La Trobe
- No file added yet -

Wheat physiology predictor: predicting physiological traits in wheat from hyperspectral reflectance measurements using deep learning

Download (2.42 MB)
journal contribution
posted on 2021-11-22, 06:54 authored by RT Furbank, V Silva-Perez, JR Evans, AG Condon, GM Estavillo, W He, S Newman, R Poiré, Ashley HallAshley Hall, Zhen HeZhen He
Background: The need for rapid in-field measurement of key traits contributing to yield over many thousands of genotypes is a major roadblock in crop breeding. Recently, leaf hyperspectral reflectance data has been used to train machine learning models using partial least squares regression (PLSR) to rapidly predict genetic variation in photosynthetic and leaf traits across wheat populations, among other species. However, the application of published PLSR spectral models is limited by a fixed spectral wavelength range as input and the requirement of separate custom-built models for each trait and wavelength range. In addition, the use of reflectance spectra from the short-wave infrared region requires expensive multiple detector spectrometers. The ability to train a model that can accommodate input from different spectral ranges would potentially make such models extensible to more affordable sensors. Here we compare the accuracy of prediction of PLSR with various deep learning approaches and an ensemble model, each trained and tested using previously published data sets. Results: We demonstrate that the accuracy of PLSR to predict photosynthetic and related leaf traits in wheat can be improved with deep learning-based and ensemble models without overfitting. Additionally, these models can be flexibly applied across spectral ranges without significantly compromising accuracy. Conclusion: The method reported provides an improved prediction of wheat leaf and photosynthetic traits from leaf hyperspectral reflectance and do not require a full range, high cost leaf spectrometer. We provide a web service for deploying these algorithms to predict physiological traits in wheat from a variety of spectral data sets, with important implications for wheat yield prediction and crop breeding.

Funding

The financial support of the Australian Research Council Centre of Excellence for Translational Photosynthesis (CE140100015) is acknowledged.

History

Publication Date

2021-10-19

Journal

Plant Methods

Volume

17

Article Number

108

Pagination

15p.

Publisher

BMC

ISSN

1746-4811

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.