La Trobe

Transforming Customer Digital Footprints into Decision Enablers in Hospitality

Download (14.99 MB)
The proliferation of online hotel review platforms has prompted decision-makers in the hospitality sector to acknowledge the significance of extracting valuable information from this vast source. While contemporary research has primarily focused on extracting sentiment and discussion topics from online reviews, the transformative potential of such insights remains largely untapped. In this paper, we propose an approach that leverages Natural Language Processing (NLP) techniques to convert unstructured textual reviews into a quantifiable and structured representation of emotions and hotel aspects. Building upon this derived representation, we conducted a segmentation analysis to gauge distinct emotion and concern-based profiles of customers, as well as profiles of hotels with similar customer emotions using a self-organizing unsupervised algorithm. We demonstrated the practicality of our approach using 22,450 online reviews collected from 44 hotels. The insights garnered from emotion analysis and review segmentation facilitate the development of targeted customer management strategies and informed decision-making.

History

Publication Date

2024-04-01

Journal

Applied Sciences

Volume

14

Issue

7

Article Number

3114

Pagination

16p.

Publisher

MDPI

ISSN

2076-3417

Rights Statement

© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).