La Trobe
204400_Alhomrani,M_2017.pdf (3.73 MB)

The human amnion epithelial cell secretome decreases hepatic fibrosis in mice with chronic liver fibrosis

Download (3.73 MB)
journal contribution
posted on 2021-08-03, 01:29 authored by Majid Alhomrani, Jeanne Correia, Marcus Zavou, Bryan Leaw, Nathan Kuk, Rong Xu, Mohamed I Saad, Alexander Hodge, David GreeningDavid Greening, Rebecca Lim, William Sievert
Background: Hepatic stellate cells (HSCs) are the primary collagen-secreting cells in the liver. While HSCs are the major cell type involved in the pathogenesis of liver fibrosis, hepatic macrophages also play an important role in mediating fibrogenesis and fibrosis resolution. Previously, we observed a reduction in HSC activation, proliferation, and collagen synthesis following exposure to human amnion epithelial cells (hAEC) and hAEC-conditioned media (hAEC-CM). This suggested that specific factors secreted by hAEC might be effective in ameliorating liver fibrosis. hAEC-derived extracellular vesicles (hAEC-EVs), which are nanosized (40-100 nm) membrane bound vesicles, may act as novel cell-cell communicators. Accordingly, we evaluated the efficacy of hAEC-EV in modulating liver fibrosis in a mouse model of chronic liver fibrosis and in human HSC. Methods: The hAEC-EVs were isolated and characterized. C57BL/6 mice with CCl4-induced liver fibrosis were administered hAEC-EV, hAEC-CM, or hAEC-EV depleted medium (hAEC-EVDM). LX2 cells, a human HSC line, and bone marrow-derived mouse macrophages were exposed to hAEC-EV, hAEC-CM, and hAEC-EVDM. Mass spectrometry was used to examine the proteome profile of each preparation. Results: The extent of liver fibrosis and number of activated HSCs were reduced significantly in CCl4-treated mice given hAEC-EVs, hAEC-CM, and hAEC EVDM compared to untreated controls. Hepatic macrophages were significantly decreased in all treatment groups, where a predominant M2 phenotype was observed. Human HSCs cultured with hAEC-EV and hAEC-CM displayed a significant reduction in collagen synthesis and hAEC-EV, hAEC-CM, and hAEC-EVDM altered macrophage polarization in bone marrow-derived mouse macrophages. Proteome analysis showed that 164 proteins were unique to hAEC-EV in comparison to hAEC-CM and hAEC-EVDM, and 51 proteins were co-identified components with the hAEC-EV fraction. Conclusion: This study provides novel data showing that hAEC-derived EVs significantly reduced liver fibrosis and macrophage infiltration to an extent similar to hAEC-EVDM and hAEC-CM. hAEC-EV-based therapy may be a potential therapeutic option for liver fibrosis.


This work was funded by an Australian National Health and Medical Research Council grant (GNT1064247). DG is supported by the LIMS Molecular Biology Stone Fellowship, La Trobe University Research Focus Area Leadership Grant, and La Trobe University Start-up Fund. Proteomics in this study was supported using the Mass Spectrometry and Proteomics facility, La Trobe University.


Publication Date



Frontiers in Pharmacology



Article Number





Frontiers Research Foundation



Rights Statement

© 2017 Alhomrani, Correia, Zavou, Leaw, Kuk, Xu, Saad, Hodge, Greening, Lim and Sievert. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Usage metrics

    Journal Articles


    No categories selected