La Trobe
1216646_Battinovic,S_2022.pdf (3.03 MB)

Tyroviruses are a new group of temperate phages that infect Bacillus species in soil environments worldwide

Download (3.03 MB)
journal contribution
posted on 2023-06-29, 01:36 authored by Steven BatinovicSteven Batinovic, Cassandra StantonCassandra Stanton, Daniel RiceDaniel Rice, B Rowe, M Beer, Steve PetrovskiSteve Petrovski
Background: Bacteriophages are widely considered to be highly abundant and genetically diverse, with their role in the evolution and virulence of many pathogens becoming increasingly clear. Less attention has been paid on phages preying on Bacillus, despite the potential for some of its members, such as Bacillus anthracis, to cause serious human disease. Results: We have isolated five phages infecting the causative agent of anthrax, Bacillus anthracis. Using modern phylogenetic approaches we place these five new Bacillus phages, as well as 21 similar phage genomes retrieved from publicly available databases and metagenomic datasets into the Tyrovirus group, a newly proposed group named so due to the conservation of three distinct tyrosine recombinases. Genomic analysis of these large phages (~ 160–170 kb) reveals their DNA packaging mechanism and genomic features contributing to virion morphogenesis, host cell lysis and phage DNA replication processes. Analysis of the three tyrosine recombinases suggest Tyroviruses undergo a prophage lifecycle that may involve both host integration and plasmid stages. Further we show that Tyroviruses rely on divergent invasion mechanisms, with a subset requiring host S-layer for infection. Conclusions: Ultimately, we expand upon our understanding on the classification, phylogeny, and genomic organisation of a new and substantial phage group that prey on critically relevant Bacillus species. In an era characterised by a rapidly evolving landscape of phage genomics the deposition of future Tyroviruses will allow the further unravelling of the global spread and evolutionary history of these Bacillus phages.

Funding

This work was funded by a DSI CERA grant (VUP17-007) and a DST Collaborative Project grant (ID8047). The funders played no role in the design of the study and collection, analysis, and interpretation of data and in writing of the manuscript.

History

Publication Date

2022-11-28

Journal

BMC Genomics

Volume

23

Issue

1

Article Number

777

Pagination

17p.

Publisher

BMC

ISSN

1471-2164

Rights Statement

© The Author(s) 2022. Licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the licence, and indicate if changes were made. The images or other third party material in this article are included in the article's licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view the licence: http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC