La Trobe
1164526_Tedde,A_2021.pdf (706.94 kB)

Validation of Dairy Cow Bodyweight Prediction Using Traits Easily Recorded by Dairy Herd Improvement Organizations and Its Potential Improvement Using Feature Selection Algorithms

Download (706.94 kB)
journal contribution
posted on 03.06.2021, 00:52 by Anthony Tedde, Clément Grelet, Phuong Ho, Jennie Pryce, Dagnachew Hailemariam, Zhiquan Wang, Graham Plastow, Nicolas Gengler, Yves Brostaux, Eric Froidmont, Frédéric Dehareng, Carlo Bertozzi, Mark Crowe, Isabelle Dufrasne, Hélène Soyeurt
Knowing the body weight (BW) of a cow at a specific moment or measuring its changes through time is of interest for management purposes. The current work aimed to validate the feasibility of predicting BW using the day in milk, parity, milk yield, and milk mid-infrared (MIR) spectrum from a multiple-country dataset and reduce the number of predictors to limit the risk of over-fitting and potentially improve its accuracy. The BW modeling procedure involved feature selections and herd-independent validation in identifying the most interesting subsets of predictors and then external validation of the models. From 1849 records collected in 9 herds from 360 Holstein cows, the best performing models achieved a root mean square error (RMSE) for the herd-independent validation between 52 ± 2.34 kg to 56 ± 3.16 kg, including from 5 to 62 predictors. Among these models, three performed remarkably well in external validation using an independent dataset (N = 4067), resulting in RMSE ranging from 52 to 56 kg. The results suggest that multiple optimal BW predictive models coexist due to the high correlations between adjacent spectral points.


Publication Date








Article Number








Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.