La Trobe
1197098_Wijesundera,C_2022.pdf (1.39 MB)
Download file

Vision and Visuomotor Performance Following Acute Ischemic Stroke

Download (1.39 MB)
journal contribution
posted on 30.03.2022, 03:27 authored by Chamini WijesunderaChamini Wijesundera, Sheila CrewtherSheila Crewther, Kulasekara WijeratneKulasekara Wijeratne, AJ Vingrys
Background: As measurable sensory and motor deficits are key to the diagnosis of stroke, we investigated the value of objective tablet based vision and visuomotor capacity assessment in acute mild-moderate ischemic stroke (AIS) patients. Methods: Sixty AIS patients (65 ± 14 years, 33 males) without pre-existing visual/neurological disorders and acuity better than 6/12 were tested at their bedside during the first week post-stroke and were compared to 40 controls (64 ± 11 years, 15 males). Visual field sensitivity, quantified as mean deviation (dB) and visual acuity (with and without luminance noise), were tested on MRFn (Melbourne Rapid Field-Neural) iPad application. Visuomotor capacity was assessed with the Lee-Ryan Eye-Hand Coordination (EHC) iPad application using a capacitive stylus for iPad held in the preferred hand.Time to trace 3 shapes and displacement errors (deviations of >3.5 mm from the shape) were recorded. Diagnostic capacity was considered with Receiver Operating Characteristics. Vision test outcomes were correlated with National Institutes of Health Stroke Scale (NIHSS) score at the admission. Results: Of the 60 AIS patients, 58 grasped the iPad stylus in their preferred right hand even though 31 had left hemisphere lesions. Forty-one patients (68%) with better than 6/12 visual acuity (19 right, 19 left hemisphere and 3 multi-territorial lesions) returned significantly abnormal visual fields. The stroke group took significantly longer (AIS: 93.4 ± 60.1 s; Controls: 33.1 ± 11.5 s, p < 0.01) to complete EHC tracing and made larger displacements (AIS: 16,388 ± 36,367 mm; Controls: 2,620 ± 1,359 mm, p < 0.01) although both control and stroke groups made similar numbers of errors. EHC time was not significantly different between participants with R (n = 26, 84.3 ± 55.3 s) and L (n = 31, 101.3 ± 64.7 s) hemisphere lesions. NIHSS scores and EHC measures showed low correlations (Spearman R: −0.15, L: 0.17). ROC analysis of EHC and vision tests found high diagnostic specificity and sensitivity for a fail at EHC time, or visual field, or Acuity-in-noise (sensivity: 93%, specificity: 83%) that shows little relationship to NIHSS scores. Conclusions: EHC time and vision test outcomes provide an easy and rapid bedside measure that complements existing clinical assessments in AIS. The low correlation between visual function, NIHSS scores and lesion site offers an expanded clinical view of changes following stroke.

History

Publication Date

16/02/2022

Journal

Frontiers in Neurology

Volume

13

Pagination

(p. 757431)

Publisher

Frontiers Media SA

ISSN

1664-2295

Rights Statement

© 2022 Wijesundera, Crewther, Wijeratne and Vingrys. This is an open- access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.