La Trobe
1186004_Irving,H_2021.pdf (1.86 MB)
Download file

Tapping into 5-ht3 Receptors to Modify Metabolic and Immune Responses

Download (1.86 MB)
journal contribution
posted on 2021-11-21, 23:25 authored by Helen IrvingHelen Irving, Ilona TurekIlona Turek, Christine KettleChristine Kettle, N Yaakob
5-hydroxytryptamine type 3 (5-HT3) receptors are ligand gated ion channels, which clearly distinguish their mode of action from the other G-protein coupled 5-HT or serotonin receptors. 5-HT3 receptors are well established targets for emesis and gastrointestinal mobility and are used as adjunct targets in treating schizophrenia. However, the distribution of these receptors is wider than the nervous system and there is potential that these additional sites can be targeted to modulate inflammatory and/or metabolic conditions. Recent progress in structural biology and pharmacology of 5-HT3 receptors have provided profound insights into mechanisms of their action. These ad-vances, combined with insights into clinical relevance of mutations in genes encoding 5-HT3 subu-nits and increasing understanding of their implications in patient’s predisposition to diseases and response to the treatment, open new avenues for personalized precision medicine. In this review, we recap on the current status of 5-HT3 receptor-based therapies using a biochemical and physiological perspective. We assess the potential for targeting 5-HT3 receptors in conditions involving metabolic or inflammatory disorders based on recent findings, underscoring the challenges and limitations of this approach.


Publication Date



International Journal of Molecular Sciences





Article Number








Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.