source of information on calling behaviour was limited to
HANZAB (see Methods), further investigation of the literature on these species did not
uncover evidence of alarm calling. This raises the question of why these species do not
appear to alarm call. Nine of 49 families are included in the group of non-signallers, and trait
correlations between species (phylogenetic signal; see Methods) was strongest for our
analysis focussing on possession of a vocal alarm. Four of five cuckoos (Cuculidae) and half
of the treecreepers (Climacteridae) and martins (Hirundinidae) are included in the set of non-
signallers so phylogenetic constraints might be a relevant consideration. Nevertheless, after
controlling for phylogeny, our analysis suggested that species not possessing a vocal alarm
foraged on fewer types of food and/or were less likely to be migratory, and we have
suggested that these are relevant avenues of further investigation. An additional explanation

is simply that these species have not been studied sufficiently. Indeed, there is limited
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knowledge on several of the species due to limited research effort and because calls might be
emitted infrequently (e.g. White-Browed Treecreeper Climacteris affinis; Noske 2020). We
must therefore interpret results cautiously until further research confirms which of these
species truly does not alarm call. Finding such data is not straightforward as we have
encountered with studies of Zebra Finches (Taeniopygia guttata). This highly-studied
species possesses an alarm call directed at offspring (Zann 1996), but we found no evidence,
even after controlled experiments, of an alarm call to adult conspecifics (Butler et al. 2017;
2018).

While each of the eleven variables selected could potentially influence alarm calling
behaviour (see Introduction), only three variables were deemed to be important. Our analysis
has focused on a specific group of birds inhabiting the Australian arid zone. As datasets that
identify life history attributes increase, the possibility of using the same principles employed
here on a wider group of birds offers an opportunity to expand this research into different
climate zones and continents to reveal further information on the function and evolutionary
history of alarm calling. We recognise the limitation of using one, albeit highly regarded,
source for vocal information and acknowledge that further evidence of alarm calling
behaviour will become known as research continues. In our analysis, we examined species
present in Australia’s largest biome, however this only included two habitat types. Future
work should expand on the current study and include habitat as a factor. Our work highlights
that alarm calling is ubiquitous in our focal group, which raises the question of its prevalence
across other parts of the world. Clearly not all species alarm call equally, and this research
has identified useful avenues for further investigation regarding the co-evolution of life

history traits and the way species communicate to conspecifics about predators.
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Tables

Table 1. List of alarm call categories (dependent variables) and predictor variables used in the
present analysis of alarm communication in Australian arid-zone birds.

Table 2. Results of phylogenetic mixed models to predict the presence of a vocal alarm.
Table 3. Results of phylogenetic mixed models to predict the presence of a distinct alarm
call.

Table 4. Results of phylogenetic mixed models to predict the presence of a distinct alarm call
directed to adults.

Figure captions

Figure 1. Map of Australia showing certain climate classifications with a key indicating the
four desert areas. Original map obtained from the Bureau of Meteorology
(https://www.bom.gov.au).

Figure 2. Example phylogenetic tree of the 171 bird species used in the analysis. Species in
black indicate a species that is not reported to possess a vocal alarm signal, while blue and
orange coloured species names represent species that possess a distinct alarm call and a
distinct alarm call directed to adults respectively.

Figure 3. Proportion of species possessing different categories of alarm calls used in this
analysis. (a) Species recorded as having or not having a vocal alarm signal. (b) Species
recorded as possessing only distinct alarm calls, only multi-functional alarm calls, both
types, or the type is unknown. (c) Species with distinct alarm calls (either distinct only or
having both types) that direct the call or calls to adults, to offspring, to both adults and
offspring, or the intended receiver is unknown.

Figure 4. The presence of a (a) vocal alarm and a (b) distinct vocal alarm to adults as a
function of number of food types. The solid line in each represents a logistic regression curve

fit to the raw data.
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Figure 5. The relative proportion of species (solid bars) possessing (a) a distinct vocal alarm
as a function of levels of mobility. The relative proportion of species (solid bars) possessing a
(b) distinct vocal alarm and a (c) distinct vocal alarm to adults as a function of breeding
system.

Supplementary material

Table S1. List of families (grouped by order) removed from the initial Atlas of Living
Australia area report.

Table S2. Species and data used in the current analysis of alarm calling in arid-zone birds.
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