La Trobe
42682_Jayachandran,A_2016.pdf (2.15 MB)

Transketolase-like 1 ectopic expression is associated with DNA hypomethylation and induces the Warburg effect in melanoma cells

Download (2.15 MB)
journal contribution
posted on 2022-05-11, 02:43 authored by Aparna Jayachandran, P-H Lo, AC Chueh, P Prithviraj, R Molania, M Davalos-Salas, M Anaka, Marzena Walkiewicz, Jonathan Cebon, Andreas BehrenAndreas Behren
Background: The metabolism of cancer cells is often reprogrammed by dysregulation of metabolic enzymes. Transketolase-like 1 (TKTL1) is a homodimeric transketolase linking the pentose-phosphate pathway with the glycolytic pathway. It is generally silenced at a transcriptional level in somatic tissues. However, in human cancers its expression is associated with the acquisition of a glycolytic phenotype (the Warburg effect) by cancer cells that contributes to the progression of malignant tumors. In melanoma, defective promoter methylation results in the expression of genes and their products that can affect the tumor cell's phenotype including the modification of immune and functional characteristics. The present study evaluates the role of TKTL1 as a mediator of disease progression in melanoma associated with a defective methylation phenotype. Methods: The expression of TKTL1 in metastatic melanoma tumors and cell lines was analysed by qRT-PCR and immunohistochemistry. The promoter methylation status of TKTL1 in melanoma cells was evaluated by quantitative methylation specific PCR. Using qRT-PCR, the effect of a DNA demethylating agent 5-aza-2'-deoxycytidine (5aza) on the expression of TKTL1 was examined. Biochemical and molecular analyses such as glucose consumption, lactate production, invasion, proliferation and cell cycle progression together with ectopic expression and siRNA mediated knockdown were used to investigate the role of TKTL1 in melanoma cells. Results: Expression of TKTL1 was highly restricted in normal adult tissues and was overexpressed in a subset of metastatic melanoma tumors and derived cell lines. The TKTL1 promoter was activated by hypomethylation and treatment with 5aza induced TKTL1 expression in melanoma cells. Augmented expression of TKTL1 in melanoma cells was associated with a glycolytic phenotype. Loss and gain of function studies revealed that TKTL1 contributed to enhanced invasion of melanoma cells. Conclusions: Our data provide evidence for an important role of TKTL1 in aerobic glycolysis and tumor promotion in melanoma that may result from defective promoter methylation. This epigenetic change may enable the natural selection of tumor cells with a metabolic phenotype and thereby provide a potential therapeutic target for a subset of melanoma tumors with elevated TKTL1 expression.


We would like to acknowledge the Melanoma Research Alliance (MRA), the Melbourne Melanoma Project (MMP), Ludwig Cancer Research and the Victorian State Government Operational Infrastructure Support Program for partial funding of this project. The establishment of an expression profile in melanoma cell lines was funded by a grant from the Austin Hospital Medical Research Foundation to AB. AJ was supported by the Austin Hospital Medical Research Foundation and Cure Cancer Australia Foundation.


Publication Date



BMC Cancer





Article Number



15p. (p. 1-15)


BioMed Central



Rights Statement

© 2016 Jayachandran et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated

Usage metrics

    Journal Articles



    Ref. manager