Before shared automated vehicles (SAVs) can be widely adopted, they are anticipated to be implemented commercially in confined regions or fixed routes where the benefits of automation can be realized. SAVs have the potential to operate in a traditional transit corridor, replacing conventional transit vehicles, and have frequent interactions with riders and other vehicles sharing the same right of way. This paper microsimulates SAVs' operation on a 6.5-mile corridor to understand how vehicle size and attributes of such SAV-based transit affect traffic, transit riders, and system costs. The SUMO (Simulation of Urban MObility) platform is employed to model microscopic interactions among SAVs, transit passengers, and other traffic. Results show that the use of smaller, but more frequent, SAVs leads to reduced passenger waiting times but increased vehicle travel times. More frequent services of smaller SAVs do not, in general, significantly affect general traffic due to shorter dwell times. Overall, using smaller SAVs instead of the large 40-seat SAVs can reduce system costs by up to 4% while also reducing passenger waiting times, under various demand levels and passenger loading factors. However, the use of 5-seat SAVs does not always have the lowest system costs.
History
Publication Date
2021-07-13
Journal
Journal of Advanced Transportation
Volume
2021
Article Number
5577500
Pagination
15p.
Publisher
Wiley-Hindawi
ISSN
0197-6729
Rights Statement
The Author reserves all moral rights over the deposited text and must be credited if any re-use occurs. Documents deposited in OPAL are the Open Access versions of outputs published elsewhere. Changes resulting from the publishing process may therefore not be reflected in this document. The final published version may be obtained via the publisher’s DOI. Please note that additional copyright and access restrictions may apply to the published version.