La Trobe
1183750_Ataei,ML_2021.pdf (4.26 MB)
Download file

The Restorative Effect of Human Amniotic Fluid Stem Cells on Spinal Cord Injury

Download (4.26 MB)
journal contribution
posted on 10.10.2021, 23:14 authored by Maryam Lale Ataei, Mohammad Karimipour, Parviz Shahabi, Roghiyeh Pashaei-Asl, Esmaeil EbrahimieEsmaeil Ebrahimie, Maryam Pashaiasl
Spinal cord injury (SCI) is a debilitating condition within the neural system which is clinically manifested by sensory-motor dysfunction, leading, in some cases, to neural paralysis for the rest of the patient’s life. In the current study, mesenchymal stem cells (MSCs) were isolated from the human amniotic fluid, in order to study their juxtacrine and paracrine activities. Flow cytometry analysis was performed to identify the MSCs. A conditioned medium (CM) was collected to measure the level of BDNF, IL-1β, and IL-6 proteins using the ELISA assay. Following the SCI induction, MSCs and CM were injected into the lesion site, and also CM was infused intraperitoneally in the different groups. Two weeks after SCI induction, the spinal cord samples were examined to evaluate the expression of the doublecortin (DCX) and glial fibrillary acid protein (GFAP) markers using immunofluorescence staining. The MSCs’ phenotype was confirmed upon the expression and un-expression of the related CD markers. Our results show that MSCs increased the expression level of the DCX and decreased the level of the GFAP relative to the injury group (p < 0.001). Additionally, the CM promoted the DCX expression rate (p < 0.001) and decreased the GFAP expression rate (p < 0.01) as compared with the injury group. Noteworthily, the restorative potential of the MSCs was higher than that of the CM (p < 0.01). Large-scale meta-analysis of transcriptomic data highlighted PAK5, ST8SIA3, and NRXN1 as positively coexpressed genes with DCX. These genes are involved in neuroactive ligand–receptor interaction. Overall, our data revealed that both therapeutic interventions could promote the regeneration and restoration of the damaged neural tissue by increasing the rate of neuroblasts and decreasing the astrocytes.


Publication Date








Article Number








Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.