La Trobe
84910_Sudheesh,S_2016.pdf (2.09 MB)

SNP-based linkage mapping for validation of QTLs for resistance to Ascochyta blight in lentil

Download (2.09 MB)
journal contribution
posted on 2023-02-09, 01:45 authored by S Sudheesh, MS Rodda, J Davidson, M Javid, A Stephens, AT Slater, Noel CoganNoel Cogan, JW Forster, S Kaur
Lentil (Lens culinaris Medik.) is a self-pollinating, diploid, annual, cool-season, food legume crop that is cultivated throughout the world. Ascochyta blight (AB), caused by Ascochyta lentis Vassilievsky, is an economically important and widespread disease of lentil. Development of cultivars with high levels of durable resistance provides an environmentally acceptable and economically feasible method for AB control. A detailed understanding of the genetic basis of AB resistance is hence highly desirable, in order to obtain insight into the number and influence of resistance genes. Genetic linkage maps based on single nucleotide polymorphisms (SNP) and simple sequence repeat (SSR) markers have been developed from three recombinant inbred line (RIL) populations. The IH × NF map contained 460 loci across 1461.6 cM, while the IH × DIG map contained 329 loci across 1302.5 cM and the third map, NF × DIG contained 330 loci across 1914.1 cM. Data from these maps were combined with a map from a previously published study through use of bridging markers to generate a consensus linkage map containing 689 loci distributed across seven linkage groups (LGs), with a cumulative length of 2429.61 cM at an average density of one marker per 3.5 cM. Trait dissection of AB resistance was performed for the RIL populations, identifying totals of two and three quantitative trait loci (QTLs) explaining 52 and 69% of phenotypic variation for resistance to infection in the IH × DIG and IH × NF populations, respectively. Presence of common markers in the vicinity of the AB_IH1- and AB_IH2.1/AB_IH2.2-containing regions on both maps supports the inference that a common genomic region is responsible for conferring resistance and is associated with the resistant parent, Indianhead. The third QTL was derived from Northfield. Evaluation of markers associated with AB resistance across a diverse lentil germplasm panel revealed that the identity of alleles associated with AB_IH1 predicted the phenotypic responses with high levels of accuracy (~86%), and therefore have the potential to be widely adopted in lentil breeding programs. The availability of RIL-based maps, a consensus map, and validated markers linked to AB resistance provide important resources for lentil improvement.

Funding

This work was supported by funding from the Victorian Department of Economic Development, Jobs, Transport and Resources, Australia and the Grains Research and Development Council, Australia.

History

Publication Date

2016-11-02

Journal

Frontiers in Plant Science

Volume

7

Article Number

1604

Pagination

12p.

Publisher

Frontiers

ISSN

1664-462X

Rights Statement

© 2016 Sudheesh, Rodda, Davidson, Javid, Stephens, Slater, Cogan, Forster and Kaur. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

Usage metrics

    Journal Articles

    Categories

    No categories selected

    Licence

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC