La Trobe

The development of a loop-mediated isothermal amplification (LAMP) assay to detect American foulbrood in managed honey bee populations

Download (1.21 MB)
journal contribution
posted on 2024-07-09, 04:42 authored by Danielle AckerlyDanielle Ackerly, Lily TranLily Tran, Travis BeddoeTravis Beddoe

Abstract: Paenibacilluslarvae (American foulbrood) is a lethal and arguably the most destructive and economically important notifiable bacterial disease that severely impacts brood and colonies of the Apis mellifera (Western honey bee) worldwide. Detection in apiaries requires visual inspection of clinically symptomatic hives, which is unreliable, with laboratory confirmation required for definitive diagnosis. These methods can be costly, time-consuming, and require access to specialised equipment operated by experienced personnel. Disease confirmation is essential for notifiable diseases to mitigate spread and economic damages; therefore, rapid, sensitive, and specific point of care diagnostics are critical to prevent misdiagnosis and further outbreaks. To improve diagnostic turnaround, we developed a highly sensitive and specific novel loop-mediated isothermal amplification (LAMP) assay for the detection of P. larvae (AFB-LAMP), designed to amplify a small region of the DNA gyrase subunit B gene (GyrB) with 100% specificity demonstrated against non-target bacterial species of the honey bee gut microbiome and analytical sensitivity of 5 × 10−7 ng P. larvae with detection times within 20 min. To further reduce diagnostic resources and times, a bead-beating DNA extraction method suitable for field use was optimised which resulted in an AFB-LAMP diagnostic sensitivity and specificity of 97 and 98%, respectively. Thus, this AFB-LAMP is applicable for use in the field allowing for improved disease management of an agriculturally important species.

History

Publication Date

2024-06-11

Journal

Apidologie

Volume

55

Issue

3

Article Number

38

Pagination

17p.

Publisher

Springer Nature

ISSN

0044-8435

Rights Statement

© The Author(s), 2024. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC