La Trobe
- No file added yet -

Selection of object detections using overlap map predictions

Download (4.12 MB)
journal contribution
posted on 2023-07-05, 02:29 authored by Md-Sohel Rana, Aiden NibaliAiden Nibali, Zhen HeZhen He
Advances in deep neural networks have led to significant improvement of object detection accuracy. However, object detection in crowded scenarios is a challenging task for neural networks since extremely overlapped objects provide fewer visible cues for a model to learn from. Further complicating the detection of overlapping objects is the fact that most object detectors produce multiple redundant detections for single objects, which are indistinguishable from detections of separate overlapped objects. Most existing works use some variant of non-maximum suppression to prune duplicate candidate bounding boxes based on their confidence scores and the amount of overlap between predicted bounding boxes. These methods are unaware of how much overlap there actually is between the objects in the image, and are therefore inclined to merge detections for highly overlapped objects. In this paper, we propose an overlap aware box selection solution that uses a predicted overlap map to help it decide which highly overlapping bounding boxes are associated with actual overlapping objects and should not be pruned. We show our solution outperforms the state-of-the-art set-NMS bounding box selection algorithm for both the crowdHuman dataset and a sports dataset.

History

Publication Date

2022-11-01

Journal

Neural Computing and Applications

Volume

34

Issue

21

Pagination

17p. (p. 18611-18627)

Publisher

Springer Nature

ISSN

0941-0643

Rights Statement

The Author(s) 2022. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit: http://creativecommons.org/licenses/by/4.0/

Usage metrics

    Journal Articles

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC