La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

The RNA polymerase I transcription inhibitor CX-5461 cooperates with topoisomerase 1 inhibition by enhancing the DNA damage response in homologous recombination-proficient high-grade serous ovarian cancer

journal contribution
posted on 14.01.2021, 04:47 by S Yan, J Xuan, N Brajanovski, MRC Tancock, PB Madhamshettiwar, KJ Simpson, Sarah EllisSarah Ellis, J Kang, C Cullinane, KE Sheppard, KM Hannan, RD Hannan, E Sanij, RB Pearson, KT Chan
© 2020, The Author(s).

Background: Intrinsic and acquired drug resistance represent fundamental barriers to the cure of high-grade serous ovarian carcinoma (HGSC), the most common histological subtype accounting for the majority of ovarian cancer deaths. Defects in homologous recombination (HR) DNA repair are key determinants of sensitivity to chemotherapy and poly-ADP ribose polymerase inhibitors. Restoration of HR is a common mechanism of acquired resistance that results in patient mortality, highlighting the need to identify new therapies targeting HR-proficient disease. We have shown promise for CX-5461, a cancer therapeutic in early phase clinical trials, in treating HR-deficient HGSC. Methods: Herein, we screen the whole protein-coding genome to identify potential targets whose depletion cooperates with CX-5461 in HR-proficient HGSC. Results: We demonstrate robust proliferation inhibition in cells depleted of DNA topoisomerase 1 (TOP1). Combining the clinically used TOP1 inhibitor topotecan with CX-5461 potentiates a G2/M cell cycle checkpoint arrest in multiple HR-proficient HGSC cell lines. The combination enhances a nucleolar DNA damage response and global replication stress without increasing DNA strand breakage, significantly reducing clonogenic survival and tumour growth in vivo. Conclusions: Our findings highlight the possibility of exploiting TOP1 inhibition to be combined with CX-5461 as a non-genotoxic approach in targeting HR-proficient HGSC.


The China Scholarship Council University of Melbourne Ph.D. Scholarship supported S.Y. A National Health and Medical Research Council (NHMRC) Grant and NHMRC Senior Research Fellowship to R.B.P. supported this work. The Victorian Centre for Functional Genomics (K.J.S.) is funded by the Australian Cancer Research Foundation (ACRF), the Australian Phenomics Network (APN) through funding from the Australian Government's National Collaborative Research Infrastructure Strategy (NCRIS) programme, the Peter MacCallum Cancer Centre Foundation and the University of Melbourne Research Collaborative Infrastructure Programme.


Publication Date



British Journal of Cancer







Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.