La Trobe

Tracking extracellular vesicle phenotypic changes enables treatment monitoring in melanoma

journal contribution
posted on 2025-01-22, 05:22 authored by Jing Wang, Alain Wuethrich, Abu Ali Ibn Sina, Rebecca E Lane, Lynlee L Lin, Yuling Wang, Jonathan Cebon, Andreas BehrenAndreas Behren, Matt Trau
Monitoring targeted therapy in real time for cancer patients could provide vital information about the development of drug resistance and improve therapeutic outcomes. Extracellular vesicles (EVs) have recently emerged as a promising cancer biomarker, and EV phenotyping shows high potential for monitoring treatment responses. Here, we demonstrate the feasibility of monitoring patient treatment responses based on the plasma EV phenotypic evolution using a multiplex EV phenotype analyzer chip (EPAC). EPAC incorporates the nanomixing-enhanced microchip and the multiplex surface-enhanced Raman scattering (SERS) nanotag system for direct EV phenotyping without EV enrichment. In a preclinical model, we observe the EV phenotypic heterogeneity and different phenotypic responses to the treatment. Furthermore, we successfully detect cancer-specific EV phenotypes from melanoma patient plasma. We longitudinally monitor the EV phenotypic evolution of eight melanoma patients receiving targeted therapy and find specific EV profiles involved in the development of drug resistance, reflecting the potential of EV phenotyping for monitoring treatment responses.

Funding

National Breast Cancer Foundation of Australia (CG-12-07) and the Australian Research Council (DP160102836) to M.T. and Y.W. A.W. is supported by the Swiss National Science Foundation (P2SKP2_168309) and the UQ Development Fellowships (UQFEL1831057). L.L.L. is supported by the NHMRC Peter Doherty Biomedical Fellowship (APP1111216). A.B. is supported by a fellowship (MCRF17019) from the Department of Health and Human Services acting through the Victorian Cancer Agency (VCA). J.W. and R.E.L. acknowledge support from the Australian Government Research Training Program Scholarships.

History

Publication Date

2020-02-26

Journal

Science Advances

Volume

6

Issue

9

Article Number

eaax3223

Pagination

14p.

Publisher

American Association for the Advancement of Science

ISSN

2375-2548

Rights Statement

© 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license, which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC