La Trobe

File(s) stored somewhere else

Please note: Linked content is NOT stored on La Trobe and we can't guarantee its availability, quality, security or accept any liability.

Synergistic material topography combinations to achieve immunomodulatory osteogenic biomaterials

journal contribution
posted on 01.02.2021, 05:49 by David Winkler, Laurence Burroughs, M Amer, Matthew Vassaey, Brita Koch, Grazziela Figueredo, Morgan Alexander, Jan de Boer, al et
**PREPRINT ONLY**
This is a preliminary report that has not been peer-reviewed. It should not be regarded as conclusive, guide clinical practice/health-related behavior, or be reported in news media as established information.

Abstract: Human mesenchymal stem cells (hMSCs) are widely represented in ongoing regenerative medicine clinical trials due to their ease of autologous implantation. In bone regeneration, crosstalk between macrophages and hMSCs is critical with macrophages playing a key role in the recruitment and differentiation of hMSCs. However, engineered biomaterials able to both direct hMSC fate and modulate macrophage phenotype have not yet been identified. A novel combinatorial chemistry-microtopography screening platform, the ChemoTopoChip, is used to identify materials suitable for bone regeneration by screening with human immortalized mesenchymal stem cells (hiMSCs) and human macrophages. The osteoinduction achieved in hiMSCs cultured on the “hit” materials in basal media is comparable to that seen when cells are cultured in osteogenic media, illustrating that these materials offer a materials-induced alternative in bone-regenerative applications. These also exhibit immunomodulatory effects, concurrently polarizing macrophages towards a pro-healing phenotype. Control of cell response is achieved when both chemistry and topography are recruited to instruct the required cell phenotype, combining synergistically. The large library of materials reveals that the relative roles of microtopography and material chemistry are similar, and machine learning identifies key material and topographical features for cell-instruction.

History

Publication Date

01/09/2020

Journal

BioRxiv

Article Number

2020.04.29.067421

Publisher

Cold Spring Harbour

Rights Statement

The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.

Usage metrics

Journal Articles

Categories

Licence

Exports