La Trobe

File(s) under embargo

Reason: publisher request 12M embargo





until file(s) become available

Transglutaminase‐2, RNA‐binding proteins and mitochondrial proteins selectively traffic to MDCK cell‐derived microvesicles following H‐Ras‐induced epithelial‐mesenchymal transition

journal contribution
posted on 23.03.2021, 23:24 by Adnan Shafiq, Wittaya Suwakulsiri, Alin Rai, Maoshan Chen, David Greening, Hong‐Jian Zhu, Rong Xu, Richard Simpson
Epithelial-mesenchymal transition (EMT) describes an evolutionary conserved morphogenic process defined by loss of epithelial characteristics and acquisition of mesenchymal phenotype, and altered patterns of intercellular communication, leading to functional changes in cell migration and invasion. In this regard, we have previously reported that oncogenic H-Ras induced EMT in MDCK cells (21D1 cells) trigger changes in the protein distribution pattern in cells, exosomes, and soluble protein factors (secretome) which modulate the tumour microenvironment. Here, we report that shed microvesicles (also termed microparticles/ ectosomes) secreted from MDCK cells following oncogenic H-Ras-induced EMT (21D1-sMVs) are biochemically distinct from exosomes and parental MDCK-sMVs. The protein spectra of RNA-binding proteins and mitochondrial proteins in 21D1-sMVs differ profoundly to those of exosomes, likewise proteins associated with suppression of anoikis. We show that 21D1-sMVs promote cell migration, confer anchorage-independent growth, and induce EMT in parental MDCK cells. An unexpected and novel finding was the selective sorting of tissue transglutaminase-2 (TGM2) into 21D1-sMVs; there was no evidence of TGM2 in MDCK-sMVs. Prior treatment of 21D1-sMVs with neutralizing anti-TGM2 or anti-FN1 antibodies attenuates the invasive capability of fibroblasts. These finding suggest that microvesicle-associated TGM2 may play an important contributory role in the EMT process and warrants further investigation. (199/ 200 words). This article is protected by copyright. All rights reserved.


Publication Date




Article Number






Rights Statement

The Authors reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.