La Trobe

Specific mycorrhizal associations involving the same fungal taxa in common and threatened Caladenia (Orchidaceae): implications for conservation

journal contribution
posted on 2025-06-02, 02:30 authored by Noushka ReiterNoushka Reiter, Ryan PhillipsRyan Phillips, Nigel D Swarts, Magali Wright, Gareth HolmesGareth Holmes, Frances C Sussmilch, Belinda J Davis, Michael R Whitehead, Celeste C Linde

Background and Aims: In orchid conservation, quantifying the specificity of mycorrhizal associations, and establishing which orchid species use the same fungal taxa, is important for sourcing suitable fungi for symbiotic propagation and selecting sites for conservation translocation. For Caladenia subgenus Calonema (Orchidaceae), which contains 58 threatened species, we ask the following questions. (1) How many taxa of Serendipita mycorrhizal fungi do threatened species of Caladenia associate with? (2) Do threatened Caladenia share orchid mycorrhizal fungi with common Caladenia? (3) How geographically widespread are mycorrhizal fungi associated with Caladenia?

Methods: Fungi were isolated from 127 Caladenia species followed by DNA sequencing of the internal transcibed spacer (ITS) sequence locus. We used a 4.1–6 % sequence divergence cut-off range to delimit Serendipita operational taxonomic units (OTUs). We conducted trials testing the ability of fungal isolates to support germination and plant growth. A total of 597 Serendipita isolates from Caladenia, collected from across the Australian continent, were used to estimate the geographic range of OTUs.

Key Results: Across the genus, Caladenia associated with ten OTUs of Serendipita (Serendipitaceae) mycorrhizal fungi. Specificity was high, with 19 of the 23 threatened Caladenia species sampled in detail associating solely with OTU A, which supported plants from germination to adulthood. The majority of populations of Caladenia associated with one OTU per site. Fungal sharing was extensive, with 62 of the 79 Caladenia sampled in subgenus Calonema associating with OTU A. Most Serendipita OTUs were geographically widespread.

Conclusions: Mycorrhizal fungi can be isolated from related common species to propagate threatened Caladenia. Because of high specificity of most Caladenia species, only small numbers of OTUs typically need to be considered for conservation translocation. When selecting translocation sites, the geographic range of the fungi is not a limiting factor, and using related Caladenia species to infer the presence of suitable fungal OTUs may be feasible.

Funding

N.R. was supported by federal National Landcare Program funding, Saving our Species funding from the NSW Office of Environment and Heritage, Department of Land Water and Primary Industry funding through Victorian state funding and threatened species initiatives; M.R.W. was supported by an Australian Research Council (ARC) Linkage grant, LP110100408 to R. Peakall and C. Linde; R.D.P. was supported by an ARC Discovery Early Career Research Award (DE150101720). Funding for DNA sequencing and field collections was in part provided by a Hermon Slade Foundation grant to N.S., M.W., N.R. and R.D.P., and an Australian Orchid Foundation grant to M.W. and N.S.

Above and below-ground specialisation in Australian orchids and its implications for diversification and vulnerability

Australian Research Council

Find out more...

Pollination by sexual deception and the evolution of specialisation

Australian Research Council

Find out more...

History

Publication Date

2020-10-09

Journal

Annals of Botany

Volume

126

Issue

5

Article Number

mcaa116

Pagination

13p. (p. 943-955)

Publisher

Oxford University Press

ISSN

0305-7364

Rights Statement

© The Author(s) 2020. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Usage metrics

    Journal Articles

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC