La Trobe

Using major ions and stable isotopes to improve conceptualisation of a spring-aquifer system in the Galilee Basin, Australia

Download (9.09 MB)
journal contribution
posted on 2024-07-26, 04:24 authored by Robin Keegan-Treloar, EW Banks, I Cartwright, DJ Irvine, John WebbJohn Webb, AD Werner, MJ Currell
Developing conceptual models is a critical step in hydrogeological studies that should utilise multiple lines of evidence and data types to minimise conceptual uncertainty, particularly in data-sparse systems. This study used new and existing major ion and isotope (O, H, Sr, C) data sets to refine a previous hydraulic-head-based conceptual model of the Galilee Basin (Australia). The analyses provide evidence for the locations of recharge and discharge areas and determine hydrochemical processes along flow paths to improve understanding of potential source waters to the Doongmabulla Springs Complex (DSC) and to infer mixing within, or exchange between aquifer units. There was good agreement between previously inferred recharge and discharge areas defined using hydraulic head data and interpretations from hydrochemical evolution along groundwater flow pathways, at least where data were available. Major ion and isotope data suggest that the DSC likely receives water from both a relatively shallow, local flow path and a deeper regional flow path. This observation is relevant to previous concerns about threats to the DSC, as mine-induced drawdown may impact the relative contributions to spring discharge from different recharge sources and aquifers. Silicate weathering in the deeper Clematis Formation and Dunda Beds, and evapotranspiration in the overlying Moolayember Formation have strong control on the total dissolved solids content. These findings suggest that the Clematis Formation and Dunda Beds are hydrochemically distinct from the Moolayember Formation, with limited exchange between these aquifers, which has important implications for model conceptualisation and ongoing monitoring of mining activities in the Galilee Basin.

Funding

Robin Keegan-Treloar is supported by the Australian Government Research Training Program. Eddie Banks, Ian Cartwright, Dylan Irvine, John Webb, Matthew Currell and Adrian Werner are supported by an Australian Research Council Linkage Project (project number LP190100713).

History

Publication Date

2024-06-01

Journal

Hydrogeology Journal

Volume

32

Pagination

18p. (p. 1211-1228)

Publisher

Springer Nature

ISSN

0941-2816

Rights Statement

© The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC