La Trobe

Temporal profiling resolves the drivers of microbial nitrogen cycling variability in coastal sediments

journal contribution
posted on 2025-05-25, 23:17 authored by Alexis J. Marshall, Lori Phillips, Andrew Longmore, Helen L. Hayden, Karla B. Heidelberg, Caixian TangCaixian Tang, Pauline Mele
Here we describe the potential for sediment microbial nitrogen-cycling gene (DNA) and activity (RNA) abundances to spatially resolve coastal areas impacted by seasonal variability in external nutrient inputs. Three sites were chosen within a nitrogen-limited embayment, Port Phillip Bay (PPB), Australia that reflect variability in both proximity to external nutrient inputs and the dominant form of available nitrogen. At three sediment depths (0–1; 1–5; 5–10 cm) across a 2 year study key genes involved in nitrification (archaeal amoA and bacterial β-amoA), nitrite reduction (clade I nirS and cluster I nirK, archaeal nirK-a), anaerobic oxidation of ammonium (anammox 16S rRNA phylogenetic marker) and nitrogen fixation (nifH) were quantified. Sediments impacted by a dominance of organic nitrogen inputs were characterised at all time-points and to sediment depths of 10 cm by the highest transcript abundances of archaeal amoA and archaeal nirk-a. Proximity to a dominance of external nitrate inputs was associated with the highest transcript abundances of nirS which temporally co-varied with seasonal changes in sediment nitrate. Sediments isolated from external inputs displayed the greatest depth-specific decrease in quantifiable transcript abundances. In these isolated sediments bacterial β-amoA transcripts were temporally associated with increased sediment ammonium levels. Across this nitrogen limited system variability in the abundance of bacterial β-amoA, archaeal amoA, archaeal nirk-a or nirS transcripts from the sediment surface (0–1 and 5 cm) demonstrated a capacity to improve our ability to monitor coastal zones impacted by anthropogenic nitrogen inputs. Specifically, the spatial detection sensitivity of bacterial β-amoA transcripts could be developed as a metric to determine spatiotemporal impacts of large external loading events. This temporal study demonstrates a capacity for microbial activity metrics to facilitate coastal management strategies through greater spatial resolution of areas impacted by external nutrient inputs.

History

Publication Date

2023-01-15

Journal

Science of the Total Environment

Volume

856

Issue

Part 1

Article Number

159057

Pagination

14p.

Publisher

Elsevier

ISSN

0048-9697

Rights Statement

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-nc/4.0/).

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC