La Trobe

Tactile cues are more intrinsically linked to motor timing than visual cues in visual-tactile sensorimotor synchronization

Download (1.23 MB)
journal contribution
posted on 2024-05-28, 05:44 authored by Michelle HuntleyMichelle Huntley, A Nguyen, MA Albrecht, W Marinovic
Many tasks require precise synchronization with external sensory stimuli, such as driving a car. This study investigates whether combined visual-tactile information provides additional benefits to movement synchrony over separate visual and tactile stimuli and explores the relationship with the temporal binding window for multisensory integration. In Experiment 1, participants completed a sensorimotor synchronization task to examine movement variability and a simultaneity judgment task to measure the temporal binding window. Results showed similar synchronization variability between visual-tactile and tactile-only stimuli, but significantly lower than visual only. In Experiment 2, participants completed a visual-tactile sensorimotor synchronization task with cross-modal stimuli presented inside (stimulus onset asynchrony 80 ms) and outside (stimulus-onset asynchrony 400 ms) the temporal binding window to examine temporal accuracy of movement execution. Participants synchronized their movement with the first stimulus in the cross-modal pair, either the visual or tactile stimulus. Results showed significantly greater temporal accuracy when only one stimulus was presented inside the window and the second stimulus was outside the window than when both stimuli were presented inside the window, with movement execution being more accurate when attending to the tactile stimulus. Overall, these findings indicate there may be a modality-specific benefit to sensorimotor synchronization performance, such that tactile cues are weighted more strongly than visual information as tactile information is more intrinsically linked to motor timing than visual information. Further, our findings indicate that the visual-tactile temporal binding window is related to the temporal accuracy of movement execution.

Funding

M. K Huntley is supported by an Australian Government Research Training Program Scholarship.

History

Publication Date

2024-04-01

Journal

Attention, Perception and Psychophysics

Volume

86

Pagination

16p. (p. 1022-1037)

Publisher

Springer Nature

ISSN

0031-5117

Rights Statement

© The Author(s) 2024 This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.